
 Eindhoven University of Technology

MASTER

Performance analysis of business processes from event logs and given process models

Adriansyah, A.

Award date:
2009

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/2344fbec-fed6-4b54-b4b2-7def6593bbc3

EINDHOVEN UNIVERSITY OF TECHNOLOGY
Departement of Mathematics and Computer Science

Performance Analysis of Business
Processes from Event Logs and Given

Process Models

Arya Adriansyah

Supervisor: prof.dr.ir. W.M.P van der Aalst

Tutor: dr.ir. Boudewijn van Dongen

Examination Committee: dr.ir. H.M.M. van de Wetering

Eindhoven, August 2009

Dedicated to my parents, sister, and a very special friend

Abstract

The goal of performance analysis of business processes is to gain insights into op-
erational processes, for the purpose of optimizing them. To intuitively show which
parts of the process might be improved, performance analysis results can be pro-
jected onto process models. This way, bottlenecks can quickly be identified and
resolved. Unfortunately, existing approaches to project performance information
onto process models are limited to models at relatively low levels of abstraction.
Given complex processes with many activities and complex case routings, useful
insights are hardly obtained from classical process models. Too many details are
shown at once, thus making it impossible to see the global picture.

In this thesis, we investigate an approach to project performance information
which is obtained from event logs onto models at any level of abstraction. Based
on an analysis of existing process models, we propose a process model which can
represent processes intuitively, regardless of their complexity. Given such a model
and an event log of a process, we propose an approach to calculate performance
information of the process. The obtained information is then projected onto the
process model such that performance insights can be obtained intuitively. To eval-
uate the performance and demonstrate the applicability of our approach, we have
implemented it in the ProM framework1 and tested it using various real-life event
logs.

Keywords: business process performance analysis, process model abstraction, per-
formance projection.

1http://www.processmining.org

iii

Executive Summary

Problem Definition

A process model plays a crucial role in business process performance measurement.
It does not only provide the necessary information about the way activities are
performed, but it can also provide additional insights whenever performance infor-
mation is projected onto it. Process models with projected performance information
can show where exactly bottleneck activities lie, which activities may be affected by
them, and which activities cause them.

Exploration of commercial process monitoring tools by Hornix (2007) shows that
to obtain such performance representation, a model of the process is required. Con-
structing a process model is a time-consuming activity. In the AIS group of the
Mathematics and Computer Science department of TU/e, the use of event logs to
obtain insights into business processes is investigated. Some of the research results
are process discovery algorithms which enable process models at different levels of
activity abstraction to be constructed from event logs. Figure 1 illustrates several
process models of a single process, each with a different level of activity abstraction.
Process models with a higher level of abstraction provide less details compared to
the models with a lower level of abstraction.

Process model abstraction helps process owners to obtain significant information
from a process model based on the detailed model specification. Unfortunately,
currently available approaches to measure and visualize performance information are
limited to models at a relatively low level of abstraction. In case the process consists
of many activities, the model shows too many details such that useful insights are
hard to be found.

Research Objective

The described problem leads to the main research objective of this thesis:
Develop an approach to calculate performance information from both a given

event log and a given process model at any level of abstraction, and project the
information onto the model.

The projected performance information should be informative and intuitive. It
has to provide some useful insights into business processes and should be under-
standable by process owners. The approach needs to be robust, i.e. it produces
useful performance information and useful insights regardless of the complexity of
the business processes.

iv

v

A

B

E

D

F G

A

B, D

E, F G

A

B,D,E,F

G

A,B,D,E,F,G

High level of abstraction

Low level of
abstraction

Level 1

Level 2

Level 3

Level 4

Figure 1: Several process models of a single process, each at a different level of
abstraction

Research questions

The research objective resulted in the following main research question:
Given a process model at any level of abstraction and an event log, how can we

calculate performance information and project it onto the model?
This main question can be divided into three sub-questions:

1. What kind of process models can present a process intuitively, regardless of the
complexity of the process?

2. Given an event log and an instance of the model, how can performance infor-
mation be calculated?

3. How can the information be projected onto the model?

Research Methodology

To satisfy the research objective and answer the research questions, the following
steps are taken:

1. Conduct a literature study on business process performance analysis and pro-
cess mining. Investigate performance metrics on business processes and iden-
tify which metrics can be measured from event logs.

2. Analyze intuitive process models, especially the ones which are potentially
suitable to project performance information onto.

3. Develop a conceptual process model such that important performance infor-
mation can be projected onto it intuitively.

vi

4. Develop an approach to calculate performance information based on the con-
ceptual process model.

5. Develop a process model to project the performance information onto.

6. Implement the approach as plugins in ProM2. In this thesis, the new version
of ProM (ProM 2008) is used as an implementation platform rather than the
latest released version of ProM (ProM 5).

7. Evaluate the implemented methods using both simulated and real life event
logs. Analyze insights into processes which are gained from the constructed
models.

Results

In this master thesis, several existing process models have been investigated and their
strong and weak points have been analyzed. In addition, process models which are
currently used in commercial tools have been explored. Based on the analysis results,
only process models that can abstract activities (hiding activities such that they do
not appear in the models) and aggregate activities (presenting several activities in
a node) are able to present processes intuitively, regardless of their complexity. In
addition, they need to have relaxed semantics. Thus, Simple Precedence Diagrams
(SPDs) have been introduced as process models which support these features. Three
main approaches to obtain SPDs also have been defined: converting existing process
models to SPDs, discovering SPDs from event logs, and creating SPDs manually.

To ensure that a substantial number of performance metrics was taken into ac-
count, various useful KPIs for business process analysis were investigated. To mea-
sure the KPIs, both academic performance measurement approaches and commercial
performance measurement approaches (from several leading commercial tools) were
analyzed. Based on these approaches, a log replay approach to calculate perfor-
mance information based on an event log and an SPD has been proposed to address
the second research question.

Finally, to address the last research question, two process models are proposed:
Fuzzy Performance Diagrams (FPDs) and Aggregated Activities Performance Di-
agrams (AAPDs) (see Figure 2 and Figure 3). The former is basically an SPD
with performance information projected onto it and the latter is a model which
aggregates activity instances in rectangular elements and shows the performance of
each element with respect to one focus element. With both models, performance
information can be presented in an intuitive manner.

As a proof of concept, the log replay and all supporting modules have been im-
plemented as ProM plugins. The implemented plugins have been evaluated against
various real-life event logs, as well as simulated event logs. Evaluation of the plug-
ins showed that performance information of processes can be obtained easily from
the proposed models, regardless of their complexity. Nevertheless, knowledge about
the processes and the motivation behind the construction of the process models is
essential to interpret the models properly. The implemented plugins also worked

2http://www.processmining.org

vii

Frequency of control passed
through this edge (width)

Average time spent transferring control from
source to target node (color)

Average node throughput
time of this node

Frequency of activity instances
refer to instances of this node

Average node waiting time
performance indicator (color)

Relative frequency of
cases in which an
instance of this node
occurs

Relative frequency of
activity instances refers
to instances of this
node

Average node throughput time
performance indicator (color)

Average synchronization time
performance indicator (color)

Figure 2: Example of an FPD of a large event log

arguably fast even when dealing with large real life event logs which represent com-
plex processes. Despite its robustness, the log replay approach still leaves room
for improvement. Depending on the complexity of the event logs, the approach is
sensitive to a look-ahead value and requires a lot of memory. Further investigation
is needed to make it more robust.

Conclusion

Complex business processes can only be shown intuitively by process models which
support both activity abstraction and aggregation, and have relaxed semantics. The
SPD is a model which satisfies these criteria. Therefore, it is able to present even
complex processes intuitively. However, the drawback of process models which sat-
isfy these criteria is their inability to describe control flow precisely. Thus, to extract
performance information using such models, it is necessary to have a heuristic ap-
proach which exploits all available information to determine the control flow of the
process. In this thesis, we show that with a simple approach using a look-ahead
value and precedence information from SPDs, the control flow of processes can be
determined so that performance of the processes can be calculated.

viii

Average queuing time of activities
“ActivityInstanceB” in all cases in which
the focus element was instantiated

Average service time of activities
“ActivityInstanceB” in all cases in which
the focus element was instantiated

Average queuing time of
activities “ActivityInstanceD” in all
cases in which the focus element
was instantiated

Element Color: indicates throughput time
performance of activity instances
“ActivityInstanceD” in all cases in which the focus
element was instantiated

Focus Element: determines which
cases are used for the performance
metrics in other elements

Relative distance between the start time of activities
“ActivityInstanceH” and the start times of activities
belonging to the focus node in all cases in which the
focus element was instantiated

Average throughput time of activities
“ActivityInstanceC” in all cases in which
the focus element was instantiated

Element Height: indicates the
frequency of cases where
“ActivityInstanceG” occurs relative
to the number of cases in which the
focus element occurs

Line Height: indicates the frequency of
activity instances “ActivityInstanceC”
compared to the frequency of activity
instances of the focus element in all
cases in which the focus element was
instantiated

average time during which an activity is
performed in parallel with activities of
the focus node (if there is any)

Activity Names

Figure 3: Example of an AAPD of a large event log

Preface

This master thesis is the result of my graduation project which completes my Com-
puter Science and Engineering study at Eindhoven University of Technology. The
project is an internal project conducted in the Architecture of Information System
Group, Mathematics and Computer Science Department of Eindhoven University of
Technology.

The topic of the graduation project suits the courses in the master phase and
also suits my personal interest. Therefore, I enjoy working on the project a lot. I
find the project is challenging, as I have to think outside of the box and come up
with new idea. Throughout the project, I also learned a lot of valuable things.

I would like to thank several people for their support during my graduation
project. First, I would like to thank my supervisor Wil van der Aalst for introducing
me to such a wonderful project and guiding me throughout the project. I would
like to thank for his trust, support, feedbacks, and pleasant cooperation. Second,
I would thank my tutor Boudewijn van Dongen for his daily guidance throughout
the project. He has become such a great tutor, being more like a close friend than
just a tutor who guide me throughout the project. I believe that not many people
are willing and capable enough to give constructive feedbacks and ideas as much as
them both. I would also thank Huub van de Wetering as one of the members of the
examination committee.

Then, I would thank my mother Meydia Darmawan and my father Darmawan
Daud for their continuous support, pray, and guidance during both good and bad
time. Also thanks to my sister Astrid Hapsari Ningrum who always manage to
cheered me up when I was down. Thank you for my special friend, Elva Fitriani,
who kept my spirit alive along the way. Huge thanks to my best friends: Merli,
Chitra, and Rendy who always have faith in me and helped me gain my mind back
during those critical times. Many thanks to Samuel, Goran, Agni, and Jimmy for
their moral supports along the way. And of course, many thanks for all of my
relatives, friends, and other people that I can not mention in detail for the supports
they gave.

Arya Adriansyah
August 2009

ix

Contents

1 Introduction 1
1.1 Thesis Context . 1
1.2 Problem Description . 3
1.3 Research Objective and Questions . 4
1.4 Research Scope . 5
1.5 Research Methodology . 5
1.6 Outline . 5

2 Preliminaries 6
2.1 Business Process Performance Analysis 6
2.2 Process Mining . 10

2.2.1 Event Logs . 11
2.2.2 Process Discovery . 13
2.2.3 The ProM Framework . 16

2.3 Performance Analysis through Process Mining 17
2.4 Performance Analysis in Commercial Tools 20

3 Modeling Processes 23
3.1 Intuitive Process Models . 23
3.2 Obtaining SPDs . 26

3.2.1 Converting Process Models to SPDs 26
3.2.2 Mining SPDs from Event Logs 29
3.2.3 Creating a Hand Made SPD 32

4 Measuring Performance 34
4.1 Overview . 34
4.2 Node Sequence Identification . 35
4.3 Node Instance Identification . 39
4.4 Control Flow Identification . 40
4.5 Activity Instances Identification . 45
4.6 Key Performance Indicators . 46

4.6.1 Case-Level KPIs . 48
4.6.2 Process-model-related KPIs 49

4.6.2.1 SPD-Node-related KPIs 49
4.6.2.2 Edge-related KPIs 51
4.6.2.3 Two-nodes analysis 52
4.6.2.4 Aggregated-activities KPIs 52

x

Contents xi

5 Performance Projection 56
5.1 Fuzzy Performance Diagram (FPD) 56
5.2 Aggregated Activities Performance Diagram (AAPD) 60

6 Implementation 63
6.1 Plugins Overview . 63
6.2 SPD Plugins . 64
6.3 Performance Measurement Plugins 65

6.3.1 Event Log Replay Plug-in . 66
6.3.2 FPD Visualization Plug-in . 67
6.3.3 AAPD Visualization Plug-in 69
6.3.4 Global Settings Visualization Plug-in 74

7 Evaluation 76
7.1 Node and Semantics Identification . 76
7.2 Real-life Log Analysis . 78
7.3 Performance Evaluation . 83

8 Conclusion and Recommendation 87

Bibliography 89

Appendix 93

A KPI Formalization 93
A.1 Case-level KPIs . 93
A.2 Process-model-related KPIs . 95

A.2.1 SPD-Node-related KPIs . 95
A.2.2 Edge-related KPIs . 96
A.2.3 Two-nodes analysis . 97

B Implementation Design 99
B.1 SPD Plug-in . 99
B.2 Performance Measurement . 101

B.2.1 Models to Project Performance Information 101
B.2.2 Log Replay Plug-in . 103
B.2.3 Performance Information Visualization 105

C User Manual 109
C.1 SPD Miner Plug-in . 109

C.1.1 Introduction . 109
C.1.2 Using SPD Miner Plug-in . 109

C.2 SPD Visualization Plug-in . 110
C.2.1 Introduction . 110
C.2.2 How to Use . 111

C.2.2.1 Visualize SPD . 111
C.2.2.2 Mapping SPD nodes to activities 112

C.3 Event Log Replay Plug-in . 113

Contents xii

C.3.1 Introduction . 113
C.3.2 How to Use . 113

C.4 FPD Visualization . 114
C.4.1 Introduction . 114
C.4.2 Performance Information . 116
C.4.3 How to Use . 120

C.5 AAPD Visualization . 121
C.5.1 Introduction . 121
C.5.2 Performance Information . 122
C.5.3 How to Use . 123

C.6 Global Setting GUI . 124
C.6.1 Introduction . 124
C.6.2 How to Use . 125

D Evaluation 127
D.1 Semantics Identification Evaluation 127

D.1.1 Purpose . 127
D.1.2 Procedure . 127
D.1.3 Result . 129

D.2 Multi-level of Abstraction Evaluation 129
D.2.1 Purpose . 129
D.2.2 Procedure . 129
D.2.3 Result . 129

List of Figures

1 Several process models of a single process, each at a different level of
abstraction . v

2 Example of an FPD of a large event log vii
3 Example of an AAPD of a large event log viii

1.1 Bar Chart Example . 2
1.2 Performance Indicator in an Extended Petri net 2
1.3 Several process models of a single process, each with different level of

abstractions . 4

2.1 A three dimensional view of a workflow [14,44] 7
2.2 Transactional model for activities [47] 8
2.3 Performance measures - time dimension 9
2.4 MXML format of a process log [47] 13
2.5 Standard transactional model in this thesis 13
2.6 Example of heuristic model from a case [40] 15
2.7 An excerpt of a Fuzzy model [26] . 15
2.8 The new ProM architecture . 17
2.9 Performance information in a Petri net process model [16] 18
2.10 Example of a traces of events [25] . 19
2.11 Log animation in a Fuzzy model . 20
2.12 Example of performance dashboard in the Software AG’s WebMeth-

ods [11] . 21
2.13 Charts and tables to show performance information in the Metastorm

BPM [3] . 22
2.14 Speedometer to indicate resources workload to handle on-boarding

new clients in the Metastorm BPM [3] 22

3.1 Fuzzy model to show sequence pattern from A to B 24
3.2 Petri net to show sequence pattern from A to B 24
3.3 Process model with two possible traces 25
3.4 Fuzzy model of process described in Figure 3.3 25
3.5 An example Petri net (1) . 28
3.6 The GPM of the Petri net in Figure 3.5 28
3.7 The SPD of the Petri net in Figure 3.5 28
3.8 An example of a Fuzzy model and a GPM/an SPD which is con-

structed from the model . 29
3.9 An example Petri net (2) . 30

xiii

List of Figures xiv

3.10 An example of a hand made SPD that is created based on limited
information about the process (1) . 32

3.11 An example of a hand made SPD that is created based on limited
information about the process (2) . 32

3.12 An example of a hand made SPD that is created based on limited
information about the process (3) . 33

3.13 An example of hand made SPD that is created based on limited in-
formation about processes (4) . 33

4.1 Overview of the approach to measure performance 35
4.2 SPD for example . 37
4.3 Sequence of events 1 as case example 38
4.4 Sequence of SPD nodes for the sequence of events in Figure 4.3 . . . 38
4.5 Sequence of events 2 as case example 39
4.6 Transformation of the sequence of events in Figure 4.3 during log

replay . 41
4.7 Control flow identification of node instances in Figure 4.6 42
4.8 Control flow identification of node instances in Example 2 42
4.9 Split semantics identification example 44
4.10 Join semantics identification example 45
4.11 Example of activity instances inside a node instance 46
4.12 Example of constructed activity instances 47
4.13 Different insights into a process from different level of abstraction . . 47
4.14 Example of two node instances in the same case 54

5.1 Example of an FPD . 56
5.2 Example of an FPD node (1) . 57
5.3 Example of an FPD node (2) . 57
5.4 Control flow indication in FPD edges (See also Figure 5.3) 58
5.5 Activity mapping in an example SPD 59
5.6 Performance and control flow information in an example FPD 59
5.7 Example of an AAPD . 61

6.1 The new ProM architecture . 64
6.2 SPD Visualization . 65
6.3 FPD visualization . 67
6.4 Using Two Nodes Performance panel provided by FPD visualization

plug-in . 68
6.5 AAPD visualization . 69
6.6 Example of comparison between AAPD with horizontal distance in

linear scale and AAPD with horizontal distance in logarithmic scale . 71
6.7 Example of adjustment to AAPD horizontal scaling value 72
6.8 Example of adjustment to AAPD element scaling value 73
6.9 Example of adjustment to horizontal scaling value and element scaling

value in AAPD shown in Figure 6.6b 73
6.10 Example of a detailed statistical measurement 74
6.11 Interface to set the values in objects of class GlobalSettingsData . . 74

List of Figures xv

7.1 Petri net for evaluation purpose . 76
7.2 SPD of Petri net in Figure 7.1 . 77
7.3 Petri net 1 for evaluation . 77
7.4 Petri net 2 for evaluation . 78
7.5 Prediction of AND-join semantics of node G which refers to transition

G of the Petri net in Figure 7.4 with several look-ahead window values 79
7.6 The constructed FPD of “bezwaar WOZ” log with 18 nodes 80
7.7 The constructed AAPD of “bezwaar WOZ” log with 18 elements . . . 80
7.8 The constructed SPD of “bezwaar WOZ” log with 5 nodes 81
7.9 The constructed FPD of “bezwaar WOZ” from SPD in Figure 7.8 . . 82
7.10 AAPD of “bezwaar WOZ” log with a default settings (all scaling has

a zero value) . 83
7.11 AAPD of “bezwaar WOZ” log with horizontal scaling adjustment . . 83
7.12 AAPD of “bezwaar WOZ” log with horizontal scaling, width scaling,

and height scaling adjustment . 84
7.13 Performance degradation with increasing number of clusters (nodes) . 86

B.1 SPD class design . 100
B.2 Classes to map nodes in an SPD to activities in an event log 100
B.3 Screenshot of SPDEditorPanel . 101
B.4 FPD class design . 102
B.5 AAPD class design . 103
B.6 Design of classes to perform log replay 103
B.7 Classes to store the result of log replay 105
B.8 FPD visualization . 106
B.9 FPD visualization class design . 106
B.10 Example of textual information . 107
B.11 Example of table information . 107
B.12 AAPD visualization . 108
B.13 AAPD visualization class design . 108

C.1 Using SPD Miner . 110
C.2 Dialog which ask for the number of SPD clusters 110
C.3 Progress bar that indicates that the SPD Miner plug-in is processing 110
C.4 SPD Visualization . 111
C.5 How to use SPD Visualization plug-in 111
C.6 Error message if there is no event log which is mapped to the selected

SPD . 111
C.7 The first step of mapping SPD nodes to activity 112
C.8 Popup window after all nodes are mapped 112
C.9 How to use the Event Log Replay Plug-in 113
C.10 Dialog to determine look-ahead value 114
C.11 Dialog to adjust the value of maximum state space in the search of

maximum fitting subtraces . 114
C.12 Event log replay progress bar . 114
C.13 Output objects of log replay plug-in 115
C.14 FPD visualization . 115

List of Figures xvi

C.15 The Case-level KPIs panel . 116
C.16 Example display of Node-related KPIs panel 117
C.17 Example display of Edge-related KPIs panel 117
C.18 Example display of the Two Nodes Performance panel 119
C.19 How to use the FPD visualization plug-in 120
C.20 Display of boxes to adjust the boundary of performance color 120
C.21 Dialog window to modify the value of node throughput time perfor-

mance boundary . 121
C.22 Example of a selected radio button beside the “Select source node”

label . 121
C.23 AAPD visualization . 122
C.24 How to use the AAPD visualization plug-in 123
C.25 The three sliders to adjust AAPD visualization 123
C.26 Boxes to adjust the performance color of AAPD element 124
C.27 Global settings object visualization 124
C.28 Example of a detailed statistical performance table 125
C.29 How to use Global setting visualization plug-in 125
C.30 Popup window after Global settings object is successfully modified . . 126

D.1 Petri net 1 for evaluation . 127
D.2 Petri net 2 for evaluation . 128
D.3 Decomposition of each transition in both Figure D.1 and Figure D.2 . 128
D.4 SPD of the Petri net in Figure D.1 128
D.5 SPD of the Petri net in Figure D.2 129
D.6 SPDs of the Petri net in Figure D.1, each with a different level of

activity abstraction . 130

List of Tables

6.1 Throughput time table . 68

7.1 Traces for evaluation purpose . 77
7.2 Node identification evaluation . 78
7.3 Metadata of testing event logs . 84
7.4 Performance of replay log plug-in (time unit is given in seconds) . . . 85
7.5 Performance of replay log plug-in per case per event (time unit is

given in microsecond/10−6 second) 85

xvii

Chapter 1

Introduction

This master thesis is the result of the graduation project for Computer Science
and Engineering master study at Eindhoven University of Technology (TU/e). The
project is carried within the Architecture of Information Systems (AIS) group of
the Mathematics and Computer Science department of TU/e. Throughout this
thesis, we investigate the problem of projecting business process performance in-
formation onto given process models such that insights can be obtained intuitively,
regardless of the complexity of the processes being considered. Within this master
project, a solution has been realized using the Process Mining (ProM) framework1,
an open-source framework which is mainly developed by the AIS group to support
the implementation of process and log related techniques.

In Section 1.1, the context of this master thesis is explained. Then, the problems
which are tackled in this thesis are explained in Section 1.2. Section 1.3 gives the
research objectives and the research questions for this thesis. The remaining three
sections of this chapter provide the scope of this thesis, the research methodology,
and the outline for this master thesis report, respectively.

1.1 Thesis Context

Business process performance analysis has already been an issue for management
since the 1980s. In the early 1980s, Total Quality Management (TQM) was intro-
duced as one of the earliest approaches which consider process improvement as an
integral part to improve organizations’ overall performance and quality. Then, Busi-
ness Process Re-engineering (BPR) was introduced in the early 1990s to improve
organizations’ performance by revolutionary process improvements [42]. However,
only since the beginning of 2002, significant attention has been paid to Business
Process Management (BPM) [31]. Now, it can be argued that BPM is the most
important topic on the management agenda [31]. A recent study of Gartner in early
2009 also supports this opinion as BPM has been one of the CIO’s top business
priorities for the past five years [39].

A business process can be defined as a set of coordinated activities in an orga-
nizational and technical environment to realize a business goal [49]. Each business

1http://www.processmining.org

1

1.1. Thesis Context 2

0

50

100

150

200

250

Th
ro

ug
hp

ut
 T

im
e

Register Analyze Defect Inform User Archive Repair Restart Repair

Activity

Figure 1.1: Bar Chart Example

Bottleneck

Good performance
Medium performance

Figure 1.2: Performance Indicator in an Extended Petri net

process can be enacted by a single or multiple organizations. Many case stud-
ies show that well-designed business processes lead to improvements and cost sav-
ing, while badly designed business processes lead to errors and resource inefficien-
cies [24, 30,32,35].

In this thesis, we limit our scope to business process performance analysis. The
goal of business process performance analysis is to gain insights into operational pro-
cesses. With these insights, processes can be improved and optimized. Typically, the
performance of a process can be calculated from the process’ event log which con-
tains information on which activities have been performed by whom and for which
case. The information is presented to the process owners in a simple and intuitive
form such that useful insights into the process can be obtained easily. Different pre-
sentation forms may provide different insights into the same process. For instance,
the bar chart in Figure 1.1 provides insights into activities’ throughput time. It
is easy to see which activity takes the most time to be finished, and which other
activity takes approximately the same time to be finished. If the same information
is projected onto a Petri net [28] (see Figure 1.2), another view on the bottleneck
activities is achieved, providing new insights into the process. From Figure 1.2, a
bottleneck can be easily identified between the “Analyze Defect complete” activity
and the “Inform User complete” activity. However, unlike the bar chart in Figure
1.1, no comparison between the activities’ throughput times can be obtained from
the representation in Figure 1.2.

A process model is an essential element in business process performance measure-
ment. Not only that it provides the necessary information about the way activities

1.2. Problem Description 3

are performed, but it can also provide additional insights whenever performance
information is projected onto it. Process models with projected performance in-
formation can show where exactly bottleneck activities lie, which activities may be
affected by them, and which activities cause them. An exploration of commercial
process monitoring tools in [28] showed that in order to obtain such performance
presentation for a process, a process model of the process is required. Currently,
there are two common approaches to obtain such model. In the first approach, the
model is obtained directly from the process owners, e.g. process owners should draw
the process model according to their own view of the process. The second approach
is to retrieve the model from a Workflow Management System (WFMS).

Compared to the first approach, the second approach has several drawbacks.
First, it cannot be used by any organization which does not have any WFMS.
Second, as the model is often also an executable specification of the process, there
is a one-to-one correspondence between activities in the model and activities that
are relevant for performance measurement. Thus, suppose that the process consists
of many activities, the model shows all details such that useful insights are hard to
be obtained. Finally, an executable process specification may not coincide with the
process owners’ view on the process. Hence, the process owners may not be able to
analyze the performance presentation of the process according to their needs.

1.2 Problem Description

In the AIS group of the Mathematics and Computer Science department, TU/e,
research is conducted to use event logs and process mining techniques to obtain
insights into business processes. Some of the research results are process discovery
algorithms which enable process models at different levels of activity abstraction to
be constructed from event logs. Abstraction is generalization that reduces the un-
desired details in order to retain only information relevant for a particular task [38].
One of the most well-known examples of abstraction can be observed in cartography,
where geographical maps visualize landscapes on different scales. While a map of a
particular town provides detailed information on houses and side streets, the world
map only captures shapes of continents, main river contours, and marks locations
of the largest cities [38].

Figure 1.3 illustrates several process models of a single process, each at a differ-
ent level of activity abstraction. Process models with a higher level of abstraction
provide less details compared to the models at the lower level of abstraction. In
the figure, the process model with the label “Level 4” has the highest level of activ-
ity abstraction as it aggregates all activities within a process in a single node. In
the same figure, the process model with the label “Level 1” has the lowest level of
activity abstraction as it shows all individual activities.

Process model abstraction helps process owners to obtain significant information
from a process model based on the detailed model specification. Unfortunately,
the currently available approaches to project performance information onto process
models are limited to models at relatively low levels of abstraction. In this thesis,
we investigate the approach to project performance information onto models on any
level of abstraction.

1.3. Research Objective and Questions 4

A

B

E

D

F G

A

B, D

E, F G

A

B,D,E,F

G

A,B,D,E,F,G

High level of abstraction

Low level of
abstraction

Level 1

Level 2

Level 3

Level 4

Figure 1.3: Several process models of a single process, each with different level of
abstractions

1.3 Research Objective and Questions

The problem described in Section 1.2 resulted in the following research objective:
To develop an approach to calculate performance information from both a given

event log and a given process model at any level of abstraction, and project the
information onto the model.

The projected performance information should be informative and intuitive. It
has to provide some useful insights into business processes and should be under-
standable by process owners. The approach needs to be robust, i.e. it produces
useful performance information and useful insights regardless of the complexity of
the business processes.

Research questions

The research objective resulted in the following main research question:
Given a process model at any level of abstraction and an event log, how can we

calculate performance information and project it onto the model?
This main question can be divided into three sub-questions:

1. What kind of process models can present a process intuitively, regardless of the
complexity of the process?

2. Given an event log and an instance of the model, how can performance infor-
mation be calculated?

3. How can the information be projected onto the model?

1.4. Research Scope 5

1.4 Research Scope

In this thesis, only solutions that are based on process mining techniques are con-
sidered. As process mining techniques rely on the existence of event logs, only
performance information that can be retrieved from event logs is within the scope
of this thesis.

1.5 Research Methodology

To satisfy the research objective and answer the research questions, the following
steps are taken:

1. Conduct a literature study on business process performance analysis and pro-
cess mining. Investigate performance metrics on business processes and iden-
tify which metrics can be measured from event logs.

2. Analyze intuitive process models, especially the ones which are potentially
suitable to project performance information onto.

3. Develop a conceptual process model such that important performance infor-
mation can be projected onto it intuitively.

4. Develop an approach to calculate performance information based on the con-
ceptual process model.

5. Develop a process model to project the performance information onto.

6. Implement the approach in ProM. In this thesis, the new version of ProM
(ProM 2008) is used as an implementation platform rather than the latest
released version of ProM (ProM 5).

7. Evaluate the implemented methods using both simulated and real life event
logs. Analyze insights into processes which are gained from the constructed
models.

1.6 Outline

The remainder of this thesis is organized as follows:
In Chapter 2, we provide preliminary knowledge which is used throughout this

thesis. The chapter provides a literature overview covering areas such as business
process performance analysis, process mining techniques, and performance analysis
approaches in the context of process mining.

Chapter 3 provides our analysis result of process models which can intuitively
project performance information. Based on the analysis, we provide a conceptual
process model in this chapter. An approach to calculate performance information
based on event logs and the model is explained in Chapter 4. Chapter 5 provides
process models which can be used to project performance information onto. The
implementation of the approach in ProM is described in Chapter 6. The evaluation
of the implemented approach is given in Chapter 7. Finally, Chapter 8 concludes
this master thesis and provides recommendations for future work.

Chapter 2

Preliminaries

This chapter provides preliminary concepts that are used throughout this thesis.
Section 2.1 provides an overview of business process performance analysis. Then,
Section 2.2 provides an introduction to process mining as an approach to gain in-
sights into processes, including the performance of the processes. A brief introduc-
tion to current approaches to measure performance through process mining is given
in Section 2.3. Finally, an overview of commercial performance analysis tools is
provided in Section 2.4.

2.1 Business Process Performance Analysis

Although the term “performance” is commonly used in literature, there is no clear
agreement about what the term actually means. Slightly different definitions of
performance are given in [10], [34], and [36]. In this thesis, we adhere to the definition
in [36] which defines performance as “the way the organization carries its objectives
into effect”. Performance is measured in terms of performance metrics.

Business processes are commonly case-driven, i.e. tasks are executed for specific
cases [44]. Examples of cases are insurance claims, customer orders, tax declarations,
and mortgages. Case-driven processes are also called workflows and are typically de-
scribed using three different dimensions: the case dimension, the process dimension,
and the resource dimension (see Figure 2.1).

The case dimension signifies that business processes are handled individually
and are independent from each other. The process dimension is concerned with the
partial ordering of tasks [44]. This dimension determines which tasks need to be
executed and how the routing of cases along the tasks is performed. Typical struc-
tures which are specified in the dimension include conditional, sequential, parallel
and iterative routing of cases. Tasks which need to be executed for a particular case
are referred to as work-items. An example of a work-item is task “send bill” for case
“car order 10 for customer Robert”. Work-items are executed by resources, which is
captured by the resource dimension. A resource can be a machine (e.g. a printer, a
computer) or a human (e.g. a secretary, a director). A work-item which is executed
by a resource is referred to as an activity.

Currently, there are many approaches to measure the performance of business
processes, each with different metrics which are related to certain workflow dimen-

6

2.1. Business Process Performance Analysis 7

Resource dimension

Process dimension

Case dimension

Case Work-item

Task

Activity

Resource

Figure 2.1: A three dimensional view of a workflow [14,44]

sions. In [29], six performance measurement systems were analyzed in order to
derive suitable performance dimensions for measuring the performance of a work-
flow. As a result, four dimensions of workflow performance metrics were defined:
the time dimension, the flexibility dimension, the quality dimension, and the cost
dimension. Each dimension has its own metrics. In this thesis, we only focus on
two dimensions: the time dimension and the flexibility dimension, as both of them
can be measured directly from event logs. However, for the sake of completeness,
the other dimensions are also explained in the remainder.

The Time dimension

Time is a commonly used performance dimension. It is considered as both a source
of competitive advantage and the fundamental measure of performance [13]. Per-
formance metrics in the time dimension can be measured from event logs with time
information [29].

Based on [12, 16, 28, 29], we formulate several common workflow-related perfor-
mance metrics. The first metric in the time dimension is the case throughput time,
which is defined as the time it takes to handle a case (i.e. process instance). This
metric is derived from the case dimension. Other performance metrics in the time
dimension are derived from all three dimensions of workflow (i.e. case, process,
and resource dimension) as these metrics are based on activities and their states.
In a case, activities may go through different states. As an example, the MXML
format [22,46,47] specifies several states of an activity (see Figure 2.2).

As shown in Figure 2.2, when an activity is created, it is either scheduled or
skipped automatically (autoskip). Scheduling an activity means that the control
over the activity is put to a system. The scheduled activity can now be assigned
to a resource. Assigned activities can later be reassigned. All scheduled, assigned,
or reassigned activities can be skipped manually (manualskip) or be withdrawn.
Only assigned activities can be started. Started activities can be suspended and
then be resumed arbitrarily often. In the end, the activity must be completed or

2.1. Business Process Performance Analysis 8

Figure 2.2: Transactional model for activities [47]

aborted (ate abort). In any state during the activity lifecycle, a case can be aborted
(pi abort). Note that each state transition is indicated by an event with a certain
event type. In Figure 2.2, event types are shown as labels of the arcs connecting a
state to another state.

The MXML format may not capture all type of events that can exist in an
event log. In fact, there is currently no widely-accepted standard for event types of
events in event logs although one has been proposed recently (the Business Process
Analytics Format (BPAF) which is proposed by the Workflow Management Coalition
(WfMC) [50]). However, the type of events that are provided in the format provides
a sufficient basis to measure the most commonly measured performance metrics in
the time dimension. These metrics are illustrated in Figure 2.3. Note that Figure
2.3 also shows the case throughput time that has been explained earlier.

The first metric that is related to activity is the activity throughput time, which
is defined as the time between a moment an activity is scheduled and the moment
the activity is completed. The throughput time consists of two sub metrics:

1. The queue time: the time a scheduled activity spends waiting for a resource
to become available.

2. The service time: the time that resources spend on doing the activity.

If there are activities in a case which are involved in synchronization relations with
other activities, i.e. activities which can only be executed after two or more directly
preceding activities are finished, two other performance metrics can be calculated:
the waiting time and the synchronization time. Suppose that there is a set of activ-
ities S which need to be executed before an activity X can be executed in the case.
Waiting time is defined as the time between the latest moment when all activities in
S are finished and the moment the activity X is scheduled. Synchronization time is
calculated for each activity s ∈ S as the time between a moment the latest activity
in S is finished and the moment s is finished.

2.1. Business Process Performance Analysis 9

Client A Act. 1

Act. 2

Client B

Case throughput time

Act. 2 throughput time

Act. 2 service time

Act. 2
queue
time

Act. 3

Act. 4

Timeline

Act. 3 synchronization time

Act. 4 waiting time

Both Act. 2 and Act. 3 need
to be finished before Act. 4

can be executed

Figure 2.3: Performance measures - time dimension

The Flexibility dimension

In the context of business process execution, flexibility refers to the degree of freedom
that users have to make local decisions about how to execute business processes [37].
Several flexibility metrics have been collected in [29] from various resources. The
metrics are given as follows:

1. Mix flexibility : the ability to process different kinds of cases:

(a) For resources: the number of case types a resource can handle.

(b) For tasks: the number of case types a task can handle.

(c) For workflow: the number of case types that can be handled.

2. Labor flexibility : the ability to perform different tasks:

(a) For resources: number of executable tasks.

(b) For workflow: available resources per task and per case.

3. Routing flexibility : the ability to process a case using multiple routes (number
of different sequences in the workflow). Note that a process which has looping
activities has infinitely many possible sequences.

4. Volume flexibility : the ability to handle changing volumes of input (available
time per employee).

5. Process modification flexibility : the ability to modify the process (number of
sub flows in the workflow, complexity, and number of outsourced tasks).

Different aspects of flexibility can be considered for each of the metrics, such as range
(the range of variations that can be handled), time (the amount of time required to
adapt to change), and cost (the amount of money required to adapt to change).

2.2. Process Mining 10

The Quality dimension

The quality dimension covers subjective performance evaluations of business pro-
cesses. The quality dimension can be seen from at least two angles: external (quality
based on customer) and internal (quality based on worker) [29]. External quality
covers both output quality (performance, conformance, and serviceability) and pro-
cess quality. It cannot be measured directly, as it is influenced and determined by
many different factors. Some metrics that can be directly measured for this qual-
ity include the number of specialists that work in a case and the number of task
per resource. Whether a specific aspect influences the external quality of a process
and the degree to which it affects the quality is highly dependent on the type of
process [29].

The internal quality is determined by workers’ satisfaction which may also de-
pend on their psychological and social factors. Some metrics which can be used to
measure internal quality are skill variety (number of different tasks and case types),
task identity (ratio of number of executed tasks and total number of tasks per work-
flow), and autonomy (ratio of number of authorized decisions and total number
of decisions). Similar to external quality, internal quality cannot be evaluated as a
whole only by performance metrics. How much a metric does reflect the real internal
quality of a business process depends on the type of the process.

The Cost dimension

Cost dimension is closely related to the other three dimensions. For instance, long
lead times can result in a more costly process; low quality can lead to expensive
rework, and low flexibility can also result in a more costly process execution [29].
Several metrics from this dimension include running costs, inventory costs, transport
costs, administration costs, and resource usage.

From all performance metrics in all dimensions provided before, no metric is more
important than the other. Each organization may have its own priority of perfor-
mance metrics. For example, a five-star hotel will most likely find the quality of its
service to be more important than the costs. In contrast, a small youth hostel will
focus more on the costs rather than the quality of service. The metrics that mostly
support the mission and strategy of an organization are called Key Performance
Indicators (KPIs).

2.2 Process Mining

As shown in our literature study of business process performance analysis in Sec-
tion 2.1, process models are required in order to calculate several KPIs of business
process, especially the KPIs which are related to the time dimension. However, in
practice, the models are mostly user-defined and do not support any activity ab-
straction. In this section, we provide an overview of process mining as an approach
to analyze processes based on event logs. With process mining, various types of
process models can be discovered from event logs. Section 2.2.1 provides an intro-

2.2. Process Mining 11

duction to event logs as input for process mining. Section 2.2.2 gives an overview of
process discovery techniques as part of process mining and the models they extract
from event logs. Finally, in Section 2.2.3, a brief explanation of the ProM framework
as one of the currently leading process mining tools is given.

2.2.1 Event Logs

Currently, more and more processes are supported by Information Technology (IT)
systems. These processes can be very diverse, i.e. from the process of manufacturing
microchips to the process of claiming insurance. Most of these IT systems record
all events related to the processes they support, leaving footprints of the processes
in the form of event logs. These footprints provide valuable information which can
be further analyzed.

It is common in practice to have dedicated systems to support specific processes.
Therefore, it is more likely that there are various types of event logs provided by these
systems, each consisting different types of information. For the purpose of process
mining, it is important to abstract from all specific event logs implementations.
Thus, a set of minimum requirements needs to be introduced such that process
mining techniques can be applied to any type of event log, independent of its specific
implementation. Based on [22], we identify minimal requirements for an event log
to be useful in the context of process mining:

1. Each event refers to a given point in time and should not refer to a period of
time. For example, starting to work on some work-item in a workflow system
would be an event. Finishing the work-item is another event. The process of
working on the work-item itself is not.

2. Each event should refer to one activity only, and activities should be uniquely
identifiable.

3. Each event should contain a description of the event type. For example, ac-
tivity was started or completed. This transactional information allows us to
refer to the different events related to the same activity.

4. Each event should refer to a specific case (i.e. process instance). We need to
know, for example, for which invoice the payment activity was started.

5. The events within each case are totally ordered, for example by timestamps.

Based on these requirements, we now formalize event logs as follows:

Definition 2.2.1. (Event Logs) An event log W is defined as:
W = (E,ET,A,R,C, t, et, a, r, c), where:

2.2. Process Mining 12

E is a set of events,
ET is a set of event types,
A is a set of activities,
R is a set of resources,
C is a set of cases,
t : E → IR+

0 is a function assigning a timestamp to each event,
et : E → ET is a function assigning an event type to each event,
a : E → A is a function relating each event to an activity,
r : E → R ∪ {⊥} is a function relating each event to a resource, and
c : E → C is a function relating each event to a case.

By 〈〈e0, e1, e2, ..., en〉〉 we denote a sequence of events in a case such that ∀0≤i<j≤n c(ei) =
c(ej) ∧ ei 6= ej ∧ t(ei) < t(ej) and ∀e∈E c(e) = c(e0)⇒ e ∈ {e0, ..., en}. A set of such
sequence in an event log W is denoted by CW . Note that in this thesis, we assume
that no events in the same case have exactly the same timestamps.

A standardized event log format which satisfies these requirements has been
proposed in form of the MXML format [22,46,47]. The format specifies what kinds
of information commonly exist in event logs and how the information should be
stored based on XML. The MXML process log format is illustrated as a tree of
XML elements in Figure 2.4. As shown in the figure, an event log is represented
by the WorkflowLog element. As a system may record events from more than one
process, the event log contains a Process element to store information of each of the
recorded processes. We may also use the optional Data and Source elements, each
to store arbitrary textual information and to store information about the system
in which the event log originated from, respectively. For each process, information
about individual cases (i.e. process instance) is stored in ProcessInstance elements.
For a case, information about its individual elements is stored in AuditTrailEntry
elements. In addition, both the Process element and the ProcessInstance element
may have Data subelements to store arbitrary textual information.

The children of an AuditTrailEntry element store several important types of in-
formation about the event which the element refers to. The WorkflowModelElement
element stores information of the activity which is referred to by the event. The
EventType element stores information about the type of the event. The Timestamp
element stores the timestamp of the event, and the Originator element stores the
resource that executed the event.

Events can be related to anything which happens at a particular time, even if
it is not actually useful for any analysis purpose. For instance, starting to work
on a “Create report” work-item can be considered an event which is also useful for
auditing purpose. Typing a character in a word processor as a part of the work
can also be considered as an event, although it may not be useful at all. To date,
many systems have defined their own set of event types. The variety of event types
creates problems to analyze events consistently across heterogeneous systems. Some
systems may only record events with a particular event type (e.g. only start events,
complete events), and some others record events with various event types. With
the freedom to choose possible event types, we introduce a standard for event types
which are used throughout this thesis. The standard is shown in Figure 2.5. Note
that the standard is not meant to be complete. It is rather intended to be compact

2.2. Process Mining 13

Figure 2.4: MXML format of a process log [47]

and easily understood as a transactional model in this thesis, yet good enough to
capture the most commonly event types that exist in real life event logs.

Scheduled Started

Suspended

Completed
[schedule] [start]

[suspend] [resume]

[complete]

Figure 2.5: Standard transactional model in this thesis

The transactional model shown in Figure 2.5 should be interpreted as follows.
When an activity is created, it enters the scheduled state. Scheduling an activity
means that the control over the activity is put into a system. Next, a resource
can start working on an activity. Later, an activity can be suspended and resumed
arbitrarily many times. In the end, the activity should be completed. The transition
from a state to another state is triggered by an event with a specific event type as
indicated by the labels on each arc of the transactional model in Figure 2.5.

2.2.2 Process Discovery

From an event log, a complete process model can be generated using process dis-
covery techniques [15]. Process discovery has been the main focus of early pro-
cess mining techniques. The purpose of process discovery is to derive information
about process models, organizational contexts, and important properties from event

2.2. Process Mining 14

logs. Creating process model manually is a complicated and time-consuming pro-
cess [6,16]. Many people need to be involved in the creation of the model. Moreover,
there are often discrepancies between the actual processes and the processes as per-
ceived by the management [15]. In relation to our purpose of measuring performance
of business processes, these discrepancies may lead to misleading performance mea-
surement results as process models are not correctly describing real process execu-
tions. Using process discovery techniques, these risks are minimized because process
models are derived from reality (by exploiting the availability of event logs).

There are many available process discovery techniques. An example of these
techniques is the α algorithm proposed in [18]. The algorithm constructs a process
model in the form of a Petri net from an event log based on the causal dependen-
cies between activities. The α algorithm computes which pairs of activities always
appeared in sequence, which pairs of activities can appear in any sequence, and
which pairs of activities never follow each other directly. This information is used
to generate a process model. Unfortunately, the algorithm relies on strong assump-
tions such as the absence of noise. It also assumes that the log is complete with
respect to the “directly follows” relation between activities. If an activity can follow
another activity directly, the log should contain an example of this behavior [48],
whereas in many real life event logs, completeness and the absence of noise cannot
be guaranteed.

To deal with the noise and the completeness issues, other algorithms such as
the Heuristic Miner algorithm [48] and the Genetic Miner algorithm [21] have been
proposed. The heuristic miner is basically an extension of the α algorithm. It
constructs a heuristic process model from an event log. It takes into account the
frequencies of precedence relations between activities in order to calculate causal
dependencies between nodes. This way, noise can be detected. However, as each
node in a heuristic model corresponds to exactly one activity, it may produce an
overly complicated process model given an event log of a complex process with many
activities. For example, Figure 2.6(i) shows a heuristic model which is discovered
from a real-life log with only “complete” events that occurred in 24 cases with 70
activities. Figure 2.6(ii) zooms in a part of the process model in Figure 2.6(i). As
can be seen in the figure, the model is so complex that hardly any useful information
is obtained from it. The same problems occur when using the Genetic Miner [21].
Although it can handle noise, the model it produces still represents each activity by
a node. The one-to-one mapping between a node and an activity makes the models
too complicated for processes with many activities.

To reduce the complexity of the generated process models, other process dis-
covery algorithms have been developed which construct less strict process models.
An example of such an algorithm is the one used by the Fuzzy Miner [26]. The
Fuzzy Miner was developed to solve the problem of having “spaghetti-like” process
models considering less-structured event logs. The technique removes some assump-
tions that must hold for most process discovery algorithms. First, it removes the
assumption that every event in an event log has a corresponding logical activity
in a process. Activities may go unrecorded and events may not correspond to any
activity at all. Second, it removes the assumption that there is a perfect process
model which can explain all traces in the event log completely, accurately, and pre-

2.2. Process Mining 15

Figure 2.6: Example of heuristic model from a case [40]

Figure 2.7: An excerpt of a Fuzzy model [26]

cisely without being overly complicated. Process models may just be incomplete,
inaccurate, or imprecise.

The Fuzzy Miner generates a Fuzzy model which is able to show processes on
different levels of detail, from a high-level view which shows the most significant
activities and aggregates coherent, but less significant activities, to a detailed level
which shows all activities [26]. A Fuzzy model is a directed graph consisting nodes
and edges which connect nodes to other nodes (see Figure 2.7). A node in a Fuzzy
model refers to one or more activities. A node that refers to one activity is presented
as a rectangle, and a node that refers to more than one activity (cluster node) is
presented as a hexagon. Arcs in a Fuzzy model indicate binary precedence relations
between two nodes.

To simplify process models, the Fuzzy Miner utilizes two main concepts: aggre-
gation and abstraction. The Fuzzy Miner aggregates coherent clusters of detailed
information to provide high-level information. Low level information which is in-
significant in a chosen context is abstracted away.

Other than the Fuzzy Miner, another example of a process discovery algorithm

2.2. Process Mining 16

which generates process models with reduced complexity is given in [17]. Process
owners determine how generic/specific the constructed process model should be by
inserting several parameter values. Although the approach in the end constructs a
process model in form of a Petri net, not all activities may be presented as transitions
in the model. Some of them may be abstracted away and do not appear in the model
at all.

2.2.3 The ProM Framework

Although the usefulness of process mining techniques seems to be apparent, to date,
not many tools that support their implementation are available. To our knowledge,
the ProM (Process Mining) framework is the only programming framework which
supports the implementation of various process mining techniques. The framework
provides essential libraries which are needed in order to implement process mining
techniques. The latest stable version of the ProM framework is the ProM 5. It has
more than 230 plugins (see process mining website1) and supports various process
mining techniques, ranging from process discovery, conformance checking, and their
extensions (including performance analysis). Besides process mining, the current
version of ProM also supports the implementation of other related subjects such as
model conversion and model analysis.

ProM’s architecture enables functionalities to be added or to be removed easily by
adding or removing plug-ins. A plug-in is basically an implementation of new piece
of functionality which conforms to ProM framework standard [47]. New plug-ins can
be added to ProM without any need to modify any other parts of the framework,
as the framework’s core automatically scans for all available plug-ins every time it
is started.

In this thesis, we use the newest version of ProM (ProM 2008) which is still
under development. This new version of ProM has a slightly different architecture
than ProM 5. From our analysis and experience in implementing the plugins in
ProM 2008, its architecture can be described as depicted in Figure 2.8. Every
component in the figure has one or more elements. A user interacts with the ProM
framework using a User Interface component. The component is responsible to
provide a Graphical User Interface (GUI) to ProM. Elements in the User Interface
component are generated by Visualizer components. To generate such elements,
Visualizers use objects from the so-called Object Pool.

The Object Pool component has a crucial role in the ProM framework. This
component is a repository for all objects that are either produced or needed by
Plugins. These objects include Petri nets, their markings, various process model
graphs, and event logs. Connections between the objects are also stored in the Object
Pool. Lists of these objects can be visualized by the User Interface component, but
only limited to objects which are considered as Visible Objects. Hidden Objects such
as the semantics of Petri nets are also stored in the Object Pool, but they are not
shown by the User Interface component.

The two most interesting components in the ProM framework are the Plugins

1http://www.processmining.org/

2.3. Performance Analysis through Process Mining 17

Object Pool

Net

Marking

Graph

Semantic

C
onnection

Import plugins

Export plugins

...

Hidden Objects

Visible Objects

Visualizer

Conversion

Analysis

Mining

Plugin

...

User Interface

Files

ProM

User

Chaining Panel

Figure 2.8: The new ProM architecture

and the Chaining Panel components. Elements of the Plugin component, as indi-
cated by its name, are all ProM plugins which include mining, conversion, analysis,
import, and export plugins. Each ProM plug-in has its own interface in the form
of input and output parameters. The Chaining Panel component enables users to
link plugins and execute them in the way they are linked. In the chaining panel,
plugins’ interfaces can be connected to form a chain of plugins.

ProM can process event logs by first importing them into the Object Pool through
its import plugins. Only logs which are already imported into Object Pool can be
accessed by ProM plugins.

2.3 Performance Analysis through Process Min-

ing

Process mining techniques do not only address process model discovery from event
logs, but they also address performance analysis of currently running processes.
In [16], an approach to obtain performance information through the use of process
mining is proposed. The approach projects performance information onto workflow
nets (see Figure 2.9). The information is obtained by replaying a timed event log
(event log with timestamp information) in a workflow net which is constructed from
the log, for example, using the α algorithm. This approach successfully obtains
performance information of several time dimension metrics which we described in
Section 2.1, such as waiting time and synchronization time. Related to the flexibility
dimension, the approach also provides the probability of taking a specific path in
the net.

2.3. Performance Analysis through Process Mining 18

A

B

D E

F

C

G

Mean: 152
Min: 56
Max: 293

Mean: 573
Min: 119
Max: 1316

Mean: 614
Min: 290
Max: 1259

Mean: 804
Min: 48
Max: 1309

Mean: 763
Min: 80
Max: 1138

Mean: 123
Min: 34
Max: 281

Flow time
from A to G
Mean: 1101
Min: 379
Max: 1582

Figure 2.9: Performance information in a Petri net process model [16]

To replay the timed event log in the workflow net, the approach assumes that the
start state is known. For each case in the log, a timed workflow trace is constructed.
The trace is constructed by mapping events in the event log to transitions in the
workflow net. Then, a token with timestamps equal to the first firing transition is
placed in the initial place. Then, one by one, each transition in the timed workflow
trace fires, thus collecting tokens from its input places and placing them in its output
places. This is repeated until the case reaches a final marking. The time spent by
tokens in each element of the net serves as a basis for performance calculation.

A drawback of this approach is that it requires the constructed workflow net to
fit the log, i.e. each case in the log should be a trace in the net. Hence, given a log
of a complex business process (e.g. with many unique traces and exceptional cases),
the constructed workflow net is also complex. For the purpose of business process
analysis, the complexity of the net prevents further insights to be obtained as such
a model is hard to be understood (cf. Figure 2.6).

An extension to the approach of [16] is introduced in [28] by enabling invisible
transitions to fire such that the net does not have to fit the log. The extension is
based on the log replay approach in [41], although the focus of the replay is measuring
conformance between the log and the net and not measuring performance. Even
with this extension, additional complexity may still be introduced due to the Petri
net language, as this language has limited capabilities for expressing processes with
certain control-flow patterns, such as multiple instances, advanced synchronization,
and cancellations [45]. In addition, no activity abstraction is introduced in the
constructed workflow net, i.e. an activity in the event log refers to exactly one
transition in the net.

Another highly related approach to performance analysis through process min-
ing is the animation of cases on Fuzzy models as proposed in [25]. The animation
provides a notion of performance of the replayed process. Before cases can be ani-
mated, a process model in the form of a Fuzzy model needs to be constructed from
an event log as described in [26]. Then, the event log is replayed in the model.

2.3. Performance Analysis through Process Mining 19

Figure 2.10: Example of a traces of events [25]

As the model has relaxed semantics, the routing of activities needs to be estimated
from encountered events in the event logs. For this purpose, a dedicated/relaxed
log replay technique was developed for Fuzzy models.

The log replay on a Fuzzy model is based on a heuristic. During log replay,
the event currently under inspection in a trace is referred to as the reference event.
From the reference event, the algorithm looks forward into the trace to find a valid
successor, i.e. where the nodes referred to by the reference event and the event
in question are connected in the Fuzzy model. The forward scan is limited to a
specified look-ahead window. Once a valid successor is found, other valid successors
are also investigated as long as it is still within both the look-ahead window and
an extra-look-ahead window. The control within a case is routed from the reference
event to every valid successor which is found.

As an example, see Figure 2.10. The figure shows a trace of events. Each event
corresponds to a node in the Fuzzy model which has the same label. Suppose that
the reference event is B, and the successors of node B in the Fuzzy model are the
nodes D and node I. The look-ahead window is set to 6, and the extra-look-ahead
window is set to 3. The algorithm iterates through the traces and finds event D
as the first event which refers to one of the successors of node B (event D refers to
node D in the Fuzzy model). As the first successor is found, the future events within
the extra-look-ahead window (until event G) are then checked for other successors
of node B. As shown in the figure, no event within the extra-look-ahead window
refers to any successor of node B. As there is still an event within the look-ahead
window, the algorithm continues to inspect event H. From the iteration, only node
D is encountered as a successor. Therefore, from node B, the inspected case is routed
only to node D (ignoring node I which is located outside of both the look-ahead-
window and the extra-look-ahead window).

Case animation in a Fuzzy model provides an indication of both performance
and control flow. For example, see the snapshot of an animation based on a Fuzzy
model in Figure 2.11. The routing of control within a case is clearly seen as the
white dots flowing from one node to another through the arcs between the nodes.
The arc width indicates how often a case is routed over the arc during animation.
From the figure, we can observe bottleneck activities from arcs which are filled by
white dots. Arcs with a lot of white dots indicate that there are many cases queuing
to be routed through the arcs. Thus, it may indicate that the target nodes of the

2.4. Performance Analysis in Commercial Tools 20

Bottleneck
indication

Figure 2.11: Log animation in a Fuzzy model

arcs require a long time to be finished. Unfortunately, other than an indication of
bottlenecks and node frequency measurements, the currently proposed animation
technique does not produce any explicit performance information.

2.4 Performance Analysis in Commercial Tools

To investigate how the performance metrics in Section 2.1 are measured and how
they are presented in practice, we have investigated several leading commercial Busi-
ness Performance Analysis (BPA) tools available in today’s market. The tools in-
clude Fujitsu Interstage [1], Lombardi Teamworks 7 [2], Pegasystems’ SmartBPM
Suite [5], Software AG’s WebMethods [8], Savvion’s BusinessManager [7], Metastorm
BPM, Oracle’s Business Process Analysis (BPA) Suite [4], and IBM’s Websphere
Business Monitor [9]. All of the tools are among the market leaders in the area of
BPA [27]. Since the full versions of these tools were only available commercially, the
investigation was conducted mostly through each product’s documentation.

Based on our investigation, most BPA tools measure various KPIs of a process
in a real time fashion. In some tools, KPIs can even be customized. Most KPIs that
are measured are categorized as time dimension KPIs, such as throughput times
of activities or lead times of cases. Important KPIs are often presented in a single
main panel which is named the dashboard. An example of which is shown in Figure
2.12). On the dashboard, a user can see various KPIs, each with its own form and
insights into the currently running process. Thus, in a single dashboard, elaborated

2.4. Performance Analysis in Commercial Tools 21

insights into process are presented.

Figure 2.12: Example of performance dashboard in the Software AG’s WebMethods
[11]

In most of the investigated tools, the values of the calculated KPIs are shown in
the form of graphs and tables (see for example Figure 2.13). In its simplest form,
a graph only plots the current value of a KPI compared against a threshold value.
For example, in Figure 2.14, the workload of resources which handle on-boarding
new clients is presented as a “speedometer”. In the example, the workload is still
at an acceptable level, i.e. it does not point into the red arc.

A more complex type of graph is a process model with projected performance
information (see Figure 2.12, Form 1). Typically, activities which have a throughput
time below/above a certain threshold value are highlighted in the model. In Figure
2.12, these activities are bordered by a thin red line. Each tool may support different
process models, and some tools even introduce their own process modeling language.
From all modeling languages that are supported by the tools, only some enable
multiple activities to be represented by a single node in a process model (e.g. in
BPMN, activities in a process model with a lower hierarchy can be represented by
a single node in another process model with a higher hierarchy).

Most tools require user-defined process models to project performance informa-
tion onto. Typically, these models are also used as an execution model, i.e. each
node in the models refers to a single activity in a process. Hence, most of the models
provide all details of their processes without any abstractions. Some tools provide
business process simulation features so that process designers can get estimated per-
formance values for their new process models before the models are actually enacted.

2.4. Performance Analysis in Commercial Tools 22

Figure 2.13: Charts and tables to show performance information in the Metastorm
BPM [3]

Figure 2.14: Speedometer to indicate resources workload to handle on-boarding new
clients in the Metastorm BPM [3]

After process models are committed, performance is measured based on real-time
events which are captured by the enactment systems.

In this chapter, we provided several important performance metrics which can be
measured from event logs and how they can be calculated. We have also investigated
several process models which can represent processes intuitively. Furthermore, we
investigated several approaches to measure the performance of a business process
given a process model. Although there are some algorithms which produce process
models with activity abstractions, none of the approaches described in literatures
and supported by tools are able to extract performance information from event logs.

Therefore, in Chapter 3 of this thesis, we introduce an intuitive process modeling
language that allows for arbritrary abstractions of a process. Furthermore, in Chap-
ter 4, we present an algorithm to replay a log in the model to obtain performance
information. How to project this performance information on the model is shown in
Chapter 5, while an implementation of all of the approaches is presented in Chapter
6.

Chapter 3

Modeling Processes

Based on our investigation in Section 2.2.2, currently there are already several pro-
cess discovery techniques which construct intuitive process models from event logs,
even if the logs describe complex processes. In this chapter, we analyze the intuitive
process models introduced in Section 2.2.2 in more detail. To solve the issues with
these models, we introduce a conceptual process model called Simple Precedence
Diagram (SPD) in Section 3.1. In Section 3.2, we explain how to obtain SPDs.

3.1 Intuitive Process Models

Each process discovery technique described in Section 2.2.2 constructs a different
type of process model. However, only two of the techniques construct process models
that support activity abstraction such that even complex processes can be presented
in a simple and intuitive way.

The first technique is the Fuzzy Miner which constructs Fuzzy models. Simpli-
fication of a complex process in a Fuzzy model is performed by abstracting away
some activities from the model and aggregating several other activities in cluster
nodes. Given a Fuzzy model and an event log which is represented by the model,
not all activities in the log need to be presented as nodes in the model. Activities
which are not presented in the model are said to be abstracted. Activity aggregation
in Fuzzy models is achieved using cluster nodes. A cluster node in a Fuzzy model
has a one-to-many relation with activities in an event log. As there are multiple
activities referring to the same cluster node in a Fuzzy model, we can say that the
cluster nodes of Fuzzy model aggregate activities.

Fuzzy models also have relaxed semantics. The arcs in a Fuzzy model represent
precedence relations between activities. Suppose that there is an arc from node A
to node B in a Fuzzy model, then an observation of an activity which is referred to
by node A may be followed by another observation of an activity which is referred to
by node B. With such relaxed semantics, the arcs of a Fuzzy model do not constrain
any possible case routing in the process that the model represents. If there is no arc
from node A to node B in the fuzzy model, the observation of an activity which is
referred to by node A followed by the observation of an activity which is referred to
by node B does not violate semantics of the fuzzy model. In addition, to provide
additional insights into the process’ bottlenecks during log replay (as discussed in

23

3.1. Intuitive Process Models 24

Section 2.3), the color and the size of the model’s elements are utilized (e.g. arcs
which are frequently used to route cases are depicted wider). Therefore, no extra
elements are introduced in the model to provide insights into the process.

The second technique which construct process model with activity abstraction
is the one which is described in [17]. This technique constructs Petri nets which
may abstract some activities away, depending on the values of the input parameters
(e.g. some activities in the event log may not be presented as transitions in the
constructed Petri nets). In 2.3, the abstraction process need to be guided by the
users.

A Petri net consists of places, transitions, and arcs which connect places to
transitions and the other way around. A transition in a Petri net has one-to-one
relation to an activity in an event log. Petri nets have strictly defined semantics.
A transition in a Petri net can only fire if all places which are connected to the
transition by any of its incoming arcs (e.g. all input places of the transition) contain
at least one token. When the transition fires, a token from each of the input place
is removed, and a token is placed to each place which is connected to the transition
by any of the transition’s outgoing arc (e.g. all output places of the transition).
With the strict semantics, Petri nets can describe possible case routing in processes
more precise than Fuzzy models. However, the advantage comes at the expense of
visualization complexity. A Petri net requires more elements than a Fuzzy model
to describe a process. For example, a process consisting of activity A followed by
activity B can be described by a Fuzzy model using only two nodes and an arc (3
elements in total as shown in Figure 3.1). If the same sequence is represented by a
Petri net, two transitions, two arcs, and a place are needed (5 elements in total as
shown in Figure 3.2).

A B

Figure 3.1: Fuzzy model to show sequence pattern from A to B

BA

Figure 3.2: Petri net to show sequence pattern from A to B

Without any extensions, Fuzzy models can only represent an activity as a node.
In some other models, such as Petri nets, this limitation does not exist. For example,
the Petri net in Figure 3.3 has two transitions which refer to activity D. The net
gives us an insight into the only two possible traces: A-B-D-E-G and A-C-D-
F-G. If the same process is represented in the form of a Fuzzy model, the model
would look similar to the one given in Figure 3.4. As an activity in an event log
may only refer to one node in a Fuzzy model, there can only be one node D in the
model. From the Fuzzy model in Figure 3.4, other traces such as A-B-D-F-G and
A-C-D-E-G are also valid.

Based on our analysis of fuzzy models and Petri nets, we conclude that to visu-
alize complex processes conveniently, it is important to have a process model which

3.1. Intuitive Process Models 25

A
B D E

C D F

G

Figure 3.3: Process model with two possible traces

A

B

C

D

E

F

G

Figure 3.4: Fuzzy model of process described in Figure 3.3

supports both activity abstraction and activity aggregation. By activity abstrac-
tion, given the process model and an event log which is represented by the model,
not all activities in the log may be presented as nodes in the model. Activity aggre-
gation means that a node in the model may represent more than one activity, and
an activity may refer to more than one node. These requirements can be satisfied
by a process model with a many-to-many relation between nodes in the model and
activities in the process it represents. Furthermore, it is also important that arcs
between nodes do not constrain possible case routings such that given a complex
process, arcs can be removed from the model as needed to decrease the complexity
of the model without constraining the possible routing. This implies that the model
needs to have relaxed semantics.

Therefore, we define a process model on a very high level which is named Simple
Precedence Diagram (SPD). SPD is a process model which combines the advantages
of Fuzzy models and Petri nets to represent processes intuitively using activity ab-
straction and aggregation. It generalizes process models which can be constructed
by process discovery techniques (e.g. Petri nets and Fuzzy models). An SPD should
be seen as a conceptual process model of a process in the form of a directed graph
consisting of nodes and edges.

Nodes in an SPD represent activities in a loose way. A node in an SPD represents
a set of activities which are performed within a continuous period in the process.
An SPD node may represent a set of activities that do not have precedence relations
between each other, e.g. activities that are executed in parallel, or activities that
are randomly executed without clear precedence relations. An SPD node may also
represent a set of activities that are always started one after another but intersects
during some periode of time. A node in an SPD has a many-to-many relation with
activities in an event log. Each node in an SPD refers to one or more activities in an
event log, while an activity in the log refers to zero or more nodes in the SPD. Edges
in SPDs define a notion of control flow between SPD nodes with relaxed semantics.
An edge between node α and node β in an SPD means that an occurrence of an
instance of the node α may be followed by an occurrence of an instance of the node
β.

The formal definition of SPDs is given as follows:

3.2. Obtaining SPDs 26

Definition 3.1.1. (Simple Precedence Diagram)
LetW = (E,ET,A,R,C, t, et, a, r, c) be an event log. We say that S = (W,N,L, la, ln)
is a corresponding Simple Precedence Diagram of the event log W , where1

• N is a set of nodes,

• L ⊆ N ×N is a set of edges linking the nodes,

• la : A→ P(N) \ {∅} is a function relating an activity to a set of nodes, and

• ln : N → P(A) \ {∅} is a function relating a node to a set of activities. Let
n ∈ N, ln(n) = {a ∈ A | n ∈ la(a)}.

Note that for convenience, we assume that all abstracted activities and all events
which refers to them are removed from event logs. Therefore, although SPDs support
activity abstraction (an activity may not appear in any SPD nodes), in Definition
3.1.1 activities in event logs must refer to at least one SPD node. The assumption
also holds for all remaining definitions in Chapter 3 and Chapter 4.

3.2 Obtaining SPDs

To obtain an SPD of a process, we propose three approaches. The first approach is
to convert a process model that represents the process to the SPD. An explanation
of the approach is given in Section 3.2.1. The second approach is by constructing the
SPD directly from event log using process discovery algorithms. In Section 3.2.2, we
present such an algorithm. The third approach is by simply creating a hand made
SPD for the process and map each node of the SPD to activities in a log. A short
explanation about the third approach is given in Section 3.2.3.

3.2.1 Converting Process Models to SPDs

SPDs generalize process models which consist of nodes and directed arcs. However,
SPDs are not generic enough to generalize all process models, because all nodes in
SPDs are mapped to activities. Some process models have types of nodes which
cannot be mapped to any activity (e.g. places in Petri nets, events and connectors
in EPCs). Therefore, we define a Generic Process Model (GPM) as a generalization
of all process models with nodes and directed arcs as their elements. GPMs and
SPDs are similar, except that some nodes in a GPM may refer to no activity at all
in an event log, while every node in an SPD must refer to at least one activity in
the event log.

The formal definition of GPM is given as follows:

Definition 3.2.1. (Generic Process Model)
Let W = (E,ET,A,R,C, t, et, a, r, c) be an event log. A corresponding Generic
Process Model of the event log W is defined as GP = (W,GN,GE, ga, gn), where:

1with P(N), we denote the powerset of N

3.2. Obtaining SPDs 27

GN is a set of nodes,
GE ⊆ GN ×GN is a set of edges linking the nodes,
ga : A→ P(GN) \ {∅} is a function relating an activity to a set of nodes, and
gn : GN → P(A) is a function relating a node to a set of activities.

Let n ∈ GN, gn(n) = {a ∈ A | n ∈ ga(a)}.

We argue that every process model which is represented by nodes and directed
arcs can be converted to a corresponding GPM. After the GPM is obtained, an SPD
can be obtained by converting the GPM to the corresponding SPD. To explain our
approach to convert GPMs to SPDs, we need to define unmapped path in a GPM.
An unmapped path between two GPM nodes is a path such that none of the nodes
in between the origin and the destination is mapped to any activity. The formal
definition of unmapped path is given as follows:

Definition 3.2.2. (Unmapped Path)
Let GP = (W,GN,GE, ga, gn) be a GPM. Let n, n′ ∈ GN . We say that there is an
Unmapped Path from n to n′ iff there exists a sequence of nodes 〈n0, n1, ..., nk〉 such
that n0 = n, nk = n′, k > 0 and ∀0<i≤k(ni−1, ni) ∈ GE and ∀0<i<k gn(ni) = ∅. By
n n′, we denote that such a path exists.

The basic idea to convert a GPM to an SPD is to create a node in the SPD
for each node in the GPM which refers to an activity or a set of activities. Each
SPD node should refer to the same activity or set of activities as the GPM node
it is created from. Then, for each pair of GPM nodes (n, n′) in which both n and
n′ refer to an activity or a set of activities, a directed arc is created in the SPD if
there exists an unmapped path between them. This approach can be formalized as
follows:

Definition 3.2.3. (SPD of a GPM)
Let W = (E,ET,A,R,C, t, et, a, r, c) be an event log and GP = (W,GN,GE, ga, gn)
be a GPM of the event log W . We define an SPD S = (W,N,L, la, ln) as the SPD
of GP , where

• N def
= {n ∈ GN | gn(n) 6= ∅},

• L def
= {(n, n′) ∈ N ×N | n n′},

• ∀a∈A la(a)
def
= ga(a), and

• ∀n∈N ln(n)
def
= gn(n).

Both Definition 3.2.1 and Definition 3.2.3 help us to construct SPDs of specific
process models. Suppose that we want to construct an SPD of a Petri net. Petri
nets are basically directed graphs consisting nodes (places and transitions) and di-
rected arcs between the nodes. Therefore, using Definition 3.2.1, we can define the
GPM of the Petri net as given in Definition 3.2.4. Then, using Definition 3.2.3, the
constructed GPM can be converted to an SPD.

Definition 3.2.4. (GPM of a Petri Net)
Let W = (E,ET,A,R,C, t, et, a, r, c) be an event log, PN = (P, T, F, l) be a Petri
net where P is a set of places, T is a set of transitions, F is a set of directed edges
between places and transitions, l : T → A is a function relating a transition to an

3.2. Obtaining SPDs 28

activity, and l2 : A→ P(T) is a function relating an activity to a set of transitions.
We say that GP = (W,GN,GE, ga, gn) is a GPM of PN where

• GN def
= P ∪ T ,

• GE def
= F ,

• ga : A→ P(GN) where ∀a∈A ga(a)
def
= l2(a), and

• gn : GN → P(A) where ∀p∈P gn(p)
def
= ∅ and ∀t′∈T gn(t′)

def
= {l(t′)}.

As an example, suppose that we want to convert the Petri net in Figure 3.5
to an SPD. Using Definition 3.2.4, we convert the Petri net to a GPM which is
illustrated in Figure 3.6. Then, using Definition 3.2.3, each node referring to one or
more activities is kept, and each unmapped path between these nodes is translated
into an arc. The resulting SPD is shown in Figure 3.7.

A

B

D E

C

B

A

Figure 3.5: An example Petri net (1)

A ED

B

C

B

A

Figure 3.6: The GPM of the Petri net in Figure 3.5

A

B

C

D E

B

A

Figure 3.7: The SPD of the Petri net in Figure 3.5

Using GPMs, we can also convert Fuzzy models to SPDs. As every nodes in a
Fuzzy model must refer to either an activity or a set of activities, conversion from
Fuzzy models to GPMs is straightforward. A GPM is a Fuzzy model that does not

3.2. Obtaining SPDs 29

distinguish cluster nodes and ordinary nodes. As an example, the GPM of the Fuzzy
model in Figure 3.8a is shown in Figure 3.8b. Notice that the GPM in Figure 3.8b
is also an SPD of itself.

Definition 3.2.5. (GPM of a Fuzzy Model)
Let W = (E,ET,A,R,C, t, et, a, r, c) be an event log, FM = (W,FN,FE, fa, fn)
be a Fuzzy model of the event log where FN is a set of nodes, FE is a set of directed
edges between the nodes, fa : A → FN is a function relating each activity to its
node in the Fuzzy model, and fn : FN → P(A) is a function relating a node in the
Fuzzy model to a set of activities where let n ∈ FN, fn(n) = {a ∈ A | n ∈ fa(a)}.
We say that GP = (W,GN,GE, ga, gn) is a GPM of FM where

• GN def
= FN ,

• GE def
= FE,

• ∀a∈A ga(a)
def
= {fa(a)}, and

• ∀n′∈GN gn(n′)
def
= fn(n′).

A

E

D

G

B, C

F, H, I

(a) An example Fuzzy model

A

E

D

G

B, C

F, H, I

(b) A GPM/an SPD of the Fuzzy model

Figure 3.8: An example of a Fuzzy model and a GPM/an SPD which is constructed
from the model

The loosely defined semantics of both nodes and arcs in SPDs may lead to
ambiguity. For instance, using our conversion approach, the Petri net in Figure 3.9
is also converted to the SPD in Figure 3.7. Both the net in Figure 3.9 and the
net in Figure 3.5 are converted to the same SPD, although from a behavioral point
of view they are very different. SPDs are intended to be sketch of process models
rather than precise process models. The idea of having a conceptual process model
is that no matter what kind of technique is used to construct a process model from
an event log, the model can always be converted to an SPD.

3.2.2 Mining SPDs from Event Logs

Other than constructing an SPD based on other process model, an SPD can also be
constructed directly from an event log. For this purpose, we can use a straightfor-
ward, fuzzy clustering algorithm [23]. The goal of clustering algorithms is to divide
observations over a number of subsets (or clusters), such that the observations in
each of these clusters are similar in some sense, i.e. often precede each other. The
idea behind the clustering algorithm we use follows this concept in a very simple

3.2. Obtaining SPDs 30

A

B

D E

C

B

A

Figure 3.9: An example Petri net (2)

way. First, we define a similarity metric on activities. Then, we choose a number
of clusters and use a Fuzzy k-Medoids algorithm to create clusters of activities that
maximize the similarity values in each cluster. Note that an activity may appear in
more than one cluster.

Such a Fuzzy k-Medoid algorithm requires two metrics, namely (1) a measure
for the (dis)similarity of objects (activities in our case) and (2) a measure for the
probability that an object belongs to a cluster of which another object is the medoid.
We define both metrics based on direct succession of events.

Definition 3.2.6. (Event Succession)
Let W = (E,ET,A,R,C, t, et, a, r, c) be an event log, We define >W : A×A→ IN as
a function counting how often events from two activities directly succeed each other
in all cases, i.e. for a1, a2 ∈ A, we say that >W (a1, a2) = #e1,e2∈E(t(e1) < t(e2) ∧
a(e1) = a1∧a(e2) = a2∧c(e1) = c(e2)∧ 6 ∃e3∈E(c(e3) = c(e1)∧t(e1) < t(e3) < t(e2))).
We use the notation a1 >W a2 to denote >W (a1, a2) > 0.

The similarity between activities is defined by looking at how often events re-
lating to these activities follow each other directly in the log. If events relating to
these activities follow each other more often, their similarity increases. Note that if
two activities a1, a2 are different, their similarity is never equal to 1.

Definition 3.2.7. (Activity Similarity)
Let W = (E,ET,A,R,C, t, et, a, r, c) be an event log. We define the similarity
σ : A × A → (0, 1] between two activities a1, a2 ∈ A, such that if a1 = a2 then

σ(a1, a2) = 1, otherwise σ(a1, a2) = >W (a1,a2)+>W (a2,a1)+1
2+2·maxa3,a4∈A(>W (a3,a4))

.

Note that maxa3,a4∈A(>W (a3, a4)) is the maximum value of >W from all pair of
activities in the event log. With this function, we are able to obtain value between
0 and 1 for every pair of activities even in extreme conditions such that no activities
ever precede others (e.g. all cases only consists of one event). In that case, the
similarity between two activities would be 50%.

As stated before, we also need a measure for the probability that an activity
belongs to a cluster of which another activity is the medoid. For this purpose, we
use the FCM membership model from [19].

Definition 3.2.8. (Cluster Membership Probability)
Let W = (E,ET,A,R,C, t, et, a, r, c) be an event log. Furthermore, let Ak ⊆ A
with |Ak| = k be a set of medoids, each being the medoid of a cluster. For all
a1 ∈ Ak and a2 ∈ A we define the probability u(a1, a2) to denote the probability

3.2. Obtaining SPDs 31

that a2 belongs to the cluster of which a1 is the medoid, i.e. u : Ak × A → [0, 1],

where u(a1, a2) = σ(a1,a2)
1

m−1∑
a3∈Ak σ(a3,a2)

1
m−1

. Note that m ∈ [1,∞) here denotes the so-

called “fuzzifier” which can be fixed at a certain value, e.g. suppose that m = 2,
u(a1, a2) = σ(a1,a2)∑

a3∈Ak σ(a3,a2)
.

Using the cluster membership and the similarity functions, we can introduce the
fuzzy k-Medoid algorithm.

Definition 3.2.9. (Fuzzy k-Medoid Algorithm)
Let W = (E,ET,A,R,C, t, et, a, r, c) be an event log. Furthermore, let 0 < k ≤ |A|
be the desired number of clusters. We search a set of medoids Ak ⊆ A with |Ak| = k,

such that this set minimizes
∑

a∈A
∑

ak∈Ak(u(a
k,a)m

σ(a,ak)
).

Finally, after the medoids have been found, we need to construct an SPD. Ob-
viously, the found clusters correspond to the nodes in the SPD model, thereby also
providing the mapping between activities in the log and nodes in the model. The
edges however are again constructed using the succession relation defined earlier.

Definition 3.2.10. (SPD Mining Algorithm)
Let W = (E,ET,A,R,C, t, et, a, r, c) be an event log and let Ak ⊆ A be a set of
medoids. We define the mined SPD model from the event log L as S = (W,N,L, la, ln)
such that 2

• N = Ak, i.e. the nodes of the SPD model are identified by the cluster medoids,

• L = {(ak1, ak2) ∈ Ak × Ak | ∃a1∈ln(ak
1)\ln(ak

2)∃a2∈ln(ak
2)\ln(ak

1)a1 >W a2}.
• la : A → P(Ak), such that la(a) = {ak ∈ Ak | u(ak, a) ≈ maxak

1∈Ak(u(ak1, a))},
and

• ln : Ak → P(A), such that ln(ak) = {a ∈ A | a ∈ la(a)}.

According to Definition 3.2.10, an activity refers to a node (and vice versa) if
the probability that the activity belongs to the cluster represented by the node is
approximately the same as the maximum probability over all clusters. This implies
that each medoid belongs to its own cluster. Furthermore, all other activities be-
long to at least one cluster, namely the one for which the function u is maximal.
An activity can belong to multiple clusters. Note that we do not use equality of
probabilities, as this would require the number of direct successions in the log to be
the same for multiple pairs of activities and this is rarely the case in practice.

After nodes are constructed, the only thing left is to construct edges of the
connected SPD. The edges are determined using the direct succession relation. Ba-
sically, two nodes are connected if there is an activity referred to by the first node
that is not referred to by the second node that is at least once directly succeeded
by an activity referred to by the second node, but not by the first.

2with a ≈ b, we denote the value of a is approximately the same as the value of b

3.2. Obtaining SPDs 32

3.2.3 Creating a Hand Made SPD

SPD is a process model that can present processes intuitively, regardless of their
complexity. In situations where process owners already have intuitions about their
processes execution, they can create their own SPDs. An advantage of using SPDs to
describe processes over other process models is that SPDs can describe processes in
any level of abstraction. Hence, process owners can adjust the level of abstraction of
their hand made process models according to both their need and knowledge about
the processes.

For example, suppose that a process consists of six activities labelled A, B, C,
D, E, and F. A process owner knows that the process always starts with activity A
and ends with activity F, but he does not know the precedence relations between
activities B, C, D, and E. In this case, the process owner can draw an SPD consisting
of 3 nodes as shown in Figure 3.10. One node represents activity A, another node
represents activity F, and the last node represents the rest of the activities. The
owner does not need to know the precedence relation between B, C, D, and E. As
long as he knows that activity B, C, D, and E are executed within a continuous
time period between the executions of activity A and activity F in the process, the
activities can be represented as a single SPD node B,C,D,E. Note that the process
can also be described as the SPD shown in Figure 3.11 where activity B, C, D, and
E can be executed in an arbitrary order. In this case, the decision to choose which
process model is the best to describe the process is left to the process owner.

A B, C, D, E F

Figure 3.10: An example of a hand made SPD that is created based on limited
information about the process (1)

A

D

F

C

B

E

Figure 3.11: An example of a hand made SPD that is created based on limited
information about the process (2)

Using the same example, suppose that the process owner has additional infor-
mation that activity C is always started after activity B is started in the process,
but before it is finished. Thus, activities B and C are performed within a relatively
short continuous period in the process. Therefore, these activities are better to be
represented as a single node, separated from activities D and E. As the precedence
between activity D, and activity E are unknown, it is safe to assume that they can

3.2. Obtaining SPDs 33

be executed in an arbitrary order. This process can be represented by an SPD as
shown in Figure 3.12. The SPD in Figure 3.12 provides arguably better insights into
the process than the SPD in Figure 3.10 and Figure 3.11, as it provides an intuition
that activities B and C are related to each other in some sense closer than other
relations which can be formed by a combination of activities B, C, D, and E.

A

B, C

FD

E

Figure 3.12: An example of a hand made SPD that is created based on limited
information about the process (3)

However, with such a relaxed way to represent activities, SPD nodes can be
easily misinterpreted. For instance, Figure 3.13 shows another hand made SPD of
our previous process example. In this figure, the node D,E is created to indicate that
activity D and activity E are performed without any precedence order. However,
based on the way activities B and C are presented as node B,C in Figure 3.12,
node D,E may also give a false indication that activity E is always started during
execution of activity D. Therefore, we would like to emphasize that to interpret SPDs
correctly, knowledge about the process under consideration and reasoning behind
the construction of nodes and arcs is required.

A

B, C

F
D, E

Figure 3.13: An example of hand made SPD that is created based on limited infor-
mation about processes (4)

In this chapter, we provided SPDs as high level process models which can present a
process intuitively, regardless of the process’ complexity. We also provided several
approaches to obtain SPDs of processes: by converting process models to SPDs, by
constructing SPDs from event logs, or by creating hand made SPDs. In the next
chapter, we use both an SPD and an event log to obtain performance information
of a business process which is represented by the log.

Chapter 4

Measuring Performance

In Chapter 3, we presented SPDs as conceptual process models which can represent
even complex processes intuitively. In this chapter, we explain an approach to
measure performance of a business process based on a given SPD and the process’
event log. Section 4.1 provides an overview of how the performance information is
extracted. Sections 4.2 to 4.5 provide step-by-step explanation of how to extract the
information. In Section 4.6, a complete list and explanation of the Key Performance
Indicators (KPIs) that can be obtained from the information extraction is provided.

4.1 Overview

In order to obtain performance information from an event log, we replay the log on
a given model. We assume the model to be an SPD, but we ensure robustness of
our approach by not making assumptions on the structure of the process. Our log
replay is influenced by both the case animations of Fuzzy models [25] and the replay
of event logs in Petri nets [28, 41]. An overview of our log replay is given in Figure
4.1. As shown in the figure, in order to perform the replay, both an SPD and an
event log are given. Each case in the log is treated independently. Therefore, we
only show a sequence of events of a single case in the figure. Each node of the SPD
should be mapped to an activity or a set of activities in the log. In the figure, each
node is labelled by a greek alphabet (α, β, γ, and δ) and the activities each node
refers to are given in brackets (e.g. node α refers to both activity A and B).

The first step of the log replay is to determine for each event in the sequence,
which SPD node it refers to. This step is needed because there can be more than
one node which is referred to by an activity. The result of the first step is an SPD
node sequence for each sequence in the log. An illustration of the first step is given
in Figure 4.1 where a sequence of SPD nodes 〈α, α, ..., δ〉 is derived from a sequence
of events. Each event is represented by the name of activity which is referred to by
the event and its event type (e.g. A(start) represents an event e in an event log W
where et(e) = start and a(e) = A). Details of how to obtain node sequences from
sequences of events in the event log is given in Section 4.2.

The second step of the log replay is to identify to which node instance a node
in the node sequence refers to. In order to do this, we define a look-ahead value
as a user-defined value which determines how many nodes ahead of the currently

34

4.2. Node Sequence Identification 35

Figure 4.1: Overview of the approach to measure performance

inspected node are considered to determine the node instances. This look-ahead is
similar to the look-ahead of cases animation in [25]. The details of the second step
are given in Section 4.3.

After the node instances are known, the third step is to identify case routing
between the instances. The identified case routing and node instances are the basis
of performance calculation. Details of the third step are given in Section 4.4. In the
fourth step, activity instances are identified. This step can actually be performed in
conjunction with the third step. The identified activity instances also become the
basis of our performance calculation. Further explanation of the activity instance
identification is given in Section 4.5. Note that all steps in Sections 4.2 to 4.5 are
necessary to perform a performance measurement of the KPIs given in Section 4.6.

4.2 Node Sequence Identification

Given an SPD and a sequence of events which represents a case in an event log,
we need to relate each event to an instance of an SPD node. To construct a se-
quence of SPD nodes from the event sequence, we assume that the execution of
activities conforms to activities’ precedence relation which is indicated by the SPD.
The sequence of SPD nodes is identified by decomposing the sequence of events to
maximum fitting subtraces and replace each subtrace by its corresponding sequence

4.2. Node Sequence Identification 36

of SPD nodes.
Before we define the maximum fitting subtraces, we need to define a notion of

a fitting subtrace. A fitting subtrace is a sequence of events for which a mapping
from each event in the sequence to a possible SPD node can be constructed such
that given an event e in the sequence and a set of SPD nodes S consisting all nodes
where at least one of e’s predecessors in the sequence is mapped to, e is mapped to
either an element of S or a successor of any element of S. Fitting subtrace can be
formalized as follows:

Definition 4.2.1. (Fitting Subtrace)
Let W = (E,ET,A,R,C, t, et, a, r, c) be an event log, CW be a set of event sequences
that represents cases in W , and S = (W,N,L, la, ln) be an SPD of the event log.
A Fitting Subtrace f ls of a sequence of events 〈〈e0, ..., en〉〉 ∈ CW is a subsequence
〈es, ..., es+l−1〉, such that there exists a sequence of SPD nodes 〈n0, ..., nl−1〉 where

• ∀0≤i<l ni ∈ N ∧ a(es+i) ∈ ln(ni), and

• ∀0≤i≤j<l (ni = nj) ∨ (∃i≤k<j (nk, nj) ∈ L)

Given a sequence of events of a case, we argue that we can always decompose the
sequence to fitting subtraces. A fitting decomposition of a sequence is a decomposi-
tion of the sequence to sub sequences where each sub sequence is a fitting subtrace.
A fitting decomposition can be formalized as follows:

Definition 4.2.2. (Fitting Decomposition)
Let W = (E,ET,A,R,C, t, et, a, r, c) be an event log, CW be a set of event sequences
that represents cases in W , and 〈〈e0, ..., en〉〉 ∈ CW be a sequence of events that
represents a case in W . 〈l0, ..., lm〉 is a Fitting Decomposition of the sequence iff

•
m∑
i=0

li = n+ 1, and

• ∀0≤i≤m li > 0, and

• ∀0≤i<m f li∑i−1
j=0 lj

is a fitting subtrace of 〈〈e0, ..., en〉〉.

Let CW be a set of event sequences that represents cases in an event log W , for
every sequence of events 〈〈e0, ..., en−1〉〉 ∈ CW , we argue that such fitting decompo-
sition exists. The proof is straightforward. Every sequence can be decomposed into
subsequences, each consisting of only one event. A sequence which only consists of
one event is a fitting subtrace. Thus, every sequence can be decomposed to fitting
subtraces.

Proposition 4.2.1 (Event sequences can be decomposed)
Let W = (E,ET,A,R,C, t, et, a, r, c) be an event log, CW be a set of event sequences
that represents cases in W , and 〈〈e0, ..., ek〉〉 ∈ CW be a sequence of events that
represents a case in W . A fitting decomposition of the form 〈l0, ..., lm〉 exists.

Proof : Since for all 0 ≤ i ≤ k holds that there exists a sequence 〈n〉 with
n ∈ la(a(ei)), which implies a(ei) ∈ ln(n) (Definition 3.1.1), we know that f 1

i = 〈ei〉
is a fitting subtrace. Therefore, 〈l0, ..., lm〉 is a fitting decomposition, where for all
0 ≤ j ≤ m = k, lj = 1. 2

4.2. Node Sequence Identification 37

Based on the definition of a fitting subtrace, we define a Maximum Fitting Sub-
trace as a fitting subtrace which is not a sub sequence of another fitting subtrace.
This definition can be formalized as follows:

Definition 4.2.3. (Maximum Fitting Subtrace)
Let W = (E,ET,A,R,C, t, et, a, r, c) be an event log, CW be a set of event sequences
that represents cases inW , and f ls = 〈es, ..., es+l−1〉 be a fitting subtrace of a sequence
of events 〈〈e0, ..., en〉〉 ∈ CW . A Maximum Fitting Subtrace is a fitting subtrace f ls
such that there is no other fitting subtrace f l

′
s where l′ > l.

By decomposing sequence of events 〈〈e0, ..., en−1〉〉 ∈ CW to maximum fitting
subtraces, we obtain a mapping function m : E → N which maps each event in the
sequence to exactly one node in SPD. However, note that not all fitting subtraces can
only be mapped to exactly one sequence of SPD nodes, i.e. some fitting subtraces
can be mapped to more than one sequence of SPD nodes. Hence, the selection
of which sequence of SPD nodes is a mapping of a fitting subtrace is left to the
implementation. In the current implementation, sequence of SPD nodes with higher
number of unique SPD nodes are prioritized over sequences of SPD nodes with the
lower number. In addition, the identification for maximum fitting subtraces are
started from the first event in the sequence (e0). After the first maximum fitting
subtrace is identified, the next maximum fitting subtrace is identified from the next
event of the sequence which is not a part of the previously identified maximum
fitting subtrace. The identification is repeated until all maximum fitting subtraces
are identified.

As an example, see the SPD in Figure 4.2 and the sequence of events in a case
in Figure 4.3. Each event in Figure 4.3 is labelled by an activity it refers to. Using
Definition 4.2.1, we obtain three maximum fitting subtraces from the sequence:

• 〈A,B,C,D〉, which can be mapped to either 〈α, β, ε, θ〉 or 〈α, β, ε, δ〉
• 〈E〉, which is mapped to 〈ω〉
• 〈F, F,G〉, which is mapped to 〈ε, ε, ε〉.

Figure 4.2: SPD for example

Both events A and B belong to the same fitting subtrace. Although there is no
SPD node which refers to by both activity A and B, there exists a pair of predecessor
and successor nodes connected by an arc, in which the predecessor refers to activity
A and the successor refers to activity B. An example of such a pair is (α, β), where

4.2. Node Sequence Identification 38

A B C D E F F G

Max. fitting subtrace 1 Max. fitting subtrace 2 Max. fitting subtrace 3

Figure 4.3: Sequence of events 1 as case example

α refers to activity A and β refers to activity B and there is an arc from node α to
node β.

Event E is not a part of the first maximum fitting subtrace. According to Figure
4.2, the activity only refers to node ω. Node ω does not have any predecessor nodes
and only refers to activity E. Thus, according to Definition 4.2.1, event E must be
placed in a separate fitting subtrace.

According to Definition 4.2.1, there exists a sequence of SPD nodes for every
fitting subtrace. According to Definition 4.2.3, maximum fitting subtraces are also
fitting subtraces. For the first maximum subtrace, there are several possible se-
quences of nodes, such as: 〈α, β, ε, θ〉, 〈α, β, ε, δ〉, 〈α, β, β, δ〉, and 〈γ, η, η, η〉. In this
thesis, we choose the sequences with maximum number of unique SPD nodes. Thus,
our sequence candidates for the first maximum subtrace is filtered to only 〈α, β, ε, θ〉
and 〈α, β, ε, δ〉, as both of them have the highest number of unique nodes (4 nodes).
Any of this candidates can be selected to represent the first maximum subtrace.

The second subtrace only consists of one event which refers to activity E. As
node ω is the only one which is referred to by activity A, the event can only be
mapped to node ω. Thus, the sequence of SPD nodes of the second event subtrace
is 〈ω〉. Using the same approach, we identify that the third subtrace corresponds to
sequence 〈ε, ε, ε〉.

By merging all identified sequences of SPD nodes (〈α, β, ε, θ〉 or 〈α, β, ε, δ〉, 〈ω〉,
and 〈ε, ε, ε〉), we obtain two sequences of SPD nodes for the sequence of events in
Figure 4.3, namely: 〈α, β, ε, θ, ω, ε, ε, ε〉 and 〈α, β, ε, δ, ω, ε, ε, ε〉. Figure 4.4 illustrates
both possible sequence of nodes for sequence of events in Figure 4.3.

Figure 4.4: Sequence of SPD nodes for the sequence of events in Figure 4.3

In an extreme case, the number of maximum subtraces can be equal to the
number of events. See the sequence in Figure 4.5 as an example. There is no two
consecutive events e, e′ in this sequence which either refer to the same node or refer to
two different nodes which are connected by an arc. Thus, each event in the sequence
is a maximum fitting subtrace. All maximum subtraces of the sequence are 〈D〉,
〈A〉, 〈E〉, 〈D〉, 〈C〉, 〈E〉, and 〈A〉. In cases where the maximum fitting subtrace
only consists of one event, we can choose any SPD node that the event refers to.
Three of the possible sequences of SPD nodes which can represent the sequence of
events in Figure 4.5 are 〈δ, ζ, ω, δ, β, ω, ε〉,〈δ, α, ω, θ, η, ω, γ〉, and 〈θ, α, ω, δ, η, ω, ζ〉.

4.3. Node Instance Identification 39

D A E D C E A

Max. fitting
subtrace 1

Max. fitting
subtrace 2

Max. fitting
subtrace 3

Max. fitting
subtrace 4

Max. fitting
subtrace 5

Max. fitting
subtrace 6

Max. fitting
subtrace 7

Figure 4.5: Sequence of events 2 as case example

4.3 Node Instance Identification

After sequences of SPD nodes are obtained, the next step of our log replay is to
identify SPD node instances. An SPD node may refer to more than one activity.
Thus, performance calculations based on SPD node instances may provide insights
into a process’ performance on a higher level of abstraction than calculations which
are based on activity instances.

To define SPD node instances formally, we introduce the relation � as relation
between classes of events such that each of the class represents an instance of an
SPD node. The relation is influenced by the case animation approach in [25]. Let
W be an event log, CW be a set of event sequences that represents cases in the log,
〈〈e0, ..., ek〉〉 ∈ CW be a sequence of events in the event log, and S = (W,N,L, la, ln)
be an SPD of the log. Two events e, e′ in the sequence 〈〈e0, ..., ek〉〉 ∈ CW , where e
occurs earlier than e′, are related with respect to their node instance if they both
refers to the same node n ∈ N and the index of event e′ is at most la more than
the index of event e in the sequence. If there is any other event e′′ in the sequence
that has an index between the two events and can be mapped to any successor of
node n (we refer to the successor node as n′), there should be another event between
event e and event e′′ in the sequence that can be mapped to predecessor of node n′.
la is named as look-ahead value and a sub sequence that is formed from la direct
successors of event e in the sequence is named the look-ahead window.

The relation is formalized as follows:

Definition 4.3.1. (SPD Node Instance Relation) Let

• W = (E,ET,A,R,C, t, et, a, r, c) be an event log,

• CW be a set of sequences of events in event log W that represents cases,

• S = (W,N,L, la, ln) be an SPD of the event log W ,

• LA be a look-ahead value (LA ∈ IN1),

• tr = 〈〈e0, ..., ek〉〉, tr ∈ CW be a sequence of events in event log W , and

• m : E → N be a function mapping an event to an SPD node that is obtained
from decomposing tr to maximum fitting subtraces.

We define an relation � on the events in tr, such that given i, j ∈ IN1, 0 ≤ i ≤ j ≤
min(k, i+ LA), ei � ej iff1

• i = j, or

• ∀i<h<j[(m(ei),m(eh)) ∈ L ⇒ (m(eh) 6= m(ei) ∧ ∃i<l<h(m(el),m(eh)) ∈ L)] ∧
(m(ei) = m(ej))

1with min : Z× Z, we denote a function that returns the minimum value between two values

4.4. Control Flow Identification 40

Based on the relation, we define a node instance of node n ∈ N in a sequence of
event tr ∈ CW as a sequence of unique events, ordered based on their timestamps
consisting all events in tr that are node instance equivalent. Formally, a node
instance is defined as follows:

Definition 4.3.2. (SPD Node Instance) Let

• W = (E,ET,A,R,C, t, et, a, r, c) be an event log,

• CW be a set of sequences of events in event log W that represents cases,

• S = (W,N,L, la, ln) be an SPD of the event log W , and

• tr = 〈〈e0, ..., ek〉〉, tr ∈ CW be a sequence of events in event log W .

We define a Node Instance of node n ∈ N in sequence of events tr as a sequence of
events nitrn = 〈ei0 , ..., eij〉 where

• ∀0≤l≤j 0 ≤ il ≤ k,

• ∀0<l≤j eil−1
� eil ,

• ∀0≤l<p≤j il 6= ip ∧ t(eil) < t(eip), and

• ∀0≤l≤k, (∃0≤h≤j eih � el ∨ el � eih)⇒ ∃0≤g≤j ig = l.

Furthermore, we define NI trn to be the set of node instances of node n ∈ N in tr.

As an example, consider our previous example in Section 4.3. Suppose that
the sequence of SPD nodes 〈n0, ..., n7〉 = 〈α, β, ε, θ, ω, ε, ε, ε〉 is selected to represent
the sequence of events 〈〈e0, ..., e7〉〉 in Figure 4.3. With a look-ahead value equal to
3, we obtain these node instances: 〈e0〉, 〈e1〉, 〈e2〉, 〈e3〉, 〈e4〉, 〈e5, e6, e7〉. Notice that
although e5 refers to the same node as e2 and is within the look-ahead window of
e2(2 + 3 ≤ 5), it is not a part of node instance 〈e2〉 because of the existence of e3.
e3 refers to a successor of m(e2), lies between e2 and e5 in the sequence of events,
and is not preceded by any events which refer to any of the predecessors of m(e3).
e5, e6, and e7 are grouped in a node instance as all of them refers to the same node
and satisfies the Definition 4.3.1.

As another example, one of the possible results of node sequence identification
of the sequence of events in Figure 4.5 is 〈n0, ..., n6〉 = 〈δ, ζ, ω, δ, β, ω, ε〉. With
this node sequence and look-ahead value equal to 3, we obtain these node instances:
〈e0, e3〉, 〈e1〉, 〈e2〉, 〈e4〉, 〈e5〉, 〈e6〉. e0 and e3 are grouped as one node instance because
both of them refer to node δ which does not have any successors and event e3 is
within the look-ahead window of e0 (0 + 3 ≤ 3). Although both e2 and e5 refer to
the node ω, they are not grouped as one node instance because there is e4 whose
SPD node refers to one of the successors of node ω.

Figure 4.6 illustrates the transformation from the sequence of events in Figure
4.3 to a sequence of SPD nodes and later to SPD node instances. As shown in
Figure 4.6, node instances may have a notion of throughput time (see Section 2.1).
This notion is used as one of our performance metrics which is further explained in
Section 4.6.

4.4 Control Flow Identification

The third step of our log replay is performed to identify the control flow between
the identified node instances. Control flow indicates the moment a process’ control

4.4. Control Flow Identification 41

Figure 4.6: Transformation of the sequence of events in Figure 4.3 during log replay

is passed from an event in a node instance to another event(s) in another node
instance(s). Control flow is passed from the last event which forms an instance of
node n to each closest future events within its look-ahead window that is mapped
to any successor of n such that a node instance only receive process control from
another node instance exactly once.

Control flow identification can be formalized as follows:

Definition 4.4.1. (Control Flow Identification) Let

• W = (E,ET,A,R,C, t, et, a, r, c) be an event log,

• CW be a set of sequences of events in event log W that represents cases,

• S = (W,N,L, la, ln) be an SPD of the event log W ,

• LA be a look-ahead value (LA ∈ IN1),

• tr = 〈〈e0, ..., ek〉〉, tr ∈ CW be a sequence of events in event log W ,

• m : E → N be a function mapping an event to an SPD node that is obtained
from decomposing tr to maximum fitting subtraces, and

• i, j be integer values, 0 ≤ i < j ≤ min(k, i+ LA).

We say that ei passes control to ej, denoted by ei �c ej iff (m(ei),m(ej)) ∈ L ∧
@i<h≤k ei � eh ∧ @i<l<j el � ej.

Based on Definition 4.4.1, the flow of process control between events in node
instances in Figure 4.6 can be illustrated in Figure 4.7. Edges between events in
different node instances indicate control passing between source node instances to
destination node instances. Recall that the look-ahead value for this example is
equal to 3 as explained in Section 4.3. Thus, the look-ahead window for the event
at t(e0) is 〈e0+1, e0+2, e0+3〉 = 〈B,C,D〉. Based on SPD in Figure 4.2, the only
successor of node α is node β. In the look-ahead window, only event B is mapped
to node β. Therefore, at time t(e0), the last event of node instance α only passes
control to the event B at t(e1), which is also an element of node instance β. The
other control flows in Figure 4.7 are identified using the similar approach.

As illustrated in Figure 4.7, not all process controls are gained from other node
instances and some node instances may not pass control to any other node instances.
Node instance θ in the figure receives a control from instance ε, but it does not
distribute the control to any other node instance. Both the only instance of node
ω and the the second instance of node ε do not receive any control from other

4.4. Control Flow Identification 42

node instance. These two instances are assumed to gain process controls as long as
they exist in the process and lose the control without ever passing it to any other
activity instances. This relaxed notion of process control makes our approach robust
enough to handle unstructured processes or logs that do not match the model under
consideration.

Figure 4.7: Control flow identification of node instances in Figure 4.6

As another example, consider the node instances 〈e0, e3〉, 〈e1〉, 〈e2〉, 〈e4〉, 〈e5〉, 〈e6〉
which are gained from the trace of events in Figure 4.5. Suppose that the trace of
events corresponds to a trace of SPD nodes 〈n0, ..., n6〉 = 〈δ, ζ, ω, δ, β, ω, ε〉. Using
Definition 4.4.1, we can identify the control flow between the node instances as
illustrated in Figure 4.8. An interesting remark on the figure is that by the definition,
node instance ζ passes control to the last event of node instance δ. Process control
is passed between events, while a node instance may be constructed from several
events. Thus, the controls are always passed from the end of node instances, but it
may be passed to any location (start, middle, or end) of other node instances.

Figure 4.8: Control flow identification of node instances in Example 2

Control flow identification is an important step to determine both join and split
semantics of SPD nodes. Split semantics of a node n can be determined by calcu-
lating how many successor nodes, represented by their instances, are given process
control by an instance of node n. If all successor nodes of n are given process con-
trol, then node n has AND-split semantics. If only some of them are given process
control, then the node n has OR-split semantics. If only one of them is given process
control, then the node n has XOR-semantics.

Our formal approach to identify the type of split semantics of a given SPD node
is given as follows:

Definition 4.4.2. (Split Semantics Identification) Let

• W = (E,ET,A,R,C, t, et, a, r, c) be an event log,

• CW be a set of sequences of events in event log W that represents cases,

4.4. Control Flow Identification 43

• S = (W,N,L, la, ln) be an SPD of the event log W ,

• LA be a look-ahead value (LA ∈ IN1),

• tr = 〈〈e0, ..., ek〉〉, tr ∈ CW be a sequence of events in event log W , and

• m : E → N be a function mapping an event to an SPD node that is obtained
from decomposing tr to maximum fitting subtraces, and

• i be an integer, 0 ≤ i < k.

We say that m(ei) has split semantics at time t(ei) iff ∃i<j≤min(k,i+LA) ei �c ej and
@i<l≤k ei � el.

The type of the split semantics, given Ssucc = {nsucc ∈ N | (m(ei), nsucc) ∈ L}
as the set of successors node of node m(ei) is2

• AND-split, iff ∀nsucc∈Ssucc ,∃i<j<min(k,i+LA)m(ej) = nsucc ∧ ei �c ej
• OR-split, iff AND-split criteria does not hold, and ∃S′succ⊂Ssucc |S ′succ| > 1 ∧
∀nsucc∈S′succ

,∃i<j<min(k,i+LA)m(ej) = nsucc ∧ ei �c ej
• XOR-split, iff OR-split criteria does not hold, ∃nsucc∈Ssucc,i<j<min(k,i+LA)m(ej) =
nsucc ∧ ei �c ej

As an example, see the SPD, the node sequence, the node instances (given the
value of look-ahead equal to 3), and the control flow in Figure 4.9. At t(e0), node
instance β passes control to both node instance α and node instance ε. From the
SPD, both node α and node ε are the only successors of node α. Thus, based on
Definition 4.4.2, node β has AND-split semantics at time t(e0). Using the same
definition, node γ has XOR-split semantics at time t(e3). As shown in the SPD,
node γ has two successors node: node α and node ε. In the node sequence, only node
ε is within the look-ahead window of e3. At time t(e3), node γ only passes control
to one successor out of two possible successors. Therefore, the node has XOR-split
semantics at time t(e3).

Using a similar approach, we can also identify the join semantics of a node at
a particular time. Join semantics of a node n is determined by calculating how
many predecessor nodes of n, each represented by its instance, gave process control
to an event which is mapped to node n. If the event accept process control from
all predecessor nodes of n, then the node n has AND-join semantics. If the event
accept process control only from some predecessor nodes of n, then the node n has
OR-join semantics. If the event accept process control only from one predecessor
node of n, then the node n has XOR-join semantics.

The approach to identify join semantics can be formalized as follows:

Definition 4.4.3. (Join Semantics Identification) Let

• W = (E,ET,A,R,C, t, et, a, r, c) be an event log,

• CW be a set of sequences of events in event log W that represents cases,

• S = (W,N,L, la, ln) be an SPD of the event log W ,

• LA be a look-ahead value (LA ∈ IN1),

2with |S|, we denote a function that returns the number of elements in set S

4.4. Control Flow Identification 44

Figure 4.9: Split semantics identification example

• tr = 〈〈e0, ..., ek〉〉, tr ∈ CW be a sequence of events in event log W , and

• m : E → N be a function mapping an event to an SPD node that is obtained
from decomposing tr to maximum fitting subtraces, and

• j be an integer, 0 < j ≤ k.

We say that m(ej) has join semantics at time t(ej) iff ∃0≤i<j ei �c ej.

The type of the join semantics, given Spred = {npred ∈ N | (npred,m(ej)) ∈ L} is

• AND-join, iff3 ∀npred∈Spred
, ∃max(0,j−LA)≤i<j m(ei) = npred ∧ ei �c ej

• OR-join, iff AND-join criteria does not hold and ∃S′pred⊂Spred
|S ′pred| > 1 ∧

∀npred∈S′pred
,∃max(0,j−LA)≤i<j m(ei) = npred ∧ ei �c ej

• XOR-join, iff OR-join criteria does not hold and ∃npred∈Spred,max(0,j−LA)≤i<j m(ei) =
npred ∧ ei �c ej

Again consider Figure 4.9. At time t(e1), node instance α receives control from
node instance β. According the SPD in the same figure, there are two possible
predecessors node of node α: node β and node γ. Only one of the two predecessors
passes control to the node. Therefore, using Definition 4.4.3, node α has XOR-Join
semantics at time t(e1). As another example, consider other node sequence and node
instances in Figure 4.10. Suppose that both the sequence and all of the instances
are derived from the SPD of Figure 4.9 with a value of look-ahead equal to 3. At
time t(e2), node α receives control from two node instances: β and γ. Thus, at
time t(e2), node α has AND-join semantics as all of its predecessor nodes pass their
control to the node. Using Definition 4.4.3, both node ε at time t(e3) and node δ at
time t(e5) also have AND-Join semantics.

3with max : Z× Z, we denote a function that returns the maximum value between two values

4.5. Activity Instances Identification 45

Figure 4.10: Join semantics identification example

4.5 Activity Instances Identification

As already explained in Section 2.1, activity is a work-item that is executed by a
resource. In a process, an activity may be executed more than once. For instance,
activity “examine patient” in a physiotherapy patient handling process may need
to be executed more than once during the process, as a physiotherapy patient may
need to go through several examinations before and after the therapy. We refer to
an activity which is executed at a point of time during a process as activity instance.

A node instance consists of one or more activity instances. A node instance starts
at the moment the first activity instance that refers to the node instance is created
and ends at the latest moment an activity instance that refers to the node instance
ends. An illustration of a node instance and its activity instances is shown in Figure
4.11. The figure shows an instance of node β that refers to three activities, namely
A, B, and C. In the figure, an activity instance of each of the referred activity is
shown. Notice that an activity instance may have several states. Transition from a
state to another state is identified by event with a certain event type. In the figure,
an event is labelled by the name of the activity that the event refers to and the type
of the event inside a bracket, e.g. A(start) indicates an occurence of event e which
refers to activity A and has an event type “start”.

As stated in Section 2.1, there are several common performance metrics which
can be calculated based on activity instances. Unfortunately, in most cases, real-life
event logs do not provide any information of activity instances. By a simple heuris-
tic approach, we can derive activity instances from node instances. We assume that
activity instances are formed by sequences of events which follows a transactional
model of an activity as shown in Figure 2.5. With this assumption, we can de-
fine activity instances as sequences of events which refer to the same SPD node
instance where for each two consecutive events e, e′ in the sequence, the transition
of an activity’s state from the event type et(e) to et(e′) is allowed according to the
transactional model.

Activity instances can be obtained by arranging all events that forms the node
instance such that the events which refer to the same activity and precede each
other as permitted in the activity transactional model (see Section 2.2.1) are placed
in the same activity instance. This also implies that an event can only be a part

4.6. Key Performance Indicators 46

Figure 4.11: Example of activity instances inside a node instance

of one activity instance. However, multiple instances of the same activities can be
performed in parallel.

Therefore, we find it is necessary to add the assumption that activities which
are started early have a higher priority than other activities which are started later.
Thus, we attach events as much as possible to the activity instances which are
started earlier before attaching events to activity instances which are started later.

As an example, suppose that we have a node instance that consists of 10 events
〈e0, ..., e9〉 = 〈B(schedule), C(start), B(start), B(complete), B(schedule), B(start),
B(start), C(resume), B(suspend), B(complete)〉. Note that in the notation of the
node instance, each event is presented by the name of activity it refers to and
its event types given in brackets. Using our reference transactional model that was
explained in Section 2.2.1, we can construct activity instances as illustrated in Figure
4.12. New instances are only added if events can not be attached to any existing
activity instances. In our example, the occurence of event B(start) at time t2 does
not create a new activity instance of B. The event is rather grouped to activity
instance B-1. Note that in the figure, occurence of the event B(schedule) at time t4
initiate a new activity instance B-2 because according to our transactional model,
an activity in a “completed” state does not have any other possible event which can
be related to it. At time t8, event B(suspend) can be grouped to either activity
instance B-2 or activity instance B-3 because at the particular time, the last event
in both activity instances has event type start which can be succeeded by an event
with event type suspend. This where our second assumption is needed. As activity
instance B-2 is started earlier than activity instance B-3, it has higher priority than
activity B-3. Therefore, the event is grouped to activity instance B-2.

4.6 Key Performance Indicators

Beside the information that can be obtained directly from event logs, both the
concept of node instances and the concept of activity instances provide additional

4.6. Key Performance Indicators 47B(schedule)

timelinetstartCase t0 t1 t2 t3 t4 t5 t6
activity instance B-1

t7 t8 t9
activity instance C-1activity instance B-2activity instance B-3activity instance C-2

B(start)
B(complete)B(complete)C(start) B(schedule) B(start)B(start) C(resume)

B(suspend)
Figure 4.12: Example of constructed activity instances

information that can be used as a basis for our performance analysis. Node instances
are aggregations of activity instances. Therefore, node instances provide the views
of activities on a higher level of abstraction than activity instances. We argue that
the two concepts complement each other during performance analysis of a process.

As an example, suppose that we have a process which is represented by a single
SPD node. Two cases from the same process are shown in Figure 4.13(i) and 4.13(ii).
All activity instances in both figures are constructed from events which refer to node
β. At the level of node instances, the time it takes to finish the whole process in
both process instance is the same (t5 − t0). However, if we analyze the instances
at the level of activity instances, we gain additional insights into the cases: The
first case has longer “busy” periods than the second case. The average time it takes
to finish an activity instance in the process instance described in Figure 4.13(i) is
(t3−t0)+(t4−t1)+(t5−t2)

3
, while the average time it takes to finish an activity instance in

the second process instance is (t1−t0)+(t2−t2)+(t3−t3)
3

which is obviously less than the
first calculation. From the two levels of abstraction that can be provided, which
level of abstraction is more relevant compared to the other depends on the purpose
of the analysis.

B(start) B(complete)

B(start)
B(start) timeline

t0 t1 t3 t5
B(start)

B(start)timeline
t0 t1 t3 t5

B(complete)
B(complete)

B(start)

B(complete)

t2 t4(i) (ii)

Act. Instance B-1Act. Instance B-2Act. Instance B-3
Figure 4.13: Different insights into a process from different level of abstraction

In Section 2.1, various performance metrics to measure business process perfor-
mance were explained briefly. Based on the performance metrics in Section 2.1 and
our approach to replay log on SPDs which was explained in Sections 4.2 to 4.5, we
provide several KPIs of business processes which can be grouped into two: case-level

4.6. Key Performance Indicators 48

KPIs and model-dependent KPIs. The details of each group are explained in Sec-
tion 4.6.1 and Section 4.6.2, respectively. In this chapter, the KPIs are explained
informally. Some of the KPIs are also formalized in Appendix A.

4.6.1 Case-Level KPIs

Case-level KPIs refer to either performance metrics which are measured on a case
level (i.e. process instance) or performance metrics which can be measured from
event logs without any need for process model. Let W be an event log and S be an
SPD of the log, several KPIs in this category are given as follows:

1. Case throughput time

Throughput time of a case is defined as the total amount of time spent from the
moment the first event in the case occurs until the moment the last event in the
case occurs. In this thesis, we calculate these statistical values:

• The average case throughput time of all cases in W.

• The minimum case throughput time of all cases in W.

• The maximum case throughput time of all cases in W.

• The standard deviation in the calculation of the average throughput time of
all cases in W.

• The average case throughput time of x% cases with the lowest throughput
time in W, where 0 ≤ x ≤ 100.

• The average case throughput time of y% cases with the highest throughput
time in W, where 0 ≤ y ≤ 100.

• The average case throughput time of remainder (100− x− y)% cases in W.

2. Number of cases

The total number of cases in W .

3. Number of traces

The total number of unique sequence of events that represent cases in W, where
each event is represented by its corresponding activity and event type.

4. Executed events per resource

The average number of events that is related to a resource in W.

5. Executed activities per resource

The average number of unique activities which is performed by a resource in W.

6. Number of resources per case

The average number of resources that are involved in a case in W.

4.6. Key Performance Indicators 49

7. Number of fitting cases

The total number of sequence of events that represent a case which is also maximum
fitting subtraces in W. Fitting subtraces are indentified based on S.

8. Arrival rate of cases

The number of cases that arrive per time unit in W.

9. Involved resources in all cases

The total number of resources that are involved in W.

10. Involved teams in all cases

The total number of unique set of resources that are involved in at least a case in
W.

4.6.2 Process-model-related KPIs

Some performance metrics of a business process can only be calculated if a process
model is known in advance. As an example, in order to calculate delays for an
activity (waiting time), one needs to know which other activities are synchronized
in a parallel join with the activity. This type of information is typically provided
by process models. In this thesis, we use SPD as our process model. Based on
our approach to replay event logs in SPDs, we define four categories of process-
model-related KPIs: SPD-Node-related KPIs, SPD-Edge-related KPIs, Two-nodes
performance KPIs, and Aggregated-activities KPIs. Details of each category are
given in the sub sections 4.6.2.1 to 4.6.2.4.

4.6.2.1 SPD-Node-related KPIs

Let W be an event log, C be a set of all cases in event log W, and S be an SPD
of the event log. Suppose that a node in the SPD n is selected as the node under
inspection, several node-related KPIs that can be measured are given as follows:

1. Node activation frequency

The total number of events in C that refers to node n.

2. Node initialization frequency

The total number of cases in C that starts with an event that refers to node n.

3. Node termination frequency

The total number of cases in C that ends with an event that refers to node n.

4.6. Key Performance Indicators 50

4. Number of performers

The total number of unique resources in C that are related to at least an event in
C that refers to node n.

5. Relative frequency in a case

The total number of events in C that refers to node n per case.

6. Node throughput time

The time spent to work on an instance of node n. Let ni be an instance of node n,
node throughput time is the time spend between the moment the first event that
refers to ni occurs and the moment the last event that refers to ni occurs. For this
KPI, several statistical values are calculated:

• The average node throughput time of all instances of node n in C.

• The minimum node throughput time of all instances of node n in C.

• The maximum node throughput time of all instances of node n in C.

• The standard deviation in the calculation of the average node throughput time
of all instances of node n in C.

• The average node throughput time of x% instances of node n in C with the
lowest node throughput time, where 0 ≤ x ≤ 100.

• The average node throughput time of y% instances of node n in C with the
highest node throughput time, where 0 ≤ y ≤ 100.

• The average node throughput time of remainder (100 − x − y)% instances of
node n in C.

7. Node waiting time

Suppose that there is a set of node instances NIpred which need to be executed before
an instance of node n can be executed in a case in C. Waiting time is defined as the
time between the latest moment when an event in NIpred occurs and the moment
the first event that refers to the instance of node n occurs. For this KPI, similar
statistical values as the statistical values provided for the Node Throughput Time
KPI are calculated (e.g. average node waiting time of all instances of node n in C,
maximum node waiting time of all instances of node n in C).

8. Node synchronization time

Suppose that there is a set of node instances NIpred which need to be executed before
an event which corresponds to node n′ can be executed in a case in C, where an
instance of node n is also in NIpred. Synchronization time is calculated for node n
in the instance as the time between a moment the latest event in NIpred occurs and
the moment the latest event in the instance of node n occurs. For this KPI, similar
statistical values as the statistical values provided for the Node Throughput Time
KPI are calculated (e.g. the average node synchronization time of all instances of
node n in C, maximum node synchronization time of all instances of node n in C).

4.6. Key Performance Indicators 51

9. AND-join frequency

The total number of times where an instance of node n has AND-join semantics in
C.

10. AND-split-frequency

The total number of times where an instance of node n has AND-split semantics in
C.

11. OR-join frequency

The total number of times where an instance of node n has OR-join semantics in C.

12. OR-split frequency

The total number of times where an instance of node n has OR-split semantics in
C.

13. XOR-join frequency

The total number of times where an instance of node n has XOR-join semantics in
C.

14. XOR-split frequency

The total number of times where an instance of node n has XOR-split semantics in
C.

4.6.2.2 Edge-related KPIs

Edge-related KPIs are based on process controls which are passed from a node
instance to other instance(s). As the controls are routed through SPD edges, we
define the KPIs as edge-related KPIs. Let W be an event log, C be a set of all cases
in event log W, S be an SPD of the event log, n1 and n2 be two nodes in S, and l be
an arc from n1 to n2 in S. Suppose that l is selected as the edge under inspection,
several edge-related KPIs that can be measured are given as follows:

1. Edge frequency

The total number of times a control is passed from instance of node n1 to instance
of node n2 in C.

2. Edge move time

The move time of edge l is the total time spend to route a process control from an
instance of node n1 to an instance of node n2 in C. Move time is calculated as the
time spend from the moment the last event in the instance of node n1 occurs until
the event in the instance of node n2 that receives process control from the last event

4.6. Key Performance Indicators 52

in the instance of node n1 occurs. For this KPI, similar statistical values as the
Node Throughput Time KPI are calculated (e.g. average move time of all pairs of
instances of node n1 and instances of node n2 in C where process control is passed
from n1 instances to n2 instances, the maximum move time of all pairs of instances
of node n1 and instances of node n2 in C where process control is passed from n1

instances to n2 instances).

3. Edge violating frequency

The total number of times in C when the first event e that refers to an instance of
node n1 occurs without gaining any control from other node instance while the first
event which refers to an instance of node n2 already occured before e and the last
event which refers to the same instance of node n2 has not occurred yet.

4.6.2.3 Two-nodes analysis

During performance analysis, it is also interesting to identify specific relation be-
tween two SPD nodes. Let W be an event log, C be a set of all cases in event log
W, S be an SPD of the event log, n1 and n2 be two nodes in S. Suppose that n1 is
selected as the source node and n2 is selected as the target node, several performance
metrics which can be derived specific to the two nodes are:

1. Source-target pair frequency

The total number of cases in C where two events, each refers to node n1 and n2,
respectively, occur.

2. Number of fitting cases

The total number of cases in C where two events, each refers to node n1 and n2,
respectively, occur. In addition, sequence of events that form the cases must also be
maximum fitting subtraces.

3. Sojourn time

The Sojourn time between node n1 and node n2 in a case in C is defined as the time
spent between the moment the first event that refers to node n1 occurs in the case
and the moment the first event that refers to node n2 occurs in the same case. For
this KPI, similar statistical values as the Node Throughput Time KPI are calculated
(e.g. the average sojourn time between node n1 and node n2 of all cases in C where
there is an event which refers to node n1 and another event which refers to node
n2).

4.6.2.4 Aggregated-activities KPIs

Aggregated-activities KPIs provide performance information of SPD nodes based
on activity instances within instances of SPD nodes. The KPIs utilize the state of
activities as explained in Section 2.1. Hence, the KPIs are calculated by considering

4.6. Key Performance Indicators 53

the event types of events that were explained in Section 2.2.1. Recall that in this
thesis, we use the transactional model shown in Figure 2.5.

Let W be an event log, C be a set of all cases in event log W, S be an SPD of
the event log, n be a node in SPD S, ca be a case in C, nin be an instance of node
n in ca, AI be a set of activity instances in nin, and ai be an activity instance in
AI. Several KPIs which can be calculated for node n from the activity instances
are given as follows:

1. Frequency of activity instances

The number of activity instances that refer to instance of node n in C.

2. Aggregated-activities throughput time

The throughput time of activity instance ai is the time spent between the mo-
ment the first event in ai occurs and the moment the last event in ai occurs. The
aggregated-activities throughput time of node n in C is the average throughput time
of all activity instances that refer to instances of node n in C. Beside this KPI,
several other statistical values are calculated:

• The minimum activity instance throughput time of all activity instances that
refer to instances of node n in C.

• The maximum activity instance throughput time of all activity instances that
refer to instances of node n in C.

• The standard deviation in the calculation of the aggregated-activities through-
put time of node n in C.

3. Aggregated-activities queuing time

The queuing time of activity instance ai is the time spent between the moment the
first event in ai occurs and the moment the first event that has an event type “start”
in ai occurs. If there is no event with event type “start” in ai, the value of queuing
time for activity instance ai is 0. The aggregated-activities queuing time of node n
in C is the average queuing time of all activity instances that refer to instances of
node n in C.

For this KPI, other related statistical values are also calculated, such as the
minimum/maximum activity instance queuing time of all activity instances that
refer to instances of node n in C and the standard deviation in the calculation of
the aggregated-activities queuing time of node n in C.

4. Aggregated-activities service time

The service time of activity instance ai is the time spent between the moment the
first event that has an event type “start” in ai occurs and the moment the last event
in ai occurs. If there is no event with event type “start” in ai, the service time for
activity instance ai is defined exactly the same as the throughput time of activity
instance ai. The aggregated-activities service time of node n in C is the average
service time of all activity instances that refer to instances of node n in C.

4.6. Key Performance Indicators 54

For this KPI, other related statistical values are also calculated, such as the
minimum/maximum activity instance service time of all activity instances that refer
to instances of node n in C and the standard deviation in the calculation of the
aggregated-activities service time of node n in C.

5. Aggregated-activities start time

The start time of activity instance ai is the time spent between the moment the first
event in case ca occurs and the moment the first event in ai occurs. The aggregated-
activities start time of node n in C is the average start time of all activity instances
that refer to instances of node n in C.

For this KPI, other related statistical values are also calculated, such as the
minimum/maximum activity instance start time of all activity instances that refer
to instances of node n in C and the standard deviation in the calculation of the
aggregated-activities start time of node n in C.

6. Aggregated-activities intersection time

Let n′ be a node in S, nin′ be an instance of node n′ in ca, AI ′ be a set of activity
instances in nin′ , and ai′ be an activity instance in AI ′.

Intersection time between activity instance ai and activity instance ai′ is the
time span between the latest moment when the first event of each activity instance
occurs and the earliest moment when any of the last event of each activity instance
occurs. To explain the core idea, we use an example as shown in Figure 4.14.

Figure 4.14: Example of two node instances in the same case

Suppose that we want to calculate intersection time between activity instance
B1 and activity instance C1 in Figure 4.14. Based on the figure, the first event in
activity instance C1 occurs later than the first event in activity instance B1 (t1 > t0).
The last event in activity instance B1 occurs earlier than the last event in activity
instance C1 (t4 < t6). Thus, based on the definition of activity instance intersection
time, intersection time between activity instance B1 and activity instance C1 is
t4 − t1.

The aggregated-activities intersection time between node n and node n’ is the
average intersection time between all activity instances that refer to instances of node

4.6. Key Performance Indicators 55

n in C and all activity instances that refer to instances of node n’ in the same C.
Other related statistical values are also calculated, such as the minimum/maximum
activity instance intersection time of all activity instance intersection time between
activity instances that refer to instances of node n in C and activity instances that
refer to instances of node n’ in C. The standard deviation in the calculation of the
aggregated-activities intersection time is also calculated.

The aggregated-activities intersection time gives an indication, how much time
that instances of activities in two different node instances overlap. Suppose that we
want to calculate intersection time between node β and node ε in Figure 4.14. First,
we need to calculate the intersection time between each activity instance of node
β and each activity instance of node ε which occurs in the same case. All of the
intersection time are summed an then divided by the number of activity instances
of both node β and node ε in all cases.

As example, see again Figure 4.14. Aggregated-activities intersection time be-
tween node β and node ε is calculated from both intersection between activity in-
stance B1 and activity instance E1 (t4−t3) and intersection between activity instance
C1 and activity instance E1 (t5−t3). Then, sum of the intersection time is divided by
the number of activity instances of node β. The result is then divided again by the
number of activity instances of node ε. Hence, the aggregated-activities intersection
time between node β and node ε in Figure 4.14 can be formulated as (t4−t3)+(t5−t3)

2∗1 .
Other KPIs can be calculated in more straightforward way than the calculation of

aggregated-activities intersection time, as they must only consider activity instances
of a single node. For instance, to calculate the throughput time of node β, we
calculate the average throughput time of activity instance B1 and activity instance
C1. The calculation will provide us the value (t4−t0)+(t6−t1)

2
as node β’s aggregated-

activities throughput time. Using a similar approach, aggregated-activities waiting
time, aggregated-activities service time, and aggregated-activities start time of node
β can be calculated.

Chapter 5

Performance Projection

In Chapter 3, we presented SPDs as conceptual process models and we have shown
how to calculate performance values based on the SPDs in Chapter 4. In this
chapter, we propose two models to project performance information onto. First, in
Section 5.1 we present Fuzzy Performance Models (FPDs) which basically are a di-
rect projection of performance information onto SPDs. In Section 5.2, we show how
to project performance information when focusing on a specific SPD node in Aggre-
gated Activities Performance Diagrams (AAPDs). Note that only the performance
information of important KPIs is projected onto the models.

5.1 Fuzzy Performance Diagram (FPD)

A Fuzzy Performance Diagram (FPD) is a visualization of an SPD with projected
performance information. Each node in an FPD has a one-to-one relation with a
node in an SPD. Each arc in the FPD also has a one-to-one relation with an arc
in an SPD. FPDs are designed to show both performance information and control
flow information of a process in an easily interpretable manner. The information is
obtained through log replay on an SPD model which was explained in Chapter 4.
In an FPD, the information is projected onto each node of the SPD and onto each
edge of the SPD (the way this projection is done is highly influenced by both Fuzzy
models [26] and extended Petri nets in [16,28]). An example of an FPD is shown in
Figure 5.1.

An FPD utilizes shape, size, and colors to provide comprehensive yet compact
information about the performance of a process and case routing in a process. An

Figure 5.1: Example of an FPD

56

5.1. Fuzzy Performance Diagram (FPD) 57

FPD node shows several types of performance information (see Figure 5.2 and Figure
5.3). The height of an FPD node indicates the frequency of activity instances referred
to by the node (See Section 4.6.2.4, point 1). The more activities a node refers to
are executed, the higher the node. Hence, nodes with a high frequency of activity
instances are easily distinguished in an FPD compared to other nodes with a low
frequency of activity instances. As frequency often indicates the level of importance
of an activity, this feature is useful to help process owners distinguish important
nodes from unimportant ones in a process.

Figure 5.2: Example of an FPD node (1)

Figure 5.3: Example of an FPD node (2)

An FPD node shows the exact value of two of the most important KPIs: the
frequency of activity instances referred to by the node and the average node through-
put time which is calculated based on node instances (see Section 4.6.2.1, point 6).
Other KPIs are indicated by bars and colors to avoid information overload on the
node. The height of the colored box inside the node shows the ratio of cases in
which the node occurs compared to all cases in the event log. The color of the
box indicates the average throughput time of the node compared to other nodes. A
red color indicates that the average node throughput time value is relatively high
compared to the average throughput times of other nodes in the same process. A
green color indicates that the value is relatively low, while a yellow color indicates
that the value is relatively moderate.

With this visualization, an FPD node which occurs in many cases and has a high
frequency of activity instances is easily distinguished from all other nodes due to its

5.1. Fuzzy Performance Diagram (FPD) 58

big size and its full color. In contrast, an FPD node which only occurs in several
cases and has a low frequency of activity instances is less noticable, as it has a small
size and less-attractive color (dominated by grey color as the base color of an FPD
node).

More than just performance information, an FPD node also provides insights
into the types of splits and joins semantics it has, i.e. by indicating to what extend
both the split semantics and join semantics tends to XOR, AND, or OR (see Figure
5.2 and Figure 5.3). The type of split/join is indicated by colored horizontal bars on
both sides of the node. The width of the colored horizontal bar for certain semantics
indicates the tendency of the node towards the semantics (i.e. the precentage of
the node classified as XOR, AND, and OR). The tendency is calculated using the
semantics frequency of the node as already explained in Section 4.6.2.1, point 9 to
14.

The average synchronization time and the average waiting time of a node are
represented by the colors of the horizontal bars (see Section 4.6.2.1, point 7 and
8). The average waiting time is indicated by the color of the bars on the left side
of the node, while the average synchronization time is indicated by the color of the
horizontal bars on the right side of the node. A red colored horizontal bar on the left
side of the node means that the average waiting time of the node is relatively high
compared to the average waiting time of other nodes. A green color on the same
horizontal bar indicates a relatively low average waiting time compared to others,
while a yellow color indicates an intermediate average waiting time compared to
others. The similar concept also holds for color of the horizontal bar on the right
side as an indicator of the node’s average synchronization time.

An edge in an FPD indicates both case routing and performance. The thicker an
edge from a source node to a target node, the more often cases were routed from the
source node to the target node (see Figure 5.4). This width corresponds to the edge
frequency KPI in Section 4.6.2.2, point 1. The color of an edge indicates whether
the average time spent on it is relatively high (red), medium (yellow) or low (green)
compared to the average time spent on other edges. The average time spent on an
edge corresponds to the average edge move time KPI that was explained in Section
4.6.2.2, point 2.

Figure 5.4: Control flow indication in FPD edges (See also Figure 5.3)

Consider an example log with six different activities (A,B,C,D,E, F,G). Ac-
tivity A always occurs once in every case and requires medium time to be finished.
Activities B, C, D, and E only require a small amount of time to be finished. Ac-

5.1. Fuzzy Performance Diagram (FPD) 59

tivities C, D, and F do not occur in any cases where either activity B or E occurs,
and vice versa. In any case where activities B and E occur, they are executed in
sequence. The time spent between the end of execution of activity B and the start
of execution of activity E in every case where they occur is always long. Activity G
is always performed at the end of all cases. Activities A, C, and D only require a
small amount of time compared to activity G. Although activity F does not occur as
frequently as activity G, each occurence of F takes approximately the same amount
of time as activity G.

Based on the log, the SPD is constructed as shown in Figure 5.5. Then, the
FPD in Figure 5.6 is constructed by replaying the log in the SPD. The FPD figure
shows that in total there were 2023 instances of activities which refer to node α.
The average node throughput time of node α is 27.98 time units and still considered
low compared to the average throughput times of other nodes. More cases were
routed from node α to node β than from node α to node δ. The time spent on the
route from node α to node β is relatively high compared to the time spent on the
route between any other nodes. In the figure, we can also see that both node α and
node γ occur in approximately all cases, but not node β and node δ. As indicated
by the ratio between the height of yellow-colored box inside node β and the height
of node β, instance of node β only occurs in approximately 66.67% of all cases in
the log. Although both node α and node δ occur in approximately all cases in the
log, the frequency of activity instances refer to node α is bigger than the frequency
of activity instances refer to node γ.

Figure 5.5: Activity mapping in an example SPD

Figure 5.6: Performance and control flow information in an example FPD

The green color of the AND-split bar of node δ indicates that on average, δ’s
synchronization time is low compared to the others. However, the time spent to
route cases from node δ to node γ is high. In contrast, the time spent to route cases
from node β to node γ is low and apparently more frequent. The waiting time of

5.2. Aggregated Activities Performance Diagram (AAPD) 60

node γ is medium, as shown by the yellow color. Each FPD node in Figure 5.6 has
a strong tendency to a certain join/split semantics, i.e. no nodes indicate a mix of
join and split semantics. For instance, node γ only has an XOR-join semantics and
no split semantics. During log replay, the node has never indicated any other join
semantics apart of XOR-join.

5.2 Aggregated Activities Performance Diagram

(AAPD)

Although FPDs provide intuitive insights into the performance of a process, pro-
jected onto a given model, there is sometimes a need to focus on a single cluster of
activities. Therefore, we developed the Aggregated Activities Performance Diagram
(AAPD). An AAPD is a simple diagram consisting of rectangular elements. Each
element has a one-to-one relationship with a node in an FPD, hence, an AAPD
element refers to an SPD node, and hence, to one or more activities in a log. An
AAPD is designed to show the time spent between activities in a process and to
show activities which often run in parallel. It is complementary to an FPD.

An example of an AAPD is shown in Figure 5.7. Every AAPD has one focus
element which determines the cases that are being considered. Only cases which
contain at least one event referred to by the focus element are considered in the
AAPD. Besides the focus element, each AAPD contains the other relevant elements
which correspond to nodes of the FPD from which it is constructed. Suppose that
the AAPD in Figure 5.7 is derived from FPD in Figure 5.6 and the log described in
our example. In our example, we selected node β (referring to activities B and E)
as our focus element. This implies that node δ (referring to activity F) is not shown,
as the activity F does not occur in any case that contains B or E. The other nodes
are shown in the AAPD.

Each relevant FPD node is shown in the AAPD as a rectangular element, such
that the width indicates the sum of the average aggregated-activities queuing time
and the average aggregated-activities service time for all corresponding activities
in the selected cases. For each rectangular element, the width of the area that is
colored grey indicates the value of aggregated-activities queuing time, and the width
of the area that is colored by other color (green, yellow, or red) indicates the value
of average aggregated-activities service time. In an element, the color of the area
that is not colored by grey indicates the average aggregated-activities throughput
time of the element compared to other elements. A red color indicates that the
average aggregated-activities throughput time value is relatively high compared to
the average aggregated-activities throughput time of other elements. A green color
indicates that the value is relatively low, while a yellow color indicates that the
value is relatively moderate. Aggregated-activities throughput time, aggregated-
activities queuing time and aggregated-activities service time are calculated based
on the approach which was explained in Section 4.6.2.4, point 2 to 4.

The height of the element is determined by the percentage of cases in which any
of the represented activities occurs, relative to the cases determined by the focus
element. In this way, a focus element always has the biggest height and is easily

5.2. Aggregated Activities Performance Diagram (AAPD) 61

Figure 5.7: Example of an AAPD

distinguished from other elements. In addition, a pink-colored border is appended to
the focus element in order to make it more distinguishable. The position along the
horizontal axis of all nodes is determined by the relative average aggregated-activities
start time of each element compared to the average aggregated-activities start time
of the focus element (see Section 4.6.2.4, point 5). The horizontal distance between
focus element and each other element is given on a logarithmic scale, where the
focus element’s start time becomes the base point for horizontal distance scaling.

Another indicator in each element of the AAPD is a horizontal line inside the
big rectangle. This indicator shows the frequency of activity instances which are
represented by the element, relative to the frequency of activity instances which are
represented by the focus element (see Section 4.6.2.4, point 1). In the example of
Figure 5.7, the height of the line in element α (referring to activities A, C, and D)
is 50% of element β (referring to activities B and E) as each case that contains B
or E contains them both, but only one A.

Finally, using an indicator below the element, the average time when activities
of the element are performed in the same timespan as activities of the focus element
is presented. The average intersection time between an element and focus element is
calculated based on the aggregated-activities intersection time which was explained
in Section 4.6.2.4, point 6. Note that in Figure 5.7, aggregated-activities intersection
time for element γ (referring to activity G) is artificial, as G does not occur in parallel
with either B or E. In addition, notice that the color that indicates the average
aggregated-activities throughput time of a node in an AAPD may be different than
the color that indicates the average node throughput time of the same node in its

5.2. Aggregated Activities Performance Diagram (AAPD) 62

corresponding FPD. For example, see the color of FPD node and AAPD element of
both node α and node β in our example in Figure 5.6 and Figure 5.7.

As in an FPD node, the AAPD visualization helps a human analyst to distinguish
important clusters of activities from unimportant ones. Furthermore, it provides an
indication of control flow, i.e. which activities often come before/after another, and
how are they conducted (in sequence/parallel). The advantage of AAPDs over FPDs
is that they utilize the notion of activity instances. Consider for example again the
two process instances in Figure 4.13. Suppose that we only use node instances-based
metrics to analyse the instances. In this case, it looks as if both instances require
the same effort as they both have the same throughput time. This type of insights
into performance of the process are provided by FPDs. However, if we analyze both
instances by considering the throughput time of activity instances, we can identify
that the process instance 4.13(i) requires more effort to be finished. This type of
insights into performance of the process can not be identified by FPDs, but it can
be identified using AAPDs.

Chapter 6

Implementation

To evaluate our work, we implemented our approach using the ProM framework1.
Section 6.1 provides an overview about all implemented plugins. Section 6.2 provides
an explanation of all SPD plugins which are implemented to visualize SPDs and to
map activities onto SPD nodes. Then, the implementation of our performance
measurement plugins is explained in Section 6.3. For a more detailed explanation
about the implemented plugins, please refer to Appendix B (design) and Appendix
C (user manual).

6.1 Plugins Overview

In this section, we provide an overview of all plugins that we implemented based
on the ProM architecture which was explained in Section 2.2.3. For convenience,
we provide the architecture of the framework that was presented earlier again in
Figure 6.1. Based on our analysis in Chapter 3, we proposed SPDs as process
models which can describe any processes in an intuitive way. By definition, SPDs
are directed graphs. In the ProM architecture, various types of graphs have been
implemented, including directed graphs. Thus, we extended the framework’s existing
directed graph class to create our SPD class. The connection class between SPDs
and event logs was also implemented by extending the generic connection class which
is provided by ProM. Both connection classes and graph classes are members of the
model package. Extension of existing classes in ProM makes our implemented classes
recognizeable by the framework, i.e. their objects can be stored and retrieved from
the Object Pool as conveniently as other types of objects which are already exist.
Details of the SPD plugins is given in Section 6.2.

To calculate performance values as explained in Chapter 4, both an SPD and an
event log are required as inputs for log replay. Both SPDs and event logs are objects
which are stored in the Object Pool. Based on our analysis of the ProM architecture,
the most suitable component to retrieve objects from the Object Pool and use the
objects are the Plugin components. Therefore, we implemented our event log replay
as a class in the Plugin component. In ProM framework, all plugins are located in
a plugin package. Details of the log replay class are given in Section 6.3.1.

1Our work is available in ProM 2008, not in ProM 5.1

63

6.2. SPD Plugins 64

Object Pool

Net

Marking

Graph

Semantic

C
onnection

Import plugins

Export plugins

...

Hidden Objects

Visible Objects

Visualizer

Conversion

Analysis

Mining

Plugin

...

User Interface

Files

ProM

User

Chaining Panel

Figure 6.1: The new ProM architecture

Based on our description in Chapter 4 and Chapter 5, log replay produces KPI
values, FPDs, and AAPDs. Each of these results are only useful if they can be visu-
alized. Therefore, they are implemented as classes in the model package, the same
as SPDs. To visualize FPDs, AAPDs, and all KPI values, we implemented various
classes as part of the Visualizer component. The implemented FPD visualizer and
AAPD visualizer are explained in Section 6.3.2 and Section 6.3.3, respectively.

6.2 SPD Plugins

The GUI of the implemented plug-in is shown in Figure 6.2. SPDs are displayed on
the top panel of the GUI. In the right side of the display, there is a zooming panel to
adjust SPD visualization. In addition, small panel is placed on top of the zooming
panel to help users navigate through the displayed SPDs. Clicking on a displayed
SPD node will make the node’s label and activities that the node refers to visible
on the bottom panel.

SPD-related plugins are implemented to perform these following functions:

• Visualize SPDs. Given an SPD object and an event log, the plugin should
be able to visualize the SPD in a friendly Graphical User Interface (GUI).
Activities which are mapped to each of its nodes must also be visualized.

• Manually create mappings between activities in a given event log and SPD
nodes in a given SPD.

In the latest version of ProM framework, a plug-in may have multiple variants, each
with different input parameters. The SPD plug-in is implemented with two variants.
The first variant accepts two input parameters: an SPD and an event log. Given an

6.3. Performance Measurement Plugins 65

Figure 6.2: SPD Visualization

SPD object and an event log object, the plug-in searches for a connection between
the SPD and the event log in the framework’s Object Pool. If such a connection does
not exists, the SPD is visualized in editing mode, e.g. a user can manually map each
SPD node in the SPD to activities in the event log. After all nodes in the SPD are
mapped to one or more activities in the event log, a connection object is created
to store the mapping. If there is already a connection object which connects the
event log to the SPD, the SPD is visualized in a read-only mode, e.g. no mapping
modification is allowed.

The second variant of the plug-in only accepts an SPD as an input parameter.
This variant searches for a connection between the SPD object and any event log
object in the framework’s Object Pool. If there such connection exists, the SPD is
visualized together with this mappings. But if there is no such connection, an error
message is shown on the screen.

To use the plug-in, the user needs to ensure that both an SPD object and an
event log exist in the Object Pool. Then, either the SPD or both the SPD and the
event log need to be selected and visualized. For a more detailed explanation, please
refer to Appendix C.

Currently, a plug-in which mines SPDs from event logs is already available in the
nightly build of ProM 2008. The plug-in is named as the SPD Miner and uses the
so-called Fuzzy k-medoid clustering [23]. An explanation of the mining algorithm
was explained in Section 3.2.2. Other SPD-related plugins such as conversion plug-in
and import/export plug-in are still under development.

6.3 Performance Measurement Plugins

Performance measurement plugins are implemented to provide these following func-
tions:

• Replay an event log in an SPD.

• Visualization of:

6.3. Performance Measurement Plugins 66

– FPD and all FPD-related performance values,

– AAPD and all AAPD-related performance values, and

– Global settings of time units and precentage boundaries.

To provide all of the functions, a separate plug-in is implemented for each function.
Details of these plugins are given in Sections 6.3.1 to 6.3.4.

6.3.1 Event Log Replay Plug-in

The event log replay plug-in implements the replay log approach which was explained
in Sections 4.2 to 4.5. In addition to replaying logs, the plug-in also calculates all
KPIs which were explained in Section 4.6. There are two main variants which are
implemented for the plug-in. The first variant accepts an SPD and an event log.
The second variant only accepts an SPD. The second variant searches through the
framework’s Object Pool to find the event log which is represented by the SPD before
it can perform the log replay. If there is no event log which is connected to the SPD,
no action is taken by the plug-in.

To use the plug-in, we need an SPD and an event log which is connected to the
SPD by a connection object. Before the event log is replayed in the SPD, the plug-in
requires two input parameters from users. The first input is the size of look-ahead
window during the replay. The second input is the maximal number of states which
must be considered before a random approach is performed. It affects the way SPD
node are identified. A state corresponds to a trace of SPD nodes which is considered
in the process of searching a maximum fitting subtrace. If the number of possible
traces exceeds a given upperbound, the plug-in stops its calculation and chooses
the latest candidate randomly. Although this step does not was not mentioned in
the approach we described in Section 4.2, this limitation is necessary in practice
to prevent possible memory problems. Only after the two values are inserted, the
plug-in starts to replay the log.

The log replay plug-in produces following output objects:

• An FPD, which represents an FPD and performance information projected
onto it.

• An AAPD, which represents an AAPD and performance information projected
onto it.

• The CaseKPIData, which stores all case-level KPIs as described in Section
4.6.1.

• The FPDElementPerformanceMeasurementData, which stores all SPD-node-
related KPIs and SPD-edge-related KPIs as described in Section 4.6.2.1 and
Section 4.6.2.2, respectively.

• The TwoFPDNodesPerformanceData, which stores all performance metrics which
are specific for pairs of SPD nodes as described in Section 4.6.2.3.

• The GlobalSettingsData, which stores global configuration to visualize per-
formance information (e.g. time unit).

6.3. Performance Measurement Plugins 67

6.3.2 FPD Visualization Plug-in

The FPD visualization plug-in accepts an FPD object which is produced by the log
replay plug-in and visualizes it. This plug-in has only one variant. A screenshot of
the visualization is shown in Figure 6.3. The FPD is shown in the top panel together
with a zoom panel and small navigation panel on the right side. The bottom panel
displays detailed performance information which is related to the FPD.

Figure 6.3: FPD visualization

There are three tabs containing performance information that are displayed by
the FPD visualization plug-in on the bottom panel. The first tab is the Case KPI
tab which shows all case level KPIs which were described in Section 4.6.1. The
second tab is the Element Performance tab which shows either node or edge
related KPIs which were described in Section 4.6.2.1 and Section 4.6.2.2. When this
tab is active and an element in the displayed FPD is clicked (either an FPD node
or an FPD edge), the KPIs related to that element are displayed in the tab.

The last tab is the Two Nodes Performance tab which shows the specific KPIs
of pair of FPD nodes as was described in Section 4.6.2.3. To use this panel, a pair of
nodes needs to be selected before the sojourn time between the pair is displayed in
the tab. Selection of the nodes can be performed using either the provided combo
boxes or the combination between both the provided radio buttons and the panel
that displays FPDs.

To determine the color which indicate performance metrics (e.g. the throughput
time color, queuing time color, and synchronization time color of nodes, or move time
of edges), lower and upper bound values of each performance metric are calculated
based on the minimum, the maximum, and the average of each performance metric
value. Suppose that the absolute value of difference between the average value and
the minimum value is v1, and the absolute value of difference between the average
value and the maximum value is v2, the lower bound is determined by substracting
the average value with half of the minimum value between v1 and v2. The upper
bound is determined by adding the average value with half of the minimum value
between v1 and v2.

For example, given an FPD with 5 nodes: α, β, γ, δ and ε. Suppose that the

6.3. Performance Measurement Plugins 68

Figure 6.4: Using Two Nodes Performance panel provided by FPD visualization
plug-in

Node α β γ δ ε

case 1 12.0 2.3 4.3 23.0 8.6
case 2 11.0 3.3 2.6 11.0 8.7
case 3 10.0 2.9 3.4 20.0 9.5
case 4 9.0 3.1 1.3 16.0 8.6

Table 6.1: Throughput time table

node throughput time for each node in 4 different cases is shown in Table 6.1. Note
that in this example, only one instance occurs for each node in a case. First, we
calculate the average node throughput time for each node in all cases. The average
node throughput times for nodes α, β, γ, δ and ε in all cases are 10.5, 2.9, 2.9,
17.5, and 8.85, respectively. Then, we calculate the average of the values avg and
search for both the minimum min and the maximum max value. In our example,
avg = 10.5+2.9+2.9+17.5+8.85

5
= 8.53. min and max are 2.9 and 17.5, respectively.

Next, we compare the distance between avg and min to the distance between avg
and max. In our example, distance between avg and min is 8.53 - 2.9 = 5.63, while
the distance between avg and max is 17.5 - 8.53 = 8.97. We take the minimum
distance and divide it by 2 to produce value x. Lower bound boundmin for each
performance metric is given by avg − x, and the upper bound boundmax is given by
avg + x. In our example, x = 5.63

2
= 2.815. Thus, boundmin = 8.53− 2.815 = 5.715

and boundmax = 8.53 + 2.815 = 11.345.
Using the bounds that we calculated before, we can now determine the color

of node throughput time of each node. Suppose that the average node throughput
time for a node n is avgn, if avgn < boundmin, the color of the node is green. If

6.3. Performance Measurement Plugins 69

avgn > boundmax, the color of the node is red. In any other case, the color of
the node is yellow. Using our example in Table 6.1, average node throughput time
for node α is 12.0+11.0+10.0+9.0

4
= 10.5. As 10.5 6< 5.715 and 10.5 6> 11.345, the

throughput time color of node α is yellow.

6.3.3 AAPD Visualization Plug-in

The AAPD visualization plug-in accepts an AAPD object which is produced by the
log replay plug-in and visualizes it. A screenshot of the visualization is shown in
Figure 6.5.

Figure 6.5: AAPD visualization

The width, the horizontal placement, and horizontal distance between elements
in AAPDs indicates either performance values or precedence relations between ac-
tivities. In some cases, the distance between elements may be so large that the
zoom level we need in order to see all the elements in one screen makes that the
elements cannot be recognized anymore. Therefore, we provide three sliders, each
to adjust the horizontal distance between elements and focus elements, the width of
the elements, and the height of the elements. Note that with these possible adjust-
ments, elements may be visualized differently from the way they should in reality
in return of a more meaningful visualization. However, taking each element’s aver-
age aggregated-activities start time as a reference point for the element, precedence
relations between elements are preserved. To visualize AAPDs, the concept of a
roadmap is used as a metaphor. Rather than showing all details, a roadmap empha-
sizes highways and large cities over dirt roads and small towns to provide a more
meaningful visualization.

Figure 6.6 shows a comparison between an AAPD with all of its elements’ dimen-
sions (size of elements and distance between elements) visualized in a linear scale

6.3. Performance Measurement Plugins 70

and another AAPD with its horizontal distance between elements scaled logarith-
mically. Each AAPD element has a label which indicates the width of the element.
The AAPD in Figure 6.6b exposes the difference of horizontal distance between each
element and the focus element. This exposure is better shown when the horizontal
scaling is used as shown in both Figure 6.7a and Figure 6.7b. Elements with average
aggregated-activities start time relatively close to the average aggregated-activities
start time of the focus element are shown closer to the focus element, while elements
with average aggregated-activities start time relatively far from the focus element’s
aggregated-activities start time are shown further from the focus element. We argue
that this way of visualization provides better insights into one single focus element
than if the distance is shown in a linear scale. A user can easily see which elements
have the average aggregated-activities start time relatively close to or far from the
average aggregated-activities start time of the focus element. In addition, the ver-
tical ordering of elements in an AAPD is ordered by the aggregated-activities start
time of each element.

6.3. Performance Measurement Plugins 71

5

4

6 Timeline0 4 6 10
Focus Element Real Scale16

6

Timeline (based on Focus Element)-6 0 4-2
(a) AAPD with horizontal distance between elements in linear
scale

6

5

4

6 Timeline-5.07
Focus Element AAPD ScaleHorizontal scale : 0Element scale : 0

-0.9540 2.79
(b) AAPD with horizontal distance between elements in logarithmic scale
(horizontal scaling 0, element scaling 0)

Figure 6.6: Example of comparison between AAPD with horizontal distance in linear
scale and AAPD with horizontal distance in logarithmic scale

6.3. Performance Measurement Plugins 72

6

5

4

6 Timeline-0.30
Focus Element AAPD ScaleHorizontal scale : -1Element scale : 00 0.95-1.08

(a) AAPD with horizontal distance between elements in log-
arithmic scale (horizontal scaling -1, element scaling 0)

6

5

4

6 Timeline-2.79
Focus Element AAPD ScaleHorizontal scale : 1Element scale : 00 7.63-13.37

(b) AAPD with horizontal distance between elements in logarithmic scale (horizontal scaling
1, element scaling 0)

Figure 6.7: Example of adjustment to AAPD horizontal scaling value

The width of each element is scaled linearly. With the linear scale, a user can
compare precisely both the aggregated-activities queuing time and the aggregated-
activities service time of the focus element to both the aggregated-activities queuing
time and the aggregated-activities service time of other elements. Examples of
adjustment to the element’s width scaling of AAPD are shown in Figure 6.8a and
Figure 6.8b.

An example of a combination between the horizontal distance scaling and the
element’s width scaling is shown in Figure 6.9. A user needs to be aware that
although the ratio of horizontal distance between elements is different than it is in
reality (due to the logarithmic scaling), the ratio of the size of elements is preserved
(due to the linear scaling). Thus, the ratio of the average aggregated-activities
queuing time, the average aggregated-activities service time, the average aggregated-
activities throughput time, and the average aggregated-activities intersection time
between elements is always preserved.

6.3. Performance Measurement Plugins 73

2.95

2.36

3.55 Timeline-5.07
Focus Element AAPD ScaleHorizontal scale : 0Element scale : -2-0.9540 2.79

3.55

(a) AAPD with horizontal distance between elements in loga-
rithmic scale (horizontal scaling 0, element scaling -2)

10.14

8.45

6.76

10.14 Timeline-5.07
Focus Element AAPD ScaleHorizontal scale : 0Element scale : 2

-0.9540 2.79
(b) AAPD with horizontal distance between elements in logarithmic scale
(horizontal scaling 0, element scaling 2)

Figure 6.8: Example of adjustment to AAPD element scaling value

3.55

2.95

2.36

3.55 Timeline-1.08
Focus Element AAPD ScaleHorizontal scale : -1Element scale : -2-0.3000.95

Figure 6.9: Example of adjustment to horizontal scaling value and element scaling
value in AAPD shown in Figure 6.6b

6.3. Performance Measurement Plugins 74

The approach to determine the color of throughput time for each element in an
AAPD is similar to the approach to determine the color of throughput time for each
node in an FPD. The color is determined based on the minimum, the maximum,
and the average of average throughput time of all elements in the AAPD.

6.3.4 Global Settings Visualization Plug-in

Event logs may record event timestamps in the order of milliseconds. For analy-
sis purposes, millisecond time units may not be convenient. Therefore, we imple-
mented class GlobalSettingsData to store the time unit which can be used by
both FPD visualization plug-in and AAPD visualization plug-in. In addition, class
GlobalSettingsData also stores the values of the precentage boundaries which are
needed to visualize statistical performance values in form of tables, such as the table
showing statistical values of the case throughput time (see Section 4.6.1, point 1)
in Figure 6.10. In the figure, the precentage boundary for fast cases is 32%, while
the precentage boundary for slow cases is 12%. This means that the average case
throughput time value in column “Throughput time” with corresponding property
“Fastest 32.00%” is calculated based on 32% of the cases with the fastest through-
put time, and the average case throughput time value in column “Throughput time”
with corresponding property “Slowest 12.00%” is calculated based on only 12% of
the cases with the slowest throughput time.

Figure 6.10: Example of a detailed statistical measurement

To adjust the values of both the time units in use and the precentage boundaries,
we implemented the global settings visualization plug-in. This plug-in provides an
interface to modify the values in objects of class GlobalSettingsData. A screenshot
of the provided interface is shown in Figure 6.11.

Figure 6.11: Interface to set the values in objects of class GlobalSettingsData

There are several options for the time unit which are provided by the combo
box: millisecond, second, minute, hour, and day. With these options, performance

6.3. Performance Measurement Plugins 75

values can be displayed in the most convenient time unit according to the user. Both
the fastest precentage and slowest precentage determine the boundary for statistical
values that are shown together with several KPIs, such as the throughput time of
a case, the waiting time of an FPD node, and the sojourn time between two FPD
nodes.

Chapter 7

Evaluation

To evaluate the correctness, applicability, and performance of our ideas and imple-
mentation, several evaluations are performed. Section 7.1 provides an evaluation
result for the node and semantics identification which is performed by our replay
log approach. In Section 7.2, we provide a case study that shows the applicability
of the approach to provide performance insights into real life processes. Section 7.3
provides the performance evaluation result for our plugins.

7.1 Node and Semantics Identification

Our replay approach is started by identifying node sequences. To evaluate this, we
created a set of traces of events which are generated from a Petri net. The Petri
net is shown in Figure 7.1 and the set of traces is shown in Table 7.1. Using the
approach we described in Section 3.2, we obtained an SPD of the net as shown in
Figure 7.2. The result of replaying the traces in the SPD is given in Table 7.2. As
seen in the table, our approach successfully identified each trace of nodes.

A

B(1) E

B(2)

C

B(3)

D

Figure 7.1: Petri net for evaluation purpose

Beside node sequence identification, we also predict semantics of SPD nodes by
identifying control which is passed between events of different node instances. In
order to measure how accurately the replay determines semantics of SPD nodes, we
generate two event logs, each from different Petri nets which are shown in Figure
7.3 and Figure 7.4. Both logs are created to identify whether XOR-split, XOR-join,
AND-split, and AND-join semantics can be properly identified by our approach. To

76

7.1. Node and Semantics Identification 77

Trace Generated From

A-B-D-E A - B(2) - D - E
A-B-D-B-C-E A - B(2) - D - B(3) - C - E
A-B-C-B-C-E A - B(1) - C - B(3) - C - E

A-B-C-E A - B(1) - C - E

Table 7.1: Traces for evaluation purpose

A

B-1

B-2 D

E

C

B-3

Figure 7.2: SPD of Petri net in Figure 7.1

generate such logs from Petri nets, we used the CPN Tools1 [33]. The log which is
generated from the Petri net in Figure 7.3 is referred to as TestNet1completeLog,
and the log which is generated by the Petri net in Figure 7.4 is referred to as
TestNet2completeLog.

A

B C D

E F

G

H

XOR-split

XOR-join

Figure 7.3: Petri net 1 for evaluation

From our experiments, identification of node semantics is sensitive to the value
of the look-ahead. Large look-ahead values may not always lead to a better iden-
tification, as well as small look-ahead values. For instance, log replay of the trace
A-B-D-B-C-E (see Table 7.1) in the SPD of Figure 7.2 provides better semantics pre-
diction when small look-ahead window values are used. Suppose that value greater
than 3 is used as a look-ahead value. In that case, node D in Figure 7.2 is mistak-
enly identified to have AND-split semantics (rather than XOR-split) because both
B-3 and E as its successors are within the look-ahead window. With a look-ahead
window value smaller than 3, node D is correctly identified as an XOR-split. In
contrast, another experiment to replay TestNet2completeLog on an SPD in Figure
7.2 shows that the bigger the value of look-ahead window, the better the AND-join
semantics can be predicted (see Figure 7.5). Note that in Figure 7.5, changes in

1http://wiki.daimi.au.dk/cpntools/cpntools.wiki

7.2. Real-life Log Analysis 78

Trace of events Identified trace of SPD nodes Correct trace of SPD nodes

A-B-D-E A - B-2 - D - E A - B(2) - D - E
A-B-D-B-C-E A - B-2 - D - B-3 - C - E A - B(2) - D - B(3) - C - E
A-B-C-B-C-E A - B-1 - C - B-3 - C - E A - B(1) - C - B(3) - C - E

A-B-C-E A - B-1 - C - E A - B(1) - C - E

Table 7.2: Node identification evaluation

A

B D

E F

C

G

AND-split AND-join

Figure 7.4: Petri net 2 for evaluation

the arc color are caused by automatic layout of FPD nodes. Color of the arcs that
pointing to node G do not change during the experiments.

7.2 Real-life Log Analysis

To evaluate whether our proposed approach and model can really provide useful
insights into real life processes, we tested our approach against a real life event log.
We used an event log called “bezwaar WOZ” from a Dutch municipality [20, 43].
The process described in this log is the process of handling objections filed against
real estate taxes.

In order to analyze the process, beside an event log, we also need SPDs of
the process. To obtain SPDs, we use the SPD Miner plug-in which is already
implemented in ProM 2008. The plug-in works based on the approach given in
Section 3.2. One of the advantages of using this plug-in is that we can define any
number of clusters (nodes) that we want in the output SPD.

To gain preliminary insights into the way activities are performed in the process,
we constructed an SPD with the number of nodes the same as the number of unique
activities in the log. In the log, there are 18 uniquely labeled activities. Thus, we
obtain an SPD with 18 nodes, each refers to a unique activity. Then, the log is
replayed on the obtained SPD to obtain an FPD and an AAPD. The obtained FPD
is shown in Figure 7.6.

From the FPD, we gain a visualization of the performance of the process in a low
level of abstraction. Only from the FPD, we obtain an information that activities
“SYSDELWACHT”, “OZ14 Plan. taxeren”, “OZ10 Horen”, “OZ09 Wacht. Beo-
ord”, and “OZ18 Uitspr wacht” are rarely occurs in any cases in the log. From the
height of boxes inside each node in the FPD, we notice that no activities ever occur
in all cases. This fact shows that the process depicted by the FPD does not have
any exact starting or ending activities. From the FPD, we also obtain information
that activities that consume more time to be finished than the others are “OZ08
Beoordelen” (average node throughput time 21.29 days) and “OZ16 Uitspraak” (av-

7.2. Real-life Log Analysis 79

(a) AND-join identification with look-ahead
window 5

(b) AND-join identification with look-ahead
window 10

(c) AND-join identification with look-
ahead window 15

(d) AND-join identification with look-ahead
window 20

(e) AND-join identification with look-ahead
window 25

Figure 7.5: Prediction of AND-join semantics of node G which refers to transition
G of the Petri net in Figure 7.4 with several look-ahead window values

erage node throughput time 126.87 days). Activity “OZ08 Beoordelen” occurs the
most in all cases compared to other activities (1620 cases).

To obtain information about the time ordering of activities, we look at the ob-
tained AAPD of the process. To gain the most global view of the process, we select
a focus element which refers to a set of activities that occurs in most cases. Thus, we
select element “OZ08 Beoordelen” as the focus element (see Figure 7.7). Note that
the horizontal distance between elements in AAPD in Figure 7.7 is already scaled
down. Based on the figure, most time during the execution of activities is spent on
waiting for resources rather than actually doing the activity. Most of the elements
in the AAPD shown in Figure 7.7 have longer average aggregated-activities queuing
time than average aggregated-activities service time.

Based on the constructed AAPD, we gain insights into the way activities are
executed in the process. Due to its occurence in most of the cases and its position
in the AAPD, activity that refers to element “OZ02 Voorbereiden” (translated as
“prepare” in English) may be the earliest activity that starts a normal process.

7.2. Real-life Log Analysis 80

SYSDELWACHT

OZ14 Plan. taxeren OZ10 Horen

OZ18 Uitspr wacht

OZ09 Wacht. Beoord

OZ08 Beoordelen OZ16 Uitspraak

Figure 7.6: The constructed FPD of “bezwaar WOZ” log with 18 nodes

Domain: heus1

OZ02 voorbereiden

OZ06 stop vordering

OZ08 beoordelen
OZ04 incompleet

OZ14 plan. taxeren
OZ12 hertaxeren

OZ09 wacht beoord

OZ16 uitspraak

OZ15 zelf uitspraak
OZ32 beh. beroep

OZ34 wacht beroep

OZ30 termijn beroep

OZ20 administratie

OZ24 start vordering

Figure 7.7: The constructed AAPD of “bezwaar WOZ” log with 18 elements

The activity that refers to element “Domain: heus” may only be a dummy activity
in the event log, as it has the least aggregated-activities start time and a very
small value of aggregated-activities service time compared to others but occurs in
many cases. Hence, this activity may be better filtered out during performance
calculations. The activity that refers to element “OZ16 uitspraak” has the highest
average aggregated throughput time and occurs in almost all cases. Thus, this
activity must be important to the process.

Only in a relatively small number of cases, activities that refers to element “OZ14
plan. taxeren” and “OZ09 wacht beoord” (means “awaiting assessment” in English)
are performed. This may indicate that the two activities are only executed in ex-
ceptions cases. Hence, to analyze exceptional cases, either of the two elements can
be selected as the focus element. In contrast to the two elements, the height of
both element “OZ12 hertaxeren” (means “re-estimate” in English) and “OZ16 uit-
spraak” element (means “judgement” in English) are high (almost as high as the
height of the focus element), indicating that the activity that refers to either one of
the elements occurs at least once in almost all cases.

Elements “OZ32 beh. beroep” (predicted to be “behandeling beroep” which

7.2. Real-life Log Analysis 81

means “treatment appeal” in English), “OZ34 wacht beroep” (means “wait appeal”
in English), and “OZ30 termijn beroep” (means “term action” in English) have
low average aggregated-activity throughput time. The difference between each of
their average aggregated-activity start time is not so much. The value of average
aggregated-activity queuing time in both element “OZ32 beh. beroep” and element
“OZ30 termijn beroep” are much bigger than the value of each of their average
aggregated-activity service time. This may indicate certain relationship between
activities that refers to element “OZ32 beh. beroep” and activities that refers to
element “OZ30 termijn beroep”.

Our previous analysis shows that both FPD and AAPD that are constructed
from an SPD that describe a process at a relatively low level of abstraction can
provide insights into the process. To show that they can also be used to gain
insights into processes from SPDs with high level of abstractions, we construct an
SPD of event log “bezwaar WOZ” with 5 nodes using the so-called SPD Miner plug-
in. The constructed SPD is shown in Figure 7.8. As shown in the figure, all nodes in
the constructed SPD overlap eachother. They all contain the Domain:heus1, OZ14,
OZ18, and SYSDELWACHT activity. All other activities belong to at most 1 node.
For convenience, we also label each SPD node with a unique greek letter.

Figure 7.8: The constructed SPD of “bezwaar WOZ” log with 5 nodes

After we obtained an SPD, the next step is to replay the log in the SPD. We
use the 4 as our look-ahead value to replay the log in the SPD and set the maximal
number of states to 5000. With these values, we obtained the FPD shown in Figure
7.9. Note that in this study case, we use “day” as time unit.

As shown in Figure 7.9, only from the sizes and colors of nodes and edges,
important activities and paths in the process can be easily recognized. In addition,
the figure also gives us insights into the types of node splits and joins, i.e. by
indicating to what extend these tend to be XOR, AND, or OR. The big width of
edges from node α to node γ (and vice versa), from node γ to node ε, and from node
ε to node δ indicates that they are important paths in the process. From the four
edges, only the edge from node α to node γ has a red color, which indicates its low
performance. Thus, efforts to improve the performance of this edge may lead to a

7.2. Real-life Log Analysis 82

Figure 7.9: The constructed FPD of “bezwaar WOZ” from SPD in Figure 7.8

significant improvement of the overall process.
Node β has a relatively small height compared to the other FPD nodes. A small

height indicates that the node does not have as much activity instances refering it
as other nodes. Indeed, the node is only referred to by 44 activity instances, far less
than other nodes which are referred to by at least 4000 activity instances. The color
of the node is mostly grey, which means that it does not occur in as many cases
as other nodes. Its only incoming edge from node α has a red color with a small
width. The red color means that it takes a relatively long time to pass control from
an event which refers to node α to another event which refers to node β, while the
small width indicates that the process control is not passed frequently. Each of its
outgoing edges has a red color and a yellow color. With the information we gain
from the height, color, and edges, node β appears to be referred to by activities
which are only executed in exceptional cases.

From all nodes, node γ is easily recognized by its red color which covers all parts
of the node and its relatively high height. This indicates that the node instance
of node γ occurs frequently in all cases, with a relatively high average throughput
time. On average, the throughput time of node γ is 56.56 days, which is indeed high
compared to the average throughput time other nodes (except for node β). The
node occurs in 1980 cases, almost equal to the total number of cases in the log (1982
cases). With the red color for all of its incoming edges, in addition to the red color
for its waiting time, node γ appears to be the bottleneck in the process.

To complete our analysis, consider the AAPD of the process in Figure 7.10.
The AAPD shows elements and distances between elements relative to the focus
element on a logarithmic scale. In the AAPD, element γ is chosen as the focus
element, considering that it is one of the mostly executed nodes (with 7591 activity
instances) and appears in almost all cases (1980 cases out of possible 1982). From
the figure, we see that on average, activity instances of node α occur before the
others, followed by activity instances of node β, γ, δ, and ε.

To gain better insights into throughput times of activity instances, we scale
the horizontal distance between AAPD elements such that all elements are left
aligned (see Figure 7.11). From the figure, we can make a comparison of each
element’s throughput time. On average, activity instances of node β have the highest
throughput time compared to activity instances of other nodes, followed by activity

7.3. Performance Evaluation 83

Figure 7.10: AAPD of “bezwaar WOZ” log with a default settings (all scaling has
a zero value)

instances of node γ. Considering the FPD in Figure 7.9 which shows us that both
node β and γ have low performance throughput time, this indicates that the low
performance is caused by the low performance of each node’s activity instances.
Thus, by improving activity executions within each node, the throughput time of
each node in the FPD can be improved.

Figure 7.11: AAPD of “bezwaar WOZ” log with horizontal scaling adjustment

We can also adjust the size of the each AAPD element to gain insights into other
aspects of the process. For example, we provide an AAPD with adjusted horizontal
scaling, element width, and element height in Figure 7.12. Element β’s small height
compared to others shows that activity instances of node β only appear in a small
number of cases compared to other activity instances of other nodes, such as node
γ and node α. The figure also shows that for activity instances of node α, β, and γ,
most time is spent on waiting for resources rather than actually doing the activity.
From the position of blue horizontal line comparison between element α and element
γ, we gain additional information that the number of activity instances of node α
is slightly higher than the number of activity instances of node γ although activity
instances of both node α and node γ appear in approximately equal number of cases.

In this section, we showed that both FPDs and AAPDs that are constructed from
SPDs at any level of abstraction can provide insights into performance of processes.
With addition of global description about the processes, we can even make educated
guesses about the way activities are performed in the processes. However, without
sufficient knowledge about the underlying process and a clear motivation behind
the way SPDs are constructed, it is difficult to verify all obtained insights into the
processes, especially from SPDs that describe processes at relatively high level of
abstractions.

7.3 Performance Evaluation

In order to prove that our performance analysis approach is robust enough to be
used in real cases, we also performed a performance evaluation of the log replay
plug-in that is implemented as a proof of concept of the approach. The evaluation is

7.3. Performance Evaluation 84

Figure 7.12: AAPD of “bezwaar WOZ” log with horizontal scaling, width scaling,
and height scaling adjustment

performed using various event logs. In addition to real-life event logs, we also used
the two generated event logs TestNet1completeLog and TestNet2completeLog. A
description of each testing event log is given in Table 7.32.

Table 7.3: Metadata of testing event logs

To test the performance, we used a computer with Intel Core 2 Duo, 2.4 GHz
processor and 2 GB memory. Using the same procedure as the analysis of real-life
event log in Section 7.2, we evaluate the performance of our implementation. For
each event log, we generated several SPDs with different numbers of clusters (nodes)
using the SPD miner plug-in. Then, we replayed the event log in the generated SPDs

2The “Activities” column in Table 7.3 indicates the number of unique pairs of activities and
event types exists in an event log. Let W be an event log with only one case with two events e and
e′, both refers to the same activity. Suppose that event e and event e′ have different event types
(e.g. e has event type “start” and e′ has event type “complete”), the number of unique pairs of
activities and event types in W is 2.

7.3. Performance Evaluation 85

and record the time it takes to perform the replay. The result of this performance
evaluation is given in Table 7.4.

Table 7.4: Performance of replay log plug-in (time unit is given in seconds)

From Table 7.4, our implementation works arguably fast when dealing with real-
life event logs. Given an SPD with a number of clusters below or equal to 10, the
algorithm can always finish its calculation in less than a minute. In some experi-
ments, the calculation takes even less than one second (see the experiments with the
“originalWMOLog” event log). Only the set of experiments with the “wholeLog”
event log shows a considerably low performance. But considering the complexity of
the “wholeLog” log (approximately 6457 events per case), our implementation has
a satisfying performance.

To identify the relation between the plug-in’s performance and the number of
clusters, we normalized the values in Table 7.4 by dividing each performance value
by the number of events and the number of cases in its corresponding event log. The
normalized performance table is given in Table 7.5. As can be seen from the table,
the replay plug-in always works better for some logs rather than some other logs,
regardless of the number of clusters. This indicates that the performance of the plug-
in depends on the complexity of the event log which is determined by the routing
of cases (the control flow). We also notice that in the end, the performance of the
plug-in always decrease when the number of clusters reach its maximum (when the
number of clusters equal to the number of activities). With a maximum number of
cluster, node sequence identification can be performed faster as each node is referred
to exactly one activity, but KPI calculation takes more time as the number of SPD
nodes and the number of SPD edges increases. Figure 7.13 shows the tendency of
performance degradation as the number of node increases.

Table 7.5: Performance of replay log plug-in per case per event (time unit is given
in microsecond/10−6 second)

7.3. Performance Evaluation 86

Figure 7.13: Performance degradation with increasing number of clusters (nodes)

Chapter 8

Conclusion and Recommendation

In this master thesis, we analyzed problems encountered when analyzing business
process performance. The first problem that is tackled in this master thesis is the
problem to model processes intuitively, regardless of their complexity. We showed
that even complex business processes can be shown intuitively by process models
which support both activity abstraction and aggregation, and have relaxed seman-
tics. In Chapter 3, we proposed Simple Precedence Diagrams (SPDs) as an example
of such models. We also presented several possible approaches to obtain SPDs: by
converting already existing process models to SPDs, by discovering SPDs directly
from the event logs using process discovery techniques, or by simply letting process
model experts draw the SPDs. With these three approaches, we argue that we can
always obtain SPDs for any given event logs.

The next issue we tackled in this thesis is how to calculate performance in-
formation based on the SPD models and the corresponding event log. A heuristic
approach which exploits all available information is needed to calculate performance
based on the models. In Chapter 4, we provided an approach to replay event logs in
SPDs. Based on this log replay, we can obtain both SPD node instances and activ-
ity instances which become the basis of our Key Performance Indicators (KPIs). In
Chapter 4, we also list various KPIs which can be obtained from either SPD node
instances or activity instances. In addition, we also list various commonly calculated
KPIs that can be calculated directly from the event logs. By the end of the chapter,
we successfully showed that performance information can be calculated from a pair
of an SPD and an event log.

The last problem we tackled in this thesis is how to project the performance
information onto process models, such that insights into the performance of the pro-
cess can be obtained intuitively. In Chapter 5, we proposed two models to project
performance information onto: Fuzzy Performance Diagrams (FPDs) and Aggre-
gated Activities Performance Diagrams (AAPDs). FPDs provide insights into the
bottlenecks of processes by coloring the nodes and edges of an SPD according to
their relative performance. AAPDs provide insights into activity instances within
processes and show the performance of elements with respect to a single focus ele-
ment. FPDs and AAPDs are complementary to each other and are tightly related
as an AAPD element has a one-to-one relation with an FPD node. We argue that
both FPDs and AAPDs provide intuitive performance information of processes to
human analysts.

87

Chapter 8. Conclusion and Recommendation 88

As a proof of concept, we have implemented our solutions in the ProM frame-
work (see Chapter 6). The plugins have been tested using various real life event
logs and two simulated event logs (see Chapter 7). The evaluation shows that our
proposed approach manages to provide useful performance insights into processes
intuitively, regardless of their complexity. The performance of the implemented
plugins is reasonably fast and can easily handle real-life cases.

However, there are still some weaknesses of our proposed approach. First, SPDs
and their corresponding AAPDs and FPDs can only be interpreted subjectively.
Thus, knowledge about the process under consideration and motivations behind
the structure of SPDs is crucial. Although we’ve showed that useful insights into
processes can be obtained easily, further verifications involving process owners and
process analysts are still needed. Second, the current log replay approach is sensi-
tive to the look-ahead value. An unsuitable look-ahead value may lead to misleading
performance measurement results. Moreover, the approach is memory-consuming,
specifically when identifying the node sequences of trace of events. Currently, the
memory usage is limited by allowing human analyst to set a maximum state space
value. Further investigation is needed in order to minimize this risk without involv-
ing any human analysts.

Improvements can be made by predicting the look-ahead value from structural
analysis of the SPD. Another alternative is to perform a modification to the ap-
proach such that the look-ahead value depends on the event under inspection, the
construction of process models, and additional information which may be gained
from human analysts. Another way of improvements can also be performed by
modifying the definition of SPD such that there are two type of nodes in SPD:
nodes that refer to sets of activities and nodes that refer to sequences of activities.
With this modification, the level of subjectivity to interpret SPDs can be decreased
with the risk of complicating the structure needed to describe processes. Note that
this improvement may lead to modification of the currently implemented log replay.

As future work, the convertion technique from any process models to SPDs as
described in Section 3.2.1 still left to be evaluated and implemented. Implementation
of the technique also need to cover the implementation of GPM. In addition, based on
our experiments, the most expensive computation of our implemented approach lies
within node sequence identification. Other algorithms for finding a decomposition
in fitting subtraces may exist such that the performance of our replay plugin can be
improved. The implementation of such algorithms is also a part of our future work.

Bibliography

[1] Automated Business Process Discovery. http://www.fujitsu.com/global/

services/software/interstage/abpd/.

[2] Lombardi Teamworks 7. http://www.lombardisoftware.com/

enterprise-bpm-software.php.

[3] Metastorm Business Process Management. http://www.metastorm.com/

products/business_process_management.asp.

[4] Oracle BPA Suite. http://www.oracle.com/technologies/soa/bpa-suite.
html.

[5] Pegasystem SmartBPM Suite. http://www.pega.com/products/.

[6] Process Discovery - the First Step of BPM. http://www.lombardisoftware.

com/downloads/Lombardi_ProcessDiscovery_TheFirstStepofBPM_WP.pdf.

[7] Savvion Business Manager. http://www.savvion.com/business_manager.

[8] Software AG WebMethods. http://www.softwareag.com/corporate/

products/wm/default.asp.

[9] WebSphere Business Monitor. http://www-01.ibm.com/software/

integration/wbimonitor/features/?S_CMP=rnav.

[10] What is Performance Measurement? http://www.bpir.com/

what-is-performance-measurement-bpir.com.html.

[11] Getting Started with Business Process Management, 2007. http:

//www.softwareag.com/Corporate/Images/SAG_BPM_Get_Started_WP_

Dec07-web_tcm16-34221.pdf.

[12] White paper: Business process improvement. Technical report, Metastorm Inc.,
July 2007. downloaded on 12 February 2009.

[13] A. Neely and M. Gregory and K. Platts. Performance measurement system
design: A literature review and research agenda. International Journal of Op-
erations & Production Management, 25, 2005.

[14] W.M.P. van der Aalst. Exploring the Process Dimension of Workflow Manage-
ment. Technical report, Eindhoven University of Technology, Eindhoven, 1997.
Computing Science Reports 97/13.

[15] W.M.P. van der Aalst. Trends in Business Process Analysis: From Verification
to Process Mining. In J. Cordeiro J. Cardoso and J. Filipe, editors, Proceedings
of the 9th International Conference on Enterprise Information Systems (ICEIS
2007), pages 12–22. Institute for Systems and Technologies of Information,
Control and Communication, INSTICC, Medeira, Portugal, 2007.

89

Bibliography 90

[16] W.M.P. van der Aalst and B.F. van Dongen. Discovering Workflow Perfor-
mance Models from Timed Logs. In S. Tai Y. Han and D. Wikarski, editors,
International Conference on Engineering and Deployment of Cooperative In-
formation Systems (EDCIS 2002), volume 2480 of Lecture Notes in Computer
Science, pages 45–63. Springer-Verlag, 2002.

[17] W.M.P. van der Aalst, V. Rubin, H.M.W. Verbeek, B.F. van Dongen, E.
Kindler, and C.W. Günther. Process mining: a two-step approach to balance
between underfitting and overfitting. Software and Systems Modeling, 2009.

[18] W.M.P. van der Aalst, A.J.M.M. Weijters, and L. Maruster. Workflow Mining:
Which Processes can be Rediscovered? Technical report, Eindhoven University
of Technology, Eindhoven, 2002.

[19] James C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algo-
rithms. Kluwer Academic Publishers, Norwell, MA, USA, 1981.

[20] A.K. Alves de Medeiros. Genetic Process Mining. PhD thesis, Eindhoven
University of Technology, Eindhoven, 2006.

[21] A.K. Alves de Medeiros, A.J.M.M. Weijters, and W.M.P. van der Aalst. Genetic
Process Mining: An Experimental Evaluation, volume 14 of Data Mining and
Knowledge Discovery, pages 245–304. Springer Science+Business Media, 2007.

[22] B.F. van Dongen. Process Mining and Verification. PhD thesis, Eindhoven
University of Technology, Eindhoven, July 2007.

[23] B.F. van Dongen and A. Adriansyah. Process Mining: Fuzzy Clustering and
Performance Visualization. In Proceedings of the 5th International Workshop
on Business Process Intelligence (BPI 2009), 2009 (to appear).

[24] Equifax. Bpm helps equifax align its global operations. http://interfacing.
com/uploads/File/equifaxcasestory(1).pdf.

[25] C.W. Gunther. Process Mining in Flexible Environments. PhD thesis, Eind-
hoven University of Technology, Eindhoven, December 2008.

[26] C.W. Gunther and W.M.P. van der Aalst. Fuzzy Mining: Adaptive Process
Simplification Based on Multi-perspective Metrics. In P. Dadam G. Alonso and
M. Rosemann, editors, International Conference on Business Process Manage-
ment (BPM 2007), volume 4714 of Lecture Notes in Computer Science, pages
328–343. Springer-Verlag, Berlin, 2007.

[27] J.B. Hill, M. Cantara, M. Kerremans, and D.C. Plummer. Magic Quadrant for
Business Process Management Suites, 2009. http://mediaproducts.gartner.
com/reprints/lombardi/article2/article2.html.

[28] P.T.G. Hornix. Performance Analysis of Business Processes through Process
Mining. Master’s thesis, Eindhoven University of Technology, Eindhoven, 2007.

[29] M.H. Jansen-Vullers, M.W.N.C. Loosschilder, P.A.M. Kleingeld, and H.A. Rei-
jers. Performance Measures to Evaluate the Impact of Best Practices. In B. Per-
nici and J.A. Gulla, editors, Proceedings of Workshops and Doctoral Consortium
of the 19th International Conference on Advanced Information Systems Engi-
neering (BPMDS workshop), volume 1, pages 359–368. Tapir Academic Press,
Trondheim, 2007.

Bibliography 91

[30] W. Jeremy. The case for business process management. 2009. http:

//www.bptrends.com/publicationfiles/04-09-CS-Case-for-BPM-TIBCO.

doc.pdf.

[31] J. Jeston and J. Nelis. Business process management: practical guidelines to
successful implementations. Butterworth-Heinemann, 2006.

[32] L. Josh. Runner-up:dickerson financial corporation.
2009. http://www.bptrends.com/publicationfiles/

05-09-CS-OMG-BPT-Award-DickersonFinancial.doc.pdf.

[33] J. Kurt, L. M. Kristensen, and W. Lisa. Coloured petri nets and cpn tools
for modelling and validation of concurrent systems. International Journal on
Software Tools for Technology Transfer (STTT), 9(3-4):213–254, 2007.

[34] M. J. Lebas. International Journal of Production Economics. In Proceedings
of the 12th International Conference on Production Research, volume 41 of
International Journal of Production Economics, pages 23–35. Elsevier B.V.,
October 1995.

[35] W. Mark. Walking the bpm talk. how appian uses its own technol-
ogy to drive its business. http://www.bptrends.com/publicationfiles/

09-08-CS-Appian-MarcWilson.doc-cap-82708.pdf.

[36] S. Douwe P. F., L. Fortuin, and Paul P.M. Stoop. Towards consistent perfor-
mance management systems. International Journal of Operations & Production
Management, 16:27–37, 1996.

[37] M. Pesic. Constraint-Based Workflow Management Systems: Shifting Control
to Users. PhD thesis, Eindhoven University of Technology, Eindhoven, October
2008.

[38] A. Polyvyanyy, S. Smirnov, and M. Weske. Process model abstraction: A
slider approach. Enterprise Distributed Object Computing Conference, IEEE
International, 0:325–331, 2008.

[39] J.P. Roberts and R. Andy. Executive Summary Improving Business
Processes, 2009. http://www.gartner.com/resources/168000/168003/

executive_summary_improving__168003.pdf.

[40] A. Rozinat, I.S.M. de Jong, C.W. Gunther, and W.M.P. van der Aalst. Process
mining of test processes: A case study. Technical report, Eindhoven University
of Technology, Eindhoven, 2007. BETA Working Paper Series, WP 220.

[41] A. Rozinat and W.M.P. van der Aalst. Conformance testing: Measuring the
fit and appropriateness of event logs and process models. In C. Bussler, editor,
BPM 2005 Workshops (Workshop on Business Process Intelligence), volume
3812 of Lecture Notes in Computer Science, pages 163–176. Springer-Verlag,
2006.

[42] L. Sang and A. Arben. TQM and BPR: symbiosis and a new approach for
integration, volume 35. Emerald Group Publishing Limited, 1997.

[43] W.M.P. van der Aalst, M. Dumas, O. Chun, A. Rozinat, and H.M.W. Ver-
beek. Conformance checking of service behavior. ACM Trans. Internet Tech-
nol., 8(3):1–30, 2003.

Bibliography 92

[44] W.M.P. van der Aalst, D. Hauschildt, and H.M.W. Verbeek. A Petri-net-based
Tool to Analyze Workflows. In B. Farwer, D. Moldt, and M.O. Stehr, editors,
Proceedings of Petri Nets in System Engineering (PNSE’97), Lecture Notes in
Computer Science, pages 78–90. University of Hamburg, 1997.

[45] W.M.P. van der Aalst and A.H.M. ter Hofstede. Workflow Patterns: On the
Expressive Power of (Petri-net-based) Workflow Languages. In K. Jensen, edi-
tor, Proceedings of the Fourth Workshop on the Practical Use of Coloured Petri
Nets and CPN Tools (CPN 2002), volume 560 of DAIMI, pages 1–20. University
of Aarhus, 2002.

[46] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst, L. Maruster, G. Schimm,
and A.J.M.M. Weijters. Workflow mining: a survey of issues and approaches.
Data Knowl. Eng., 47(2):237–267, 2003.

[47] B.F. van Dongen, A.K. Alves de Medeiros, H.M.W. Verbeek, A.J.M.M. Wei-
jters, and W.M.P. van der Aalst. The ProM framework: A New Era in Process
Mining Tool Support, volume 3536 of Lecture Notes in Computer Science, pages
444–454. Springer-Verlag, Berlin, 2005.

[48] A.J.M.M. Weijters, W.M.P. van der Aalst, and A.K. Alves de Medeiros. Pro-
cess mining with the heuristics miner-algorithm. Technical report, Eindhoven
University of Technology, Eindhoven, 2006. BETA Working Paper Series, WP
166.

[49] M. Weske. Business process management. Concepts, Languages, Architectures.
Springer-Verlag Berlin Heidelberg, 2007.

[50] M. zur Muehlen. Business Process Analytics Format (BPAF), February
2009. http://www.bpm-research.com/wp-content/uploads/2009/02/

2009-02-20-wfmc-tc-1015-business-process-analytics-format-r1.

pdf.

Appendix A

KPI Formalization

This appendix provides formalizations of several KPIs that are introduced in Section
4.6 of this report.

A.1 Case-level KPIs

Case-level KPIs refer to either performance metrics which are measured on a case
level (i.e. process instance) or performance metrics which can be measured from
event logs without any need for process model. Let

• W = (E,ET,A,R,C, t, et, a, r, c) be an event log,

• CW be a set of sequences of events in event log W that represents cases,

• S = (W,N,L, la, ln) be an SPD of the event log W ,

• tr = 〈〈e0, ..., ek〉〉, tr ∈ CW be a sequence of events in event log W .

Several KPIs in this category are given as follows:

1. Case throughput time

Let thrc be a function that accepts a sequence of events tr = 〈〈e0, ..., ek〉〉 ∈ CW and
returns t(ek)− t(e0), the calculated statistical values are formalized as:

• The average case throughput time:
∑

tr∈CW
thrc(tr)

|CW |
.

• The minimum case throughput time1: MINtr∈CW
thrc(tr).

• The maximum case throughput time2: MAXtr∈CW
thrc(tr).

• The average case throughput time of x% cases with the lowest throughput
time in W, where 0 ≤ x ≤ 100:∑

tr∈submin(CW ,x) thrc(tr)

|submin(CW ,x)| , where submin(CW , x) ⊆ CW , tr
′ ∈ submin(CW , x) ⇔

|{tr′′∈CW | thrc(tr′′)≤thrc(tr′)}|
|C| ≤ x

100
.

1With MIN , we denote a function which returns the minimum value from a set of values
2With MAX, we denote a function which returns the maximum value from a set of values

93

A.1. Case-level KPIs 94

• The average case throughput time of y% cases with the highest throughput
time in W, where 0 ≤ y ≤ 100:∑

tr∈submax(CW ,y) thrc(tr)

|submax(CW ,y)| , where submax(CW , y) ⊆ CW , tr
′ ∈ submax(CW , y) ⇔

|{tr′′∈CW | thrc(tr′′)≥thrc(tr′)}|
|C| ≥ y

100
.

• The average case throughput time of remainder (100− x− y)% cases in W :∑
tr∈subrem(CW ,x,y) thrc(tr)

|subrem(CW ,x,y)| , where subrem(CW , x, y) ⊆ CW , subrem(CW , x, y) = CW\
(submin(CW , x) ∪ submax(CW , y)).

2. Number of cases

The total number of cases in W : |C|.

3. Number of traces

The total number of unique sequence of events that represent cases in W 3:
|subunique(CW)|, where tr′ ∈ subunique(CW)⇔ @tr′,tr′′∈CW

tr′′ ∈ subunique(CW)∧#tr′ =
#tr′′ ∧ ∀0≤i<#tr′

[a(tr′i) = a(tr′′i) ∧ et(tr′i) = et(tr′′i)].

4. Executed events per resource

The average number of events that is related to a resource in W : |E||R| .

5. Executed activities per resource

The average number of unique activities which is performed by a resource in W :∑
res∈R|{a(e) | e∈E∧r(e)=res}|

|R| .

6. Number of resources per case

The average number of resources that are involved in a case in W :
∑

ca∈C | {r(e) | e∈E∧c(e)=ca}|
|C| .

7. Number of fitting cases

The total number of sequence of events that represent a case which is also maximum
fitting subtraces in W according to S : |{cW ∈ CW | fs(S, cW) = “true′′}|, where fs
is defined as a function that accepts an SPD and a sequence of events 〈es, ..., es+l〉
and returns “true” if the sequence is fitting trace according to Definition 4.2.3 in
Section 4.2.

8. Arrival rate of cases

The number of cases that arrive per time unit in W : |C|
MAXe∈E(t(e))−MINe′∈E(t(e′))

9. Involved resources in all cases

The total number of resources in log event W : |R|.

3With #(〈e0, ..., ek〉), we denote a function # that returns the length of sequence 〈〈e0, ..., ek〉〉

A.2. Process-model-related KPIs 95

10. Involved teams in all cases

The total number of unique set of resources that are involved in at least a case in
W : |{{r(e) | e ∈ E ∧ c(e) = ca} | ca ∈ C}|.

A.2 Process-model-related KPIs

Process-model-related KPIs can only be calculated if a process model is known in
advance. In this section and its subsections, let

• W = (E,ET,A,R,C, t, et, a, r, c) be an event log,

• CW be a set of sequences of events in event log W that represents cases,

• S = (W,N,L, la, ln) be an SPD of the event log W ,

• LA be a look-ahead value (LA ∈ IN1),

• tr = 〈〈e0, ..., ek〉〉, tr ∈ CW be a sequence of events in event log W , and

• m : E → N be a function mapping an event to an SPD node that is obtained
from decomposing tr to maximum fitting subtraces

Given the formalization above, KPIs for each category of process-model-related
KPIs are given in the following sections.

A.2.1 SPD-Node-related KPIs

Suppose that an SPD node n ∈ N is selected as the node under inspection, for-
malization of several SPD-node-related KPIs that can be measured are given as
follows:

1. Node activation frequency

The total number of events in C that refers to node n: |{e ∈ E | m(e) = n}|.

2. Node initialization frequency

The total number of cases in C that starts with an event that refers to node n:4

|{cw ∈ CW | m(cw0) = n}|.

3. Node termination frequency

The total number of cases in C that ends with an event that refers to node n:
|{cw ∈ CW | m(cw#cw−1) = n}|.

4. Number of performers

The total number of unique resources in C that are related to at least an event in
C that refers to node n. |{r(e) | e ∈ E ∧m(e) = n}|.

4With trx, we denote the event with index x in the sequence of events tr

A.2. Process-model-related KPIs 96

5. Relative frequency in a case

The total number of events in C that refers to node n per case: |{e∈E | m(e)=n}|
|C|

6. Node throughput time

The time spent to work on an instance of node n. Let ni = 〈ei0 , ..., eij〉 be an instance
of node n ∈ N in the sequence of events tr. The throughput time of node instance
ni is calculated as t(eij) − t(ei0). Let NI be a set of all instances of node n in C.
The calculated statistical values are formalized as follows:

• The average node throughput time of all instances of node n in C :∑
ni∈NI t(ni#ni−1)−t(ni0)

|NI| .

• The minimum node throughput time of all instances of node n in C :
MINni∈NI t(ni#ni−1)− t(ni0)
• The maximum node throughput time of all instances of node n in C :
MAXni∈NI t(ni#ni−1)− t(ni0)
• The average node throughput time of x% instances of node n in C with the low-

est node throughput time, where 0 ≤ x ≤ 100:
∑

ni∈submin(NI,x) t(ni#ni−1)−t(ni0)

|submin(NI,x)| ,

where submin(NI, x) ⊆ NI. Let ni′ ∈ NI, ni′ ∈ submin(NI, x)⇔
|{ni′′∈NI | (t(ni′′#ni−1)−t(ni′′0))≤(t(ni′#ni−1)−t(ni′0))}|

|NI| ≤ x
100

• The average node throughput time of y% instances of node n in C with the

highest node throughput time, where 0 ≤ y ≤ 100:
∑

ni∈submax(NI,y) t(ni#ni−1)−t(ni0)

|submax(NI,y)| ,

where submax(NI, y) ⊆ NI. Let ni′ ∈ NI, ni′ ∈ submax(NI, y)⇔
|{ni′′∈NI | (t(ni′′#ni−1)−t(ni′′0))≥(t(ni′#ni−1)−t(ni′0))}|

|NI| ≤ y
100

• The average node throughput time of remainder (100 − x − y)% instances of

node n in C :
∑

ni∈subrem(NI,x,y) t(ni#ni−1)−t(ni0)

|subrem(NI,x,y)| , where subrem(NI, x, y) = NI \
(submin(NI, x) ∪ submax(NI, y)).

A.2.2 Edge-related KPIs

Suppose that an SPD edge l ∈ L which connects a source node n1 to a destination
node n2(n1, n2 ∈ N) is the edge under inspection, edge-related KPIs which can be
calculated for l are given as follows:

1. Edge frequency

The total number of times a control is passed from instance of node n1 to instance
of node n2 in C : |{(e1, e2) ∈ E × E | m(e1) = n1 ∧m(e2) = n2 ∧ e1 �c e2}|.

2. Edge move time

Move time from node n1 to an instance of node n2 is the total time spend to route
a process control from an instance of node n1 to an instance of node n2 in C. Let
MT = {(e1, e2) ∈ E × E | m(e1) = n1 ∧m(e2) = n2 ∧ c(e1) = c(e2) ∧ e1 �c e2} be

A.2. Process-model-related KPIs 97

a set of pairs of events where control is passed from an instance of node n1 to an
instance of node n2 in C. The calculated statistical values are formalized as follows:

• The average move time of all pairs of instances of node n1 and instances of
node n2 in C where process control is passed from n1 instances to n2 instances:∑

(e1,e2)∈MT t(e2)−t(e1)

|MT | .

• The minimum move time of all pairs of instances of node n1 and instances of
node n2 in C where process control is passed from n1 instances to n2 instances:
MIN(e1,e2)∈MT t(e2)− t(e1).
• The maximum move time of all pairs of instances of node n1 and instances of

node n2 in C where process control is passed from n1 instances to n2 instances:
MAX(e1,e2)∈MT t(e2)− t(e1).
• The average move time of x% pairs of instances of node n1 and instances

of node n2 in C where process control is passed from n1 instances to n2 in-

stances with the lowest move time, 0 ≤ x ≤ 100:
∑

(e1,e2)∈submin(MT,x) t(e2)−t(e1)

|submin(MT,x)| ,

where submin(MT, x) ⊆ MT . Let e′1, e
′
2 ∈ E, (e′1, e

′
2) ∈ MT, (e′1, e

′
2) ∈

submin(MT, x)⇔
|{(e′′1 ,e′′2)∈MT | (t(e′′2)−t(e′′1))≤(t(e′2)−t(e′1))}|

|MT | ≤ x
100

.

• The average move time of y% pairs of instances of node n1 and instances
of node n2 in C where process control is passed from n1 instances to n2 in-

stances with the highest move time, 0 ≤ y ≤ 100:
∑

(e1,e2)∈submax(MT,y) t(e2)−t(e1)

|submax(MT,y)| ,

where submax(MT, y) ⊆ MT . Let e′1, e
′
2 ∈ E, (e′1, e

′
2) ∈ MT, (e′1, e

′
2) ∈

submax(MT, y)⇔
|{(e′′1 ,e′′2)∈MT | (t(e′′2)−t(e′′1))≥(t(e′2)−t(e′1))}|

|MT | ≤ y
100

.

• The average move time of remainder (100−x−y)% pairs of instances of node n1

and instances of node n2 in C where process control is passed from n1 instances

to n2 instances:
∑

(e1,e2)∈subrem(MT,x,y) t(e2)−t(e1)

|subrem(MT,x,y)| , where subrem(MT, x, y) = MT \
(submin(MT, x) ∪ submax(MT, y)).

3. Edge Violating frequency

This KPI can be formalized as |{(e1, e2, e3) ∈ E × E × E | m(e2) = n1 ∧m(e1) =
m(e3) = n2 ∧ e1 � e3 ∧ t(e1) < t(e2) < t(e3) ∧ c(e1) = c(e2) = c(e3) ∧ @e4∈E e4 �c
e2 ∧ @e5∈E e5 � e2}|.

A.2.3 Two-nodes analysis

Given two nodes n1 and n2(n1, n2 ∈ N), several performance metrics which can be
derived specific to the two nodes are:

1. Source-target pair frequency

The total number of cases in C where two events, each refers to node n1 and n2,
respectively, occur. This can be formalized as: |{c(e1)|e1 ∈ E ∧ e2 ∈ E ∧m(e1) =
n1 ∧m(e2) = n2 ∧ c(e1) = c(e2)}|

A.2. Process-model-related KPIs 98

2. Number of fitting cases

The total number of unique cases in C where two events, each refers to node n1

and n2 occur, and the sequence of events that form the cases are also maximum
fitting subtraces. This can be formalized as: |{c(e1)|e1 ∈ E ∧ e2 ∈ E ∧ m(e1) =
n1 ∧m(e2) = n2 ∧ c(e1) = c(e2)∧mfs(S, c(e1)) = “true′′}|, where mfs is defined as
a function that accepts an SPD and a sequence of events 〈es, ..., es+l〉 and returns
“true” if the sequence is fitting trace according to Definition 4.2.3 in Section 4.2.

3. Sojourn time

The Sojourn time between node n1 and node n2 in a case in C is defined as the time
spent between the moment the first event that refers to node n1 occurs in the case
and the moment the first event that refers to node n2 occurs in the same case. Let
SJ = {(e1, e2) ∈ E × E | m(e1) = n1 ∧m(e2) = n2 ∧ c(e1) = c(e2) ∧ @e′1∈E [c(e1) =
c(e′1)∧t(e′1) < t(e1)∧m(e′1) = n1]∧@e′2∈E [c(e2) = c(e′2)∧t(e′2) < t(e2)∧m(e′2) = n2]}
be a set of pairs of events as basis of sojourn time calculation between node n1 and
node n2, the calculated statistical values are formalized as follows:

• The average sojourn time between node n1 and node n2 of all cases in C where
there is an event which refers to node n1 and another event which refers to

node n2:
∑

(e1,e2)∈SJ t(e2)−t(e1)

|SJ | .

• The minimum sojourn time between node n1 and node n2 of all cases in C
where there is an event which refers to node n1 and another event which refers
to node n2: MIN(e1,e2)∈SJ t(e2)− t(e1).
• The maximum sojourn time between node n1 and node n2 of all cases in C

where there is an event which refers to node n1 and another event which refers
to node n2: MAX(e1,e2)∈SJ t(e2)− t(e1).
• The average sojourn time between node n1 and node n2 of x% cases with the

lowest soujourn time in C where there is an event which refers to node n1

and another event which refers to node n2:
∑

(e1,e2)∈submin(SJ,x) t(e2)−t(e1)

|submin(SJ,x)| , where

submin(SJ, x) ⊆ SJ . Let e′1, e
′
2 ∈ E, (e′1, e′2) ∈ SJ, (e′1, e

′
2) ∈ submin(SJ, x)⇔

|{(e′′1 ,e′′2)∈SJ | (t(e′′2)−t(e′′1))≤(t(e′2)−t(e′1))}|
|SJ | ≤ x

100

• The average sojourn time between node n1 and node n2 of y% cases with the
highest soujourn time in C where there is an event which refers to node n1

and another event which refers to node n2:
∑

(e1,e2)∈submax(SJ,y) t(e2)−t(e1)

|submax(SJ,y)| , where

submax(SJ, y) ⊆ SJ . Let e′1, e
′
2 ∈ E, (e′1, e′2) ∈ SJ, (e′1, e

′
2) ∈ submax(SJ, y)⇔

|{(e′′1 ,e′′2)∈SJ | (t(e′′2)−t(e′′1))≥(t(e′2)−t(e′1))}|
|SJ | ≤ y

100
.

• The average sojourn time between node n1 and node n2 of remainder (100 −
x − y)% cases in C where there is an event which refers to node n1 and

another event which refers to node n2:
∑

(e1,e2)∈subrem(SJ,x,y) t(e2)−t(e1)

|subrem(SJ,x,y)| , where

subrem(SJ, x, y) = SJ \ (submin(SJ, x) ∪ submax(SJ, y)).

Appendix B

Implementation Design

In this appendix, the architectural design and the classes for all implemented plugins
are explained. We divide the explanations to two sections. Section B.1 provides
explanations about SPD plugins whose main functions are to visualize SPDs and
to provide a convenient GUI to map SPD nodes to activities in event logs. Section
B.2 covers all plugins related to the log replay plug-in, including the visualization
plug-in of both FPD and AAPD.

B.1 SPD Plug-in

An SPD is basically a directed graph consisting of nodes and arcs. In the ProM
framework, an abstract implementation of directed graphs is already provided inside
package org.processmining.models.graphbased.directed. Therefore, to imple-
ment SPDs, we extend the classes and interfaces in the package as shown in Figure
B.1.

Abstraction of a directed graph is provided by the class DirectedGraph. The
class uses the class AbstractDirectedGraphNode and the class AbstractDirected-
GraphEdge as an abstraction of graph node and edge, respectively. All classes which
extend the class DirectedGraph are mostly implemented as interfaces. Therefore,
we also implement SPD interface as an extension of the class DirectedGraph. The
interface is implemented by the class SPDImpl, which then uses the abstract class
SPDNode as representation of an SPD node and the abstract class SPDEdge as a repre-
sentation of an SPD edge. An instantiable class for node of the graph is implemented
as class SPDNodeElement, while an instantiable class for the edge is implemented as
class SPDArcElement. In addition, as most directed graphs in ProM have a factory
class, the class SPDFactory is also implemented as a factory class for SPD.

To store the mapping from nodes in an SPD to activities in an event log, the class
LogSPDConnection is created as an extension of the class AbstractLogModelConnect-
ion which is provided in the framework (see Figure B.2). The class AbstractLogModel-
Connection stores the mapping between nodes in a graph and activities in an event
log. Therefore, it is suitable to store the mapping between SPD nodes and activities
in an event log. To enable user maps activities in the event log to nodes in the SPD,
a GUI class SPDEditorPanel and an SPD visualizer class SPDVisualization are
created. The class SPDVisualization has the visualize() method which accepts

99

B.1. SPD Plug-in 100

Figure B.1: SPD class design

both an SPD and an event log as its input parameters (or only an SPD if there is a
connection object which links the SPD to the event log). If the SPD is not linked
to the event log, an object of class SPDEditorPanel provides a mapping panel so
that a user can map the nodes of the SPD to the activities in the event log. After
all SPD nodes are mapped, the object of class SPDEditorPanel creates an object
of class LogSPDConnection to store the mapping between the SPD nodes and the
event log in the ProM’s Object Pool. A screenshot of a visualized object of class
SPDEditorPanel is shown in Figure B.3.

Figure B.2: Classes to map nodes in an SPD to activities in an event log

B.2. Performance Measurement 101

Figure B.3: Screenshot of SPDEditorPanel

B.2 Performance Measurement

To replay a log in an SPD, we need an event log object and an SPD object whose
nodes are already mapped to activities in the event log object. As the mapping
between activities and nodes in an SPD is stored in a connection object, the con-
nection object is also required to replay the log. These three inputs are used to
generate an FPD and an AAPD with all related KPIs. Before the implementation
of the log replay is described, first we provide the implementation of both FPD and
AAPD as the models to project performance information. The implementation of
both models is explained in Section B.2.1. Then, the implementation of log replay
classes is explained in Section B.2.2.

B.2.1 Models to Project Performance Information

The design of the classes to represent an FPD is shown in Figure B.4. For simplicity,
methods of all classes in the figure are not shown. All methods in the classes are
basically getter and setter methods for their attributes. Similar to SPDs, FPDs
are basically directed graphs consist of nodes and arcs. Therefore, FPDs can be
implemented just like SPDs, i.e. using the same set of superclasses which are already
provided by the ProM framework as implementation of SPDs.

An FPD is represented as an interface class FPD which extends the class DirectedGraph.
The real implementation of the FPD lies in the class FPDImpl. Node and edge class
for the FPD are extended from class FPDNode and class FPDEdge, respectively. A fac-
tory class is also constructed with the name FPDFactory. Notice that unlike the class
SPDNode, class FPDNode has many attributes to store performance information. The
class FPDEdge also has several attributes to store performance information.

The design of classes to implement AAPD is presented in Figure B.5. AAPD
can be seen as a directed graph with invisible arcs. An element in AAPD is similar
to a node in a directed graph. Therefore, as can be seen in the figure, the implemen-
tation of AAPD is similar to the implementation of both FPD and SPD. The main

B.2. Performance Measurement 102

Figure B.4: FPD class design

difference between AAPD and both FPD and SPD is that AAPD elements are set
to have a static position.

B.2. Performance Measurement 103

Figure B.5: AAPD class design

B.2.2 Log Replay Plug-in

In order to replay an event log on an SPD, several classes are implemented as shown
in Figure B.6.

Figure B.6: Design of classes to perform log replay

The main class that responsible to perform the log replay is the class FPDAAPDLog-
Replayer. To perform a log replay, apart of an event log and an SPD, an object
of the class LogSPDConnection which links the event log and the SPD is also re-
quired. Log replay is performed mainly with the help from two other classes: the in-
terface class IFPDNodeLogIdentifier and the class AbstractFPDAAPDCalculator.

B.2. Performance Measurement 104

The former is an interface for classes which identify which node in an SPD is re-
ferred to by an event in an event log. Our approach to identify nodes is imple-
mented in the class FuzzyFPDNodeLogIdentifier that implements the interface
class IFPDNodeLogIdentifier.

The class AbstractFPDAAPDCalculator is a superclass of all classes which are
responsible to calculate all performance information based on sequences of SPD
nodes. In the class, several basic methods to calculate performance information
are provided. The class AbstractFPDAAPDCalculator is an abstract class that
implements class IFPDCalculator, an interface which describes several methods to
calculate performance information in an FPD. The class FuzzyFPDAAPDCalculator
is implemented as an extension of the abstract class and is responsible to calculate
performance information which is projected onto either FPD or AAPD.

To add flexibility to performed log replay, the replayLog method of the class
FPDAAPDLogReplayer may accept several parameters: object of class that imple-
ments interface IFPDNodeLogIdentifier, object of class that implements inter-
face ILifecycleTransitionChecker, and object of subclasses of the abstract class
AbstractFPDAAPDCalculator. Both parameters IFPDNodeLogIdentifier and
AbstractFPDAAPDCalculator enable node identification and performance calcula-
tion to be performed in various way by simply passing suitable subclasses. The
ILifecycleTransitionChecker is an interface for classes to validate whether tran-
sitions from an activity’s state to another state are valid based on a transactional
model in use. In this thesis, the class which checks whether activity state transition
is valid is the class StandardLifecycleTransitionChecker.

The class FuzzyFPDAAPDCalculator is responsible to calculate all performance
information from a sequence of SPD nodes. Its updateCalculation method accept
the sequence as input parameter and calculates all of the performance informa-
tion. After all traces are calculated, the finalizeCalculation method is executed
to calculate the values of performance metrics which can only be calculated af-
ter all traces are analyzed (e.g. average throughput time of a case). The class
FuzzyFPDAAPDCalculator uses the interface IFPDNodeInstanceAAPDCalculator

to calculate both FPD-related and AAPD-related KPIs. This interface is imple-
mented by the class FPDNodeInstanceAAPDCalculator. Again, the purpose of
having an interface (interface IFPDNodeInstanceAAPDCalculator) rather than
a class is to make other possible approaches to be easily implemented in the future.
Finally, the class TwoNodesPerformanceCalculator is implemented to calculate
performance analysis related to pair of nodes in the output FPD.

Log replay produces several objects which are then stored in the Object Pool.
The objects are instances of these classes (see Figure B.7):

• FPD, the class represents an FPD and performance information projected onto
it.

• AAPD, the class represents an AAPD and performance information projected
onto it.

• CaseKPIData, the class stores all case-related KPIs.

• FPDElementPerformanceMeasurementData, the class stores all FPD-node-related
KPIs and FPD-edge-related KPIs.

B.2. Performance Measurement 105

• TwoFPDNodesPerformanceData, the class stores all performance metrics which
are specific for pair of FPD nodes.

• GlobalSettingsData, the class stores global configuration to visualize perfor-
mance information (e.g. time unit).

Figure B.7: Classes to store the result of log replay

In order to link the objects which are produced from a single log replay, two con-
nection classes are implemented. The first connection class, FPDAAPDConnection,
links an FPD and an AAPD. The second connection class, FPDLogReplayConnection,
links all objects which result from the log replay.

B.2.3 Performance Information Visualization

After all performance information is calculated, the next step is to visualize the
information in a user-friendly manner. The first performance information to be vi-
sualized is FPD-related information. In order to visualize all performance metrics
related to an FPD in a compact way, we refer to the concept of performance dash-
board. A common performance dashboard consists of several panels. One of the
panels provides an overview about performance of all activities, and the other panels
provide detailed information about performance. In our case, the main panel of the
dashboard shows the FPD, and the other panels provide KPI values that are related
to it. Screenshot of the implemented dashboard is given in Figure B.8.

The design of classes which forms the visualization in Figure B.8 is shown in Fig-
ure B.9. The class FPDVisualization is the main Visualizer class which accepts an
FPD object. The visualize() method of the class accepts the FPD object and re-
turns an object of class FPDInformationPanel which represents the GUI. The main
panel of the GUI is implemented using class JGraphVisualizationPanel which is
already provided by the ProM framework. This class visualizes graphs which are
extended from class DirectedGraph, including their zooming panel and navigation
panels.

For additional panels, several classes are implemented, each represents a group
of similar information. Case-level KPIs are visualized in a panel which is provided
by the class CaseKPIInformationPanel. The class ElementPerformancePanel is
a superclass of both class EdgePerformancePanel and class NodePerformancePanel

B.2. Performance Measurement 106

Figure B.8: FPD visualization

and each visualizes FPD-node-related performance information and FPD-edge-related
performance information, respectively. Finally, the class TwoNodesInformationPanel
visualizes two-nodes-analysis performance information.

Figure B.9: FPD visualization class design

Other than the previously mentioned classes to visualize performance informa-
tion, some other classes are needed to help them performing their function. The
class TextualInfoPanelGenerator class helps the generation of textual informa-
tion (see Figure B.10), while the class StatisticTableGenerator helps the gen-
eration of table information (see Figure B.11). The class GlobalSettingsData

stores the information about time unit which is used to show performance infor-
mation and precentage bounds which are going to be visualized for several per-

B.2. Performance Measurement 107

formance information. Hence, it is used by several classes. The object of class
GlobalSettingsDataVisualization visualizes objects of class GlobalSettingsData
with the help of the class GlobalSettingsDataPanel so that user can modify the
values in the objects.

Figure B.10: Example of textual information

Figure B.11: Example of table information

Visualization of AAPD follows the way FPD is visualized. AAPD is visualized
in a dashboard consisting of three parts: the top, the middle, and the bottom part.
The AAPD graph is visualized on the top part of the dashboard, while the bottom
part provides the detail of performance information related to the AAPD (see Figure
B.12). The middle part of the dashboard provides a combo box to change the focus
element of the displayed AAPD and several slide controls to adjust the appearance
of the AAPD graph, e.g. X-coordinate scaling (distance between elements), element
width scaling, and element height scaling.

Design of the classes to implement the AAPD visualization in Figure B.12 is
shown in Figure B.13. The main class that is responsible to visualize an AAPD
object is the class AAPDVisualization. The visualize() method of the class ac-
cepts an object of class AAPD and returns an object of class AAPDInformationPanel
which represents the GUI. Similar to the main panel of FPD visualization, the GUI
is implemented using the class JGraphVisualizationPanel.

When any of the AAPD scales are adjusted using any of the sliders in the
middle panel, a new AAPD graph is generated. To generate a new AAPD, the
class AAPDGraphGenerator is used. The class AAPDStatisticPanel generates ta-
bles which are used to show performance values, such as throughput time ta-
ble, queuing time table, and service time table. This class also utilizes the class
AAPDStatisticTableGenerator to perform its task generating the tables. When
a table is generated, an object of class GlobalSettingsData is used to adjust the
time unit for all performance values which are shown.

B.2. Performance Measurement 108

Figure B.12: AAPD visualization

Figure B.13: AAPD visualization class design

Appendix C

User Manual

This appendix provides a brief user manual for all ProM plugins which are imple-
mented in this thesis, including the SPD Miner plug-in that was not a part of the
implementation work reported in this thesis.

C.1 SPD Miner Plug-in

C.1.1 Introduction

The SPD Miner plug-in accepts an event log object and constructs an SPD object
based on the event log using the Fuzzy k-Medoid clustering approach. This plug-in
accepts a user-defined value to determine how many clusters are generated from
the event log object. Beside the SPD object, this plug-in also creates a connection
object that links the object to the event log object. The plug-in produces random
outputs from event logs, i.e. two SPD objects which are both constructed from the
same log object using this plug-in may not be similar in terms of nodes and arcs.

C.1.2 Using SPD Miner Plug-in

To use the SPD miner plug-in, we need an event log object in the Provided Objects
panel of ProM. Suppose that such object exists in the panel, right-click on the ob-
ject and select “Available Plugins”>“Mine SPD Model (Default Summary,
user-specified clusters)” (see Figure C.1). A user dialog which ask for the num-
ber of clusters to be generated will be shown (see Figure C.2). Choose one of the
values provided by the displayed combo box, and then click “OK”. The selected
value determines how many SPD nodes will exist in the constructed SPD object.
Note that the maximum value in the combo box is always equal to the number of
activities in the event log, and the minimum value in the combo box is always equal
to 1.

After all previous steps are performed, the plug-in starts to calculate the SPD of
the log. During the process, a progress bar is shown in the Plugin panel as shown in
Figure C.3. The result of the plug-in is an SPD object which is stored in Provided
Objects panel. In addition, the plug-in also creates a connection object that links
the SPD object to the event log object.

109

C.2. SPD Visualization Plug-in 110

(a) Selection of event log (b) Selection of plug-in

Figure C.1: Using SPD Miner

Figure C.2: Dialog which ask for the number of SPD clusters

Figure C.3: Progress bar that indicates that the SPD Miner plug-in is processing

C.2 SPD Visualization Plug-in

C.2.1 Introduction

This plug-in visualizes SPD objects and their node mapping to activities in event
log objects. An example of a visualized SPD object is shown in Figure C.4. As
seen in the figure, the SPD is displayed on the top panel of the GUI. On the right
side of the SPD, there is a zooming panel to adjust the size of SPD being shown
on the screen. In addition, small panel on top of the zooming panel can be used to
navigate through the displayed SPD quickly. The user can drag the red box in the
small panel to the desired part of the SPD which wants to be visualized. Clicking on
a displayed SPD node will make the node’s label and all activities which the node
refers to visualized on the bottom panel.

SPD Visualization plug-in accepts an SPD object to be visualized and an event
log object. This plug-in does not only visualize the SPD object, but also provides
an interface to map nodes in the SPD object to activities in the event log object if
such mapping does not exist before. The three buttons in the bottom panel: “Add
Mapping”, “Remove Mapping”, and “Update Node Mapping” can be used
to create such mapping. All three buttons are only enabled if there is no mapping
between the nodes in the selected SPD object and the activities in the selected event
log object. After all nodes in the SPD object are mapped to activities in the event
log object, these three buttons are disabled.

C.2. SPD Visualization Plug-in 111

Figure C.4: SPD Visualization

C.2.2 How to Use

C.2.2.1 Visualize SPD

To visualize an SPD object, right-click on the SPD object to be visualized. The
SPD object should be located on the Provided Objects panel. Then, click “Show”
(see Figure C.5a). If there is no event log object which is linked to the SPD object,
an error message will be displayed as shown in Figure C.6. If there is such event log
object, one of the event log object which is linked by a connection object is selected.
Then, the SPD object and the mappings between the activities in the selected log
object and the nodes in the SPD object are visualized as shown in Figure C.4.

(a) Variant 1 (without event log object as input
parameter)

(b) Variant 2 (with event log object as input
parameter)

Figure C.5: How to use SPD Visualization plug-in

Figure C.6: Error message if there is no event log which is mapped to the selected
SPD

An SPD object can be linked to more than one event log objects. To show a
specific pair of SPD object and event log object, select both objects from the list
of objects in Provided Objects panel by simply clicking them. Use button “Ctrl”

C.2. SPD Visualization Plug-in 112

or “Shift” to select more than one object in the panel by holding the button while
clicking at the desired objects. Then, right-click on any of the selected object and
click “Show” (as shown in Figure C.5b).

C.2.2.2 Mapping SPD nodes to activities

Mapping between the SPD nodes in an SPD object and the activities in an event log
object can only be performed if there is no connection object in ProM’s Object Pool
which links both objects. To do the mapping, select both the event log object and
the SPD object from the Provided Objects panel. Right click on one of the selected
objects and click “Show” (see Figure C.7). Suppose that there is no connection
object that links the two objects, the same display as Figure C.4 will be shown with
all the three mapping-related buttons set to enabled.

Figure C.7: The first step of mapping SPD nodes to activity

To map an SPD node to one or more activities, click the node on the top panel.
The details of the node will be shown in the bottom panel. Then, select the activities
to be mapped to the node from the available selection list which is located on the left
side of the bottom panel. Click the “Add Mapping” button to move the selected
activities to the selected mapping list. Then, click the “Update Node Mapping”
button to save the mapping. In a similar way, we can remove one or more activities
from the selected mapping list and place it back to the selected activities list using
the “Remove Mapping” button. Repeat the mapping steps to map all nodes in
the SPD object to activities in the event log object.

Only after all nodes in the SPD object are mapped to activities, a dialog window
appears as shown in Figure C.8. Click “OK” to close the dialog. After the dialog is
closed, all three mapping-related buttons are disabled and a connection object that
links the SPD object and the event log object is created.

Figure C.8: Popup window after all nodes are mapped

C.3. Event Log Replay Plug-in 113

C.3 Event Log Replay Plug-in

C.3.1 Introduction

The log replay plug-in calculates KPI values of a process based on the process’
event log and an SPD which describes the process. This plug-in accepts both an
event log object and an SPD object. Both objects must be linked, i.e. there is
a connection object in the Object Pool which links the SPD object and the event
log object. This plug-in produces five different objects, consisting of four objects
that store the performance values of the process and an object to store visualization
configuration values. These objects include an FPD object, an AAPD object, and
a Global settings object, each can be visualized by a different plug-in.

C.3.2 How to Use

There are two variants of this plug-in. The first variant requires only an SPD object
as its input. This variant searches a connection object which links the SPD object
to any log object. If such an object is not found, the plug-in throws an exception
message which is displayed in the ProM’s Message Panel. The second variant of this
plug-in requires both an SPD object and an event log object. The same exception
message is thrown if there is no connection object which links the SPD object to
the event log object.

To use the first variant of this plug-in, select an SPD object from the Provided
Objects panel. Right click on the object and select “Available Plugins” > “Re-
play Log in Simple Precedence Diagram (SPD) (From SPD)” as shown in
Figure C.9.

Figure C.9: How to use the Event Log Replay Plug-in

Then, a dialog window will appear as shown in Figure C.10. Select the look-
ahead value and then click “OK”.

Another dialog window will be shown as in Figure C.11. Insert the value of
maximum generated states before random selection is performed during maximum
fitting subtrace identification phase of the log replay. Note that the inserted value
must be positive integer. After that, click “OK” to start replaying the event log
object on the SPD object.

Replay process takes some time, depending on the complexity of the event logs
and the values of input parameters. Progress of the replay process is shown in the
Plugins panel as shown in Figure C.12. After the plug-in finishes processing, six new

C.4. FPD Visualization 114

Figure C.10: Dialog to determine look-ahead value

Figure C.11: Dialog to adjust the value of maximum state space in the search of
maximum fitting subtraces

objects are added to the Provided Objects panel as the outputs of the replay: the
FPD object, the Case KPI data object, the Elements’ performance object, the Two
nodes performance object, the AAPD object, and the Global settings object (see
Figure C.13). Beside the six objects, the plug-in also creates a connection object
which links all of the six objects.

Figure C.12: Event log replay progress bar

To use the second variant of this plug-in, select an event log object and an SPD
object from the list of objects in the Provided Objects panel. Then, right-click on
any of the selected objects and perform the same steps as already explained for the
first variant.

C.4 FPD Visualization

C.4.1 Introduction

This plug-in visualizes an FPD object and all related-performance values. The plug-
in accepts an FPD object and visualizes it together with FPD-related performance

C.4. FPD Visualization 115

Figure C.13: Output objects of log replay plug-in

information. The information is obtained from other objects which are linked to
the object: the Case KPI data object, the Elements’ performance object, the Two
nodes performance object, and the Global settings object.

The FPD object is visualized in a performance dashboard style, as shown in
Figure C.14. FPD is shown in the top left panel. The top right panel provides a
zoom panel with a slider to help the user adjust the zoom level of the displayed
FPD. On top of the zoom panel, there is a small navigation panel that shows the
whole FPD and the part of the FPD which is currently shown (it is indicated by
the red box). The bottom panel displays detailed performance information which is
related to the FPD.

Figure C.14: FPD visualization

There are three types of information which are provided in the bottom panel. The
first is the case-level information type that provides various KPIs of a process that
can be calculated without a process model. This information is shown in the “Case
KPI” tab. The second type of information is element-related KPIs that provides
various performance information related to nodes and edges of the displayed FPD.
This information is shown in the “Element Performance” tab. Finally, the third
type provides performance information which relate two nodes in the displayed FPD.
This type of information is provided in the “Two Nodes Performance” tab.

C.4. FPD Visualization 116

C.4.2 Performance Information

Each tab in the bottom panel of the FPD visualization panel provides different types
of information. Details of information provided by each tab is given as follows:

Case-level KPIs Panel

Case-level KPIs Panel is shown in Figure C.15. In general, this panel provides
information of performance of cases in an event log and information about the log.
The information include:

Figure C.15: The Case-level KPIs panel

• Case throughput time: The time spent to handle a case in the event log,
including the minimum time, the maximum time, the average time, and stan-
dard deviation value of the average time. In addition, the average throughput
time of the fastest m% cases, the slowest n% cases, and the rest (100 - m -
n)% cases are also provided. The values of both m and n can be modified by
modifying the Global setting object.

• Number of cases: The total number of cases in the event log.

• Number of taken sequences: The total number of unique traces of events
from all cases in the event log.

• Executed events per resource: The average number of events that is cor-
related to a resource in the event log.

• Executed activities per resource: The average number of unique activities
which is performed by a resource.

• Number of resources per case: The average number of involved resources
in a case.

• Number of fitting cases: The total number of traces of events in all cases
which is also maximum fitting subtraces.

• Arrival rate: The average number of cases that arrive per time unit.

• Number of involved resources: The total number of resources in the log
event.

• Number of involved teams: The total number of unique set of resources
which are allocated to a trace in the event log.

C.4. FPD Visualization 117

Element Performance

Element performance panel provides information related to the nodes and the edges
of the displayed FPD. The information can be categorized to node-related KPIs and
edge-related KPIs. Node-related KPIs are displayed as shown in Figure C.16, and
edge-related KPIs are displayed as shown in Figure C.17.

Figure C.16: Example display of Node-related KPIs panel

Figure C.17: Example display of Edge-related KPIs panel

Given a node in an FPD as a node under inspection, the node-related KPIs of
the node are given as follows:

• Node activation frequency: The total number of events in an event log
which is mapped to the node.

• Node initialization frequency: The total number of cases which is started
with an event which is mapped to the node.

• Node termination frequency: The total number of cases which is ended
with an event which is mapped to the node.

• Number of performers: The total number of unique resources which is
correlated with any event which is mapped to the node.

• Number of cases with this node: The total number of cases in which there
is an event which is mapped to the node.

• Relative frequency in a case: The node activation frequency per case.

• AND-join frequency: The total number of times where the node has AND-
join semantics.

C.4. FPD Visualization 118

• AND-split-frequency: The total number of times where the node has AND-
split semantics.

• OR-join frequency: The total number of times where the node has OR-join
semantics.

• OR-split frequency: The total number of times where the node has OR-split
semantics.

• XOR-join frequency: The total number of times where the node has XOR-
join semantics.

• XOR-split frequency: The total number of times where the node has XOR-
split semantics.

• Node throughput time: the time spent to perform instances of the node, in-
cluding the minimum time, the maximum time, the average time, and standard
deviation value of the average time. In addition, the average node throughput
time of the fastest m% cases, the slowest n% cases, and the rest (100 - m -
n)% of the cases are also provided. Value of both m and n can be modified
by modifying the Global setting object.

• Node waiting time: Suppose that there is a set of node instances Epred
which need to be executed before an event which corresponds to the node can
be executed. Waiting time is defined as the time between the latest moment
when all events in Epred is finished and the moment the first event which is
mapped to the node occurs. The provided time include the minimum time, the
maximum time, the average time, and standard deviation value of the average
time. In addition, the average node waiting time of the fastest m% cases, the
slowest n% cases, and the rest (100 - m - n)% cases are also provided. Value
of both m and n can be modified by modifying the Global setting object.

• Node synchronization time: Suppose that all node instances in a set of
node instances Epred need to be executed before an event which refers to a
node instance is executed, where an instance of the node under inspection is
also in Epred. Synchronization time is the time between a moment the latest
event in Epred is finished and the moment the node instance of the node under
inspection is finished. The provided time include the minimum time, the
maximum time, the average time, and standard deviation value of the average
time. In addition, the average node synchronization time of the fastest m%
cases, the slowest n% cases, and the rest (100 - m - n)% cases are also provided.
Value of both m and n can be modified by modifying the Global setting object.

Given an edge which connects a source node n1 to a destination node n2, the edge-
related KPIs which are provided are given as follows:

• Frequency: The total number of times a process control was passed from the
instance of node n1 to the instance of node n2.

• Edge move time: The time spend to pass process control from the source
node n1 to the destination node n2. The provided time include the minimum
time, the maximum time, the average time, and standard deviation value of
the average time. In addition, the average of the fastest m% cases, the slowest
n% cases, and the rest (100 - m - n)% cases are also provided. Value of both
m and n can be modified by modifying the Global setting object.

C.4. FPD Visualization 119

• Violating frequency: The total number of times when a new instance of the
source node n1 occurs without gaining any control from other node instance
while an instance of the destination node n2 has a process control.

Two Nodes Performance

Two nodes performance panel provides KPI values which focus on only a pair of
FPD nodes. The panel is shown in Figure C.18. Several KPIs which are provided
in this panel for a pair of nodes n1 and n2 are given as follows:

Figure C.18: Example display of the Two Nodes Performance panel

• Source-target pair frequency: The total number of traces of events in
an event log where two events, each refers to node n1 and n2, respectively,
occurred.

• Number of fitting cases: The total number of traces in all cases where the
trace is also a maximum fitting subtrace.

• Sojourn time: The time spent between the first occurence of events which
correspond to node n1 and the first occurence of events which correspond to
node n2 in a case where the two events exist. The provided time include the
minimum time, the maximum time, the average time, and standard deviation
value of the average time. In addition, the average of the fastest m% cases, the
slowest n% cases, and the rest (100 - m - n)% cases are also provided. Value
of both m and n can be modified by modifying the Global setting object.

C.4. FPD Visualization 120

C.4.3 How to Use

To use the FPD visualization plug-in, right click on an FPD object which is located
in the Provided Objects panel. Then, select “Show” (see Figure C.19). A similar
panel as shown in Figure C.14 will be shown. To see case-related KPIs, click on
the “Case KPI” tab. Similarly, to see the Element-related KPIs and the Two
nodes performance KPIs, click on the “Element Performance” tab and the “Two
Nodes Performance” tab, respectively.

Figure C.19: How to use the FPD visualization plug-in

To show the KPI values which are related to a node or an edge, first, click on
the “Element Performance” tab. Then, click on either the node or the edge of
interest in the displayed FPD. The KPI values for the selected element will be shown
at the bottom panel. We can also adjust the boundary values which are used to
determine the performance color of nodes or edges using the yellow and green boxes
which are located on the right side of the bottom panel. Figure C.20a shows the
boxes that can be used to adjust boundary values which are related to FPD nodes,
and Figure C.20b shows the boxes that can be used to adjust boundary values which
are related to FPD edges. To change the boundary value, click on the box. A dialog
window will be shown. Insert the new boundary value in the dialog, and then click
“OK”. As an example, Figure C.21 shows the dialog which is shown when the green
box to adjust the Throughput Time performance boundary of a node is clicked.

To show KPI values which are related to two nodes, click on the “Two Nodes
Performance” tab. Then, select the source node and the target node using the
provided combo box at the bottom panel. After that, click the “Calculate KPI”
button to show the KPI values. As another alternative, the nodes can also be
selected using the visualized FPD nodes. To select a source node, rather than using

(a) Boxes to adjust performance color of a node (b) Boxes to adjust performance color of
an edge

Figure C.20: Display of boxes to adjust the boundary of performance color

C.5. AAPD Visualization 121

Figure C.21: Dialog window to modify the value of node throughput time perfor-
mance boundary

the provided combo box, click an FPD node which is displayed on the top panel
after clicking the radio button beside the “Select source node” label (see Figure
C.22). The selection of a target node can also be performed in the same way as the
selection of a source node, except that the radio button that must be clicked is the
one beside the “Select target node” label.

Figure C.22: Example of a selected radio button beside the “Select source node”
label

C.5 AAPD Visualization

C.5.1 Introduction

This plug-in visualizes an AAPD object and all related-performance values. The
plug-in accepts an AAPD object and visualizes it together with AAPD-related per-
formance information. Similar to the FPD visualization plug-in, this plug-in also
utilize the Global settings object.

The AAPD object is visualized as shown in Figure C.23. An AAPD is shown in
the top left panel. The top right panel provides a zoom panel with a slider to help the
user adjust the zoom level of the displayed AAPD. On top of the zoom panel, there
is a small navigation panel that shows the whole AAPD and the part of the AAPD
which is currently shown (it is indicated by the red box). The middle panel provides a
combo box to select the focus element of the AAPD and several sliders, each to adjust
the scaling of the displayed AAPD. The scaling include horizontal distance (X-
distance), element width, and element height. The bottom panel displays detailed
performance information which is related to the displayed AAPD.

C.5. AAPD Visualization 122

Figure C.23: AAPD visualization

C.5.2 Performance Information

The information which is provided by the AAPD visualization plug-in can be de-
scribed as follows:

• Activity Instances Frequency (Act. Inst. Freq.): The total number
of activity instances of an element which occurs in the cases where activity
instances of the focus element occur.

• Case Frequency (Case Freq.): The total number of cases of where activity
instances of an element occurs in the cases where activity instances of the
focus element occur.

• Aggregated-activities Throughput time: The time a resource spend to
perform an activity instance which refers to an element in the cases where
activity instances of the focus element occur. The provided time include the
minimum time, the maximum time, the average time, and standard deviation
value of the average time.

• Aggregated-activities Queuing time: The time a scheduled activity which
refers to an element spends waiting for a resource to become available in the
cases where activity instances of the focus element occur. The provided time
include the minimum time, the maximum time, the average time, and standard
deviation value of the average time.

• Aggregated-activities Service time: The time that resources spend on
doing an activity instance which refers to an element in the cases where activity
instances of the focus element occurs. The provided time include the minimum
time, the maximum time, the average time, and standard deviation value of

C.5. AAPD Visualization 123

the average time.

• Aggregated-activities Start time: The time between the moment first
event in cases occurs and the moment first event in the activity instance which
refers to an element occurs in the cases where activity instances of the focus
element occur. The provided time include the minimum time, the maximum
time, the average time, and standard deviation value of the average time.

• Aggregated-activities Intersection time: The time span when an activity
instance which refers to an element and an activity instance which refers to the
focus element in the same case are performed in the same time. The provided
time include the minimum time, the maximum time, the average time, and
standard deviation value of the average time.

C.5.3 How to Use

To use the AAPD visualization plug-in, right click on an AAPD object which is
located in the Provided Objects panel. Then, select “Show” (see Figure C.24). A
similar panel as shown in Figure C.23 will be shown.

Figure C.24: How to use the AAPD visualization plug-in

To adjust the visualization of AAPD, the three sliders which are provided in the
middle panel can be used (see Figure C.25). The first slider can be used to adjust
the horizontal distance between elements and the focus element on the displayed
SPD. The distance is scaled logarithmically, such that the elements with average
starting time close to the average start time of the focus element look relatively
closer than they should, while the elements with average starting time far from the
focus element look relatively further than they should. The second slider can be
used to adjust the width of elements in a linear scale, and the third slider is used to
adjust the height of elements in a linear scale.

Figure C.25: The three sliders to adjust AAPD visualization

To change the focus element of the displayed AAPD, use the combo box which is
located on the left side of the sliders components. Select the focus element from the

C.6. Global Setting GUI 124

available items. After selection, a new AAPD with the selected element as the focus
element will be shown in the top panel. The throughput time, start time, service
time, waiting time, and intersection time for each element is shown by selecting one
of the items in the combo box just beside the “Select KPI” label.

Similar to the FPD visualization plug-in, AAPD visualization plug-in provides
boxes that can be used to adjust performance boundary values of throughput time
the focus element. Figure C.26 shows the boxes that can be used to adjust the
boundary values. To change the boundary value, click on the box. A dialog window
similar to the dialog in C.21 will be shown. Insert the new boundary value in the
dialog, and then click “OK”.

Figure C.26: Boxes to adjust the performance color of AAPD element

C.6 Global Setting GUI

C.6.1 Introduction

This plug-in visualizes a Global settings object which are used by both FPD visual-
ization plug-in and AAPD visualization plug-in and provide an interface to modify
the values of the variables. This plug-in only requires a Global settings object.
Example of the visualization of the object is shown in Figure C.27.

Figure C.27: Global settings object visualization

A Global settings object stores information of the time unit which is used to
visualize both FPD and AAPD performance values. It also stores information of
precentage boundaries which are used to show detailed statistical performance ta-
bles, such as throughput time of cases table and waiting time of a node table. As an
example, Figure C.28 shows the throughput time of a case table from the “Model-
independent KPIs” panel. In the figure, the precentage boundary for fast cases is
32%, while the precentage boundary for slow cases is 12%. This means that the av-
erage case throughput time value in column “Throughput time” with corresponding
property “Fastest 32.00%” is calculated based on 32% of the cases with the fastest

C.6. Global Setting GUI 125

throughput time, and the average case throughput time value in column “Through-
put time” with corresponding property “Slowest 12.00%” is calculated based on only
12% of the cases with the slowest throughput time.

Figure C.28: Example of a detailed statistical performance table

C.6.2 How to Use

To display a GUI that can be used to modify the values of properties within a Global
settings object, right click the object on the Provided Objects panel. Then, select
“Show” as shown in Figure C.29. After this, the object will be visualized as shown
in Figure C.27.

Figure C.29: How to use Global setting visualization plug-in

To change the value of time unit and precentage boundaries, select the time
unit value using the provided combo box and enter the new value of precentage
boundaries. The sum of both precentage boundaries must not be more than 100.
Then, click “Apply Settings” to adjust the value. After the click, a popup window
will be displayed as shown in Figure C.30. Click “OK” to close the window. In order
to see the effect of the values modification of Global settings object, close all opened
panels and then use either FPD visualization to visualizes FPD objects or AAPD
visualization plug-in to visualizes AAPD objects. The time unit and precentage will
be shown according to the values of variables in the Global setting object.

C.6. Global Setting GUI 126

Figure C.30: Popup window after Global settings object is successfully modified

Appendix D

Evaluation

In this appendix, we provide additional information on the evaluations reported in
Chapter 7. Evaluations consist of semantic identification evaluation and plug-in
correctness evaluation.

D.1 Semantics Identification Evaluation

D.1.1 Purpose

The purpose of this evaluation is to identify to what extent our log replay approach
manages to identify splits/joins semantics of SPD nodes.

D.1.2 Procedure

To perform the evaluation, two Petri nets as shown in Figure D.1 and Figure D.2 are
created in the CPN Tools. In order to generate event logs with various event types as
described in our transactional model (see Section 2.2.1) each transition in both Petri
nets is implemented using 5 different transitions as described in Figure D.3. Notice
that with the division to 5 different transitions, an activity instance is always started
with event type “schedule” and ended with event type “complete”. The log which is
generated from the Petri net in Figure D.1 is referred to as TestNet1completeLog,
and the log which is generated by the Petri net in Figure D.2 is referred to as
TestNet2completeLog.

A

B C D

E F

G

H

XOR-split

XOR-join

Figure D.1: Petri net 1 for evaluation

127

D.1. Semantics Identification Evaluation 128

A

B D

E F

C

G

AND-split AND-join

Figure D.2: Petri net 2 for evaluation

<act>-
schedule

<act>-start

<act>-
suspend

<act>-resume

<act>-
complete

Figure D.3: Decomposition of each transition in both Figure D.1 and Figure D.2

Before log replay can be executed, we need SPDs to represent each of the Petri
nets in figures D.1 and D.2. Based on the conversion approach in Section 3.2.1, the
SPDs are shown in figures D.4 and D.5, respectively. To generate these two SPDs,
we implement a plug-in for each SPD which generates the SPD and put it in the
Object Pool. Note that we have to map each SPD node to activities manually before
log replay can be executed.

A

B

E

C D

F

G

H

Figure D.4: SPD of the Petri net in Figure D.1

Then, event logs are replayed in the created SPDs. Log replay is performed
several times, each with a different value of look-ahead window. We choose the
value of look-ahead window equal to 5, 10, 15, 20, and 25. The limit of state space
is set to 5000 for all experiments. Node semantics which are identified during log
replay are recorded and compared to the correct semantics.

Based on the Petri net in which each SPD was generated from, the correct
semantics are given as follows:

• Nodes of the SPD in Figure D.4:

– XOR-split: node A, node C

– AND-split: node B, node E, node G, node F, node D

– XOR-join: node C, node H

– AND-join: node B, node D, node E, node F, node G

• Nodes of the SPD in Figure D.5:

D.2. Multi-level of Abstraction Evaluation 129

A

B

E

C

D

F

G

Figure D.5: SPD of the Petri net in Figure D.2

– XOR-split: node B

– AND-split: node A, node C, node D, node E node F

– XOR-join: node B

– AND-join: node C, node D, node E, node F, node G

D.1.3 Result

Replay result of experiments with event log TestNet1completeLog shows that for
all nodes, all semantics are successfully identified in all experiments. However, the
experiments with event log TestNet2completeLog show that there is a problem to
identify AND-join semantics of node G when small values are used as look-ahead
window. In this experiment, the bigger the value look-ahead window, the better
predicition of the semantics (see Figure 7.5 in Section 7.1).

D.2 Multi-level of Abstraction Evaluation

D.2.1 Purpose

This evaluation is performed to validates the correctness of log replay implementa-
tion. In this evaluation, we check whether the replay log approach gives consistent
performance values whenever it is used to extract performance information of a sin-
gle process which is represented by several process models, each with a different
level of abstraction.

D.2.2 Procedure

Several SPDs, each with different level of activity abstraction, are created to show
the same process as Petri net in Figure D.1. These SPDs are shown in Figure
D.6. Then, TestNet1completeLog is replayed in each of the SPDs. Consistency
of performance values generated from the log replay in each experiments is then
investigated.

D.2.3 Result

Based on our experiments, log replay in different process models with a different level
of abstraction of the same process provide a consistent result. Average throughput

D.2. Multi-level of Abstraction Evaluation 130

A

B C D

E F

G

H

(a) SPD level 1 (most detailed)

A

B C,G D

E F H

(b) SPD level 2

A

B,C
,G

D

E F H

(c) SPD level 3

A

B,C,
D,G

E F H

(d) SPD level 4

A

B,C,
D,G

E,F H

(e) SPD level 5

A
B,C,

D,E,F
,G

H

(f) SPD level 6

A,B,C,D,
E,F,G,H

(g) SPD
level 7

Figure D.6: SPDs of the Petri net in Figure D.1, each with a different level of activity
abstraction

time of a node which aggregates several nodes in the model with one lower level of
abstraction always the same with the average time spent between the moment the
first event which refers to any of the abstracted nodes occurs and the moment the
last event which refers to any of the abstracted nodes occurs. Hence, our log replay
is successfully validated.

	Abstract
	Executive Summary
	Preface
	Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Preliminaries
	3. Modeling Processes
	4. Measuring Performance
	5. Performance Projection
	6. Implementation
	7. Evaluation
	8. Conclusion and Recommendation
	Bibliography
	Appendix A
	Appendix B
	Appendix C
	Appendix D

