2,118 research outputs found

    Visualizing High-Order Symmetric Tensor Field Structure with Differential Operators

    Get PDF
    The challenge of tensor field visualization is to provide simple and comprehensible representations of data which vary both directionally and spatially. We explore the use of differential operators to extract features from tensor fields. These features can be used to generate skeleton representations of the data that accurately characterize the global field structure. Previously, vector field operators such as gradient, divergence, and curl have previously been used to visualize of flow fields. In this paper, we use generalizations of these operators to locate and classify tensor field degenerate points and to partition the field into regions of homogeneous behavior. We describe the implementation of our feature extraction and demonstrate our new techniques on synthetic data sets of order 2, 3 and 4

    Feature Lines for Illustrating Medical Surface Models: Mathematical Background and Survey

    Full text link
    This paper provides a tutorial and survey for a specific kind of illustrative visualization technique: feature lines. We examine different feature line methods. For this, we provide the differential geometry behind these concepts and adapt this mathematical field to the discrete differential geometry. All discrete differential geometry terms are explained for triangulated surface meshes. These utilities serve as basis for the feature line methods. We provide the reader with all knowledge to re-implement every feature line method. Furthermore, we summarize the methods and suggest a guideline for which kind of surface which feature line algorithm is best suited. Our work is motivated by, but not restricted to, medical and biological surface models.Comment: 33 page

    A literature survey of low-rank tensor approximation techniques

    Full text link
    During the last years, low-rank tensor approximation has been established as a new tool in scientific computing to address large-scale linear and multilinear algebra problems, which would be intractable by classical techniques. This survey attempts to give a literature overview of current developments in this area, with an emphasis on function-related tensors

    A Proposal for a Differential Calculus in Quantum Mechanics

    Full text link
    In this paper, using the Weyl-Wigner-Moyal formalism for quantum mechanics, we develop a {\it quantum-deformed} exterior calculus on the phase-space of an arbitrary hamiltonian system. Introducing additional bosonic and fermionic coordinates we construct a super-manifold which is closely related to the tangent and cotangent bundle over phase-space. Scalar functions on the super-manifold become equivalent to differential forms on the standard phase-space. The algebra of these functions is equipped with a Moyal super-star product which deforms the pointwise product of the classical tensor calculus. We use the Moyal bracket algebra in order to derive a set of quantum-deformed rules for the exterior derivative, Lie derivative, contraction, and similar operations of the Cartan calculus.Comment: TeX file with phyzzx macro, 43 pages, no figure

    The Kummer tensor density in electrodynamics and in gravity

    Full text link
    Guided by results in the premetric electrodynamics of local and linear media, we introduce on 4-dimensional spacetime the new abstract notion of a Kummer tensor density of rank four, Kijkl{\cal K}^{ijkl}. This tensor density is, by definition, a cubic algebraic functional of a tensor density of rank four Tijkl{\cal T}^{ijkl}, which is antisymmetric in its first two and its last two indices: Tijkl=−Tjikl=−Tijlk{\cal T}^{ijkl} = - {\cal T}^{jikl} = - {\cal T}^{ijlk}. Thus, K∼T3{\cal K}\sim {\cal T}^3, see Eq.(46). (i) If T\cal T is identified with the electromagnetic response tensor of local and linear media, the Kummer tensor density encompasses the generalized {\it Fresnel wave surfaces} for propagating light. In the reversible case, the wave surfaces turn out to be {\it Kummer surfaces} as defined in algebraic geometry (Bateman 1910). (ii) If T\cal T is identified with the {\it curvature} tensor RijklR^{ijkl} of a Riemann-Cartan spacetime, then K∼R3{\cal K}\sim R^3 and, in the special case of general relativity, K{\cal K} reduces to the Kummer tensor of Zund (1969). This K\cal K is related to the {\it principal null directions} of the curvature. We discuss the properties of the general Kummer tensor density. In particular, we decompose K\cal K irreducibly under the 4-dimensional linear group GL(4,R)GL(4,R) and, subsequently, under the Lorentz group SO(1,3)SO(1,3).Comment: 54 pages, 6 figures, written in LaTex; improved version in accordance with the referee repor

    PICPANTHER: A simple, concise implementation of the relativistic moment implicit Particle-in-Cell method

    Full text link
    A three-dimensional, parallelized implementation of the electromagnetic relativistic moment implicit particle-in-cell method in Cartesian geometry (Noguchi et. al., 2007) is presented. Particular care was taken to keep the C++11 codebase simple, concise, and approachable. GMRES is used as a field solver and during the Newton-Krylov iteration of the particle pusher. Drifting Maxwellian problem setups are available while more complex simulations can be implemented easily. Several test runs are described and the code's numerical and computational performance is examined. Weak scaling on the SuperMUC system is discussed and found suitable for large-scale production runs.Comment: 29 pages, 8 figure

    Bulgac-Kusnezov-Nos\'e-Hoover thermostats

    Full text link
    In this paper we formulate Bulgac-Kusnezov constant temperature dynamics in phase space by means of non-Hamiltonian brackets. Two generalized versions of the dynamics are similarly defined: one where the Bulgac-Kusnezov demons are globally controlled by means of a single additional Nos\'e variable, and another where each demon is coupled to an independent Nos\'e-Hoover thermostat. Numerically stable and efficient measure-preserving time-reversible algorithms are derived in a systematic way for each case. The chaotic properties of the different phase space flows are numerically illustrated through the paradigmatic example of the one-dimensional harmonic oscillator. It is found that, while the simple Bulgac-Kusnezov thermostat is apparently not ergodic, both of the Nos\'e-Hoover controlled dynamics sample the canonical distribution correctly
    • …
    corecore