78,192 research outputs found

    Visualizations for an Explainable Planning Agent

    Full text link
    In this paper, we report on the visualization capabilities of an Explainable AI Planning (XAIP) agent that can support human in the loop decision making. Imposing transparency and explainability requirements on such agents is especially important in order to establish trust and common ground with the end-to-end automated planning system. Visualizing the agent's internal decision-making processes is a crucial step towards achieving this. This may include externalizing the "brain" of the agent -- starting from its sensory inputs, to progressively higher order decisions made by it in order to drive its planning components. We also show how the planner can bootstrap on the latest techniques in explainable planning to cast plan visualization as a plan explanation problem, and thus provide concise model-based visualization of its plans. We demonstrate these functionalities in the context of the automated planning components of a smart assistant in an instrumented meeting space.Comment: PREVIOUSLY Mr. Jones -- Towards a Proactive Smart Room Orchestrator (appeared in AAAI 2017 Fall Symposium on Human-Agent Groups

    Visualizing practical knowledge: The Haughton-Mars Project

    Get PDF
    To improve how we envision knowledge, we must improve our ability to see knowledge in everyday life. That is, visualization is concerned not only with displaying facts and theories, but also with finding ways to express and relate tacit understanding. Such knowledge, although often referred to as "common," is not necessarily shared and may be distributed socially in choreographies for working together—in the manner that a chef and a maitre d’hôtel, who obviously possess very different skills, coordinate their work. Furthermore, non-verbal concepts cannot in principle be inventoried. Reifying practical knowledge is not a process of converting the implicit into the explicit, but pointing to what we know, showing its manifestations in our everyday life. To this end, I illustrate the study and reification of practical knowledge by examining the activities of a scientific expedition in the Canadian Arctic—a group of scientists preparing for a mission to Mar

    Uncertainty in phylogenetic tree estimates

    Full text link
    Estimating phylogenetic trees is an important problem in evolutionary biology, environmental policy and medicine. Although trees are estimated, their uncertainties are discarded by mathematicians working in tree space. Here we explicitly model the multivariate uncertainty of tree estimates. We consider both the cases where uncertainty information arises extrinsically (through covariate information) and intrinsically (through the tree estimates themselves). The importance of accounting for tree uncertainty in tree space is demonstrated in two case studies. In the first instance, differences between gene trees are small relative to their uncertainties, while in the second, the differences are relatively large. Our main goal is visualization of tree uncertainty, and we demonstrate advantages of our method with respect to reproducibility, speed and preservation of topological differences compared to visualization based on multidimensional scaling. The proposal highlights that phylogenetic trees are estimated in an extremely high-dimensional space, resulting in uncertainty information that cannot be discarded. Most importantly, it is a method that allows biologists to diagnose whether differences between gene trees are biologically meaningful, or due to uncertainty in estimation.Comment: Final version accepted to Journal of Computational and Graphical Statistic
    • …
    corecore