7,739 research outputs found

    Mining structured Petri nets for the visualization of process behavior

    Get PDF
    Visualization is essential for understanding the models obtained by process mining. Clear and efficient visual representations make the embedded information more accessible and analyzable. This work presents a novel approach for generating process models with structural properties that induce visually friendly layouts. Rather than generating a single model that captures all behaviors, a set of Petri net models is delivered, each one covering a subset of traces of the log. The models are mined by extracting slices of labelled transition systems with specific properties from the complete state space produced by the process logs. In most cases, few Petri nets are sufficient to cover a significant part of the behavior produced by the log.Peer ReviewedPostprint (author's final draft

    Some issues in the 'archaeology' of software evolution

    Get PDF
    During a software project's lifetime, the software goes through many changes, as components are added, removed and modified to fix bugs and add new features. This paper is intended as a lightweight introduction to some of the issues arising from an `archaeological' investigation of software evolution. We use our own work to look at some of the challenges faced, techniques used, findings obtained, and lessons learnt when measuring and visualising the historical changes that happen during the evolution of software

    Parameterizable Views for Process Visualization

    Get PDF
    In large organizations different users or user groups usually have distinguished perspectives over business processes and related data. Personalized views on the managed processes are therefore needed. Existing BPM tools, however, do not provide adequate mechanisms for building and visualizing such views. Very often processes are displayed to users in the same way as drawn by the process designer. To tackle this inflexibility this paper presents an advanced approach for creating personalized process views based on well-defined, parameterizable view operations. Respective operations can be flexibly composed in order to reduce or aggregate process information in the desired way. Depending on the chosen parameterization of the applied view operations, in addition, different "quality levels" with more or less relaxed properties can be obtained for the resulting process views (e.g., regarding the correctness of the created process view scheme). This allows us to consider the specific needs of the different applications utilizing process views (e.g., process monitoring tools or process editors). Altogether, the realized view concept contributes to better deal with complex, long-running business processes with hundreds up to thousands of activities

    A Heuristic Approach for Discovering Reference Models by Mining Process Model Variants

    Get PDF
    Recently, a new generation of adaptive Process-Aware Information Systems (PAISs) has emerged, which enables structural process changes during runtime while preserving PAIS robustness and consistency. Such flexibility, in turn, leads to a large number of process variants derived from the same model, but differing in structure. Generally, such variants are expensive to configure and maintain. This paper provides a heuristic search algorithm which fosters learning from past process changes by mining process variants. The algorithm discovers a reference model based on which the need for future process configuration and adaptation can be reduced. It additionally provides the flexibility to control the process evolution procedure, i.e., we can control to what degree the discovered reference model differs from the original one. As benefit, we can not only control the effort for updating the reference model, but also gain the flexibility to perform only the most important adaptations of the current reference model. Our mining algorithm is implemented and evaluated by a simulation using more than 7000 process models. Simulation results indicate strong performance and scalability of our algorithm even when facing large-sized process models

    Updatable Process Views for User-centered Adaption of Large Process Models

    Get PDF
    The increasing adoption of process-aware information systems (PAISs) has resulted in large process model collections. To support users having different perspectives on these processes and related data, a PAIS should provide personalized views on process models. Existing PAISs, however, do not provide mechanisms for creating or even changing such process views. Especially, changing process models is a frequent use case in PAISs due to changing needs or unplanned situations. While process views have been used as abstractions for visualizing large process models, no work exists on how to change process models based on respective views. This paper presents an approach for changing large process models through updates of corresponding process views, while ensuring up-to-dateness and consistency of all other process views on the process model changed. Respective update operations can be applied to a process view and corresponding changes be correctly propagated to the underlying process model. Furthermore, all other views related to this process model are then migrated to the new version of the process model as well. Overall, our view framework enables domain experts to evolve large process models over time based on appropriate model abstractions

    Discovering Process Reference Models from Process Variants Using Clustering Techniques

    Get PDF
    In today's dynamic business world, success of an enterprise increasingly depends on its ability to react to changes in a quick and flexible way. In response to this need, process-aware information systems (PAIS) emerged, which support the modeling, orchestration and monitoring of business processes and services respectively. Recently, a new generation of flexible PAIS was introduced, which additionally allows for dynamic process and service changes. This, in turn, has led to large number of process and service variants derived from the same model, but differs in structures due to the applied changes. This paper provides a sophisticated approach which fosters learning from past process changes and allows for determining such process variants. As a result we obtain a generic process model for which the average distances between this model and the process variants becomes minimal. By adopting this generic process model in the PAIS, need for future process configuration and adaptation will decrease. The mining method proposed has been implemented in a powerful proof-of-concept prototype and further validated by a comparison between other process mining algorithms

    Supporting adaptiveness of cyber-physical processes through action-based formalisms

    Get PDF
    Cyber Physical Processes (CPPs) refer to a new generation of business processes enacted in many application environments (e.g., emergency management, smart manufacturing, etc.), in which the presence of Internet-of-Things devices and embedded ICT systems (e.g., smartphones, sensors, actuators) strongly influences the coordination of the real-world entities (e.g., humans, robots, etc.) inhabitating such environments. A Process Management System (PMS) employed for executing CPPs is required to automatically adapt its running processes to anomalous situations and exogenous events by minimising any human intervention. In this paper, we tackle this issue by introducing an approach and an adaptive Cognitive PMS, called SmartPM, which combines process execution monitoring, unanticipated exception detection and automated resolution strategies leveraging on three well-established action-based formalisms developed for reasoning about actions in Artificial Intelligence (AI), including the situation calculus, IndiGolog and automated planning. Interestingly, the use of SmartPM does not require any expertise of the internal working of the AI tools involved in the system
    corecore