11,170 research outputs found

    Improving Foot-Mounted Inertial Navigation Through Real-Time Motion Classification

    Full text link
    We present a method to improve the accuracy of a foot-mounted, zero-velocity-aided inertial navigation system (INS) by varying estimator parameters based on a real-time classification of motion type. We train a support vector machine (SVM) classifier using inertial data recorded by a single foot-mounted sensor to differentiate between six motion types (walking, jogging, running, sprinting, crouch-walking, and ladder-climbing) and report mean test classification accuracy of over 90% on a dataset with five different subjects. From these motion types, we select two of the most common (walking and running), and describe a method to compute optimal zero-velocity detection parameters tailored to both a specific user and motion type by maximizing the detector F-score. By combining the motion classifier with a set of optimal detection parameters, we show how we can reduce INS position error during mixed walking and running motion. We evaluate our adaptive system on a total of 5.9 km of indoor pedestrian navigation performed by five different subjects moving along a 130 m path with surveyed ground truth markers.Comment: In Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN'17), Sapporo, Japan, Sep. 18-21, 201

    Mixed marker-based/marker-less visual odometry system for mobile robots

    Get PDF
    When moving in generic indoor environments, robotic platforms generally rely solely on information provided by onboard sensors to determine their position and orientation. However, the lack of absolute references often leads to the introduction of severe drifts in estimates computed, making autonomous operations really hard to accomplish. This paper proposes a solution to alleviate the impact of the above issues by combining two vision‐based pose estimation techniques working on relative and absolute coordinate systems, respectively. In particular, the unknown ground features in the images that are captured by the vertical camera of a mobile platform are processed by a vision‐based odometry algorithm, which is capable of estimating the relative frame‐to‐frame movements. Then, errors accumulated in the above step are corrected using artificial markers displaced at known positions in the environment. The markers are framed from time to time, which allows the robot to maintain the drifts bounded by additionally providing it with the navigation commands needed for autonomous flight. Accuracy and robustness of the designed technique are demonstrated using an off‐the‐shelf quadrotor via extensive experimental test

    MOMA: Visual Mobile Marker Odometry

    Full text link
    In this paper, we present a cooperative odometry scheme based on the detection of mobile markers in line with the idea of cooperative positioning for multiple robots [1]. To this end, we introduce a simple optimization scheme that realizes visual mobile marker odometry via accurate fixed marker-based camera positioning and analyse the characteristics of errors inherent to the method compared to classical fixed marker-based navigation and visual odometry. In addition, we provide a specific UAV-UGV configuration that allows for continuous movements of the UAV without doing stops and a minimal caterpillar-like configuration that works with one UGV alone. Finally, we present a real-world implementation and evaluation for the proposed UAV-UGV configuration

    Virtual Reality Aided Mobile C-arm Positioning for Image-Guided Surgery

    Get PDF
    Image-guided surgery (IGS) is the minimally invasive procedure based on the pre-operative volume in conjunction with intra-operative X-ray images which are commonly captured by mobile C-arms for the confirmation of surgical outcomes. Although currently some commercial navigation systems are employed, one critical issue of such systems is the neglect regarding the radiation exposure to the patient and surgeons. In practice, when one surgical stage is finished, several X-ray images have to be acquired repeatedly by the mobile C-arm to obtain the desired image. Excessive radiation exposure may increase the risk of some complications. Therefore, it is necessary to develop a positioning system for mobile C-arms, and achieve one-time imaging to avoid the additional radiation exposure. In this dissertation, a mobile C-arm positioning system is proposed with the aid of virtual reality (VR). The surface model of patient is reconstructed by a camera mounted on the mobile C-arm. A novel registration method is proposed to align this model and pre-operative volume based on a tracker, so that surgeons can visualize the hidden anatomy directly from the outside view and determine a reference pose of C-arm. Considering the congested operating room, the C-arm is modeled as manipulator with a movable base to maneuver the image intensifier to the desired pose. In the registration procedure above, intensity-based 2D/3D registration is used to transform the pre-operative volume into the coordinate system of tracker. Although it provides a high accuracy, the small capture range hinders its clinical use due to the initial guess. To address such problem, a robust and fast initialization method is proposed based on the automatic tracking based initialization and multi-resolution estimation in frequency domain. This hardware-software integrated approach provides almost optimal transformation parameters for intensity-based registration. To determine the pose of mobile C-arm, high-quality visualization is necessary to locate the pathology in the hidden anatomy. A novel dimensionality reduction method based on sparse representation is proposed for the design of multi-dimensional transfer function in direct volume rendering. It not only achieves the similar performance to the conventional methods, but also owns the capability to deal with the large data sets

    Técnicas de coste reducido para el posicionamiento del paciente en radioterapia percutánea utilizando un sistema de imágenes ópticas

    Get PDF
    Patient positioning is an important part of radiation therapy which is one of the main solutions for the treatment of malignant tissue in the human body. Currently, the most common patient positioning methods expose healthy tissue of the patient's body to extra dangerous radiations. Other non-invasive positioning methods are either not very accurate or are very costly for an average hospital. In this thesis, we explore the possibility of developing a system comprised of affordable hardware and advanced computer vision algorithms that facilitates patient positioning. Our algorithms are based on the usage of affordable RGB-D sensors, image features, ArUco planar markers, and other geometry registration methods. Furthermore, we take advantage of consumer-level computing hardware to make our systems widely accessible. More specifically, we avoid the usage of approaches that need to take advantage of dedicated GPU hardware for general-purpose computing since they are more costly. In different publications, we explore the usage of the mentioned tools to increase the accuracy of reconstruction/localization of the patient in its pose. We also take into account the visualization of the patient's target position with respect to their current position in order to assist the person who performs patient positioning. Furthermore, we make usage of augmented reality in conjunction with a real-time 3D tracking algorithm for better interaction between the program and the operator. We also solve more fundamental problems about ArUco markers that could be used in the future to improve our systems. These include highquality multi-camera calibration and mapping using ArUco markers plus detection of these markers in event cameras which are very useful in the presence of fast camera movement. In the end, we conclude that it is possible to increase the accuracy of 3D reconstruction and localization by combining current computer vision algorithms with fiducial planar markers with RGB-D sensors. This is reflected in the low amount of error we have achieved in our experiments for patient positioning, pushing forward the state of the art for this application.En el tratamiento de tumores malignos en el cuerpo, el posicionamiento del paciente en las sesiones de radioterapia es una cuestión crucial. Actualmente, los métodos más comunes de posicionamiento del paciente exponen tejido sano del mismo a radiaciones peligrosas debido a que no es posible asegurar que la posición del paciente siempre sea la misma que la que tuvo cuando se planificó la zona a radiar. Los métodos que se usan actualmente, o no son precisos o tienen costes que los hacen inasequibles para ser usados en hospitales con financiación limitada. En esta Tesis hemos analizado la posibilidad de desarrollar un sistema compuesto por hardware de bajo coste y métodos avanzados de visión por ordenador que ayuden a que el posicionamiento del paciente sea el mismo en las diferentes sesiones de radioterapia, con respecto a su pose cuando fue se planificó la zona a radiar. La solución propuesta como resultado de la Tesis se basa en el uso de sensores RGB-D, características extraídas de la imagen, marcadores cuadrados denominados ArUco y métodos de registro de la geometría en la imagen. Además, en la solución propuesta, se aprovecha la existencia de hardware convencional de bajo coste para hacer nuestro sistema ampliamente accesible. Más específicamente, evitamos el uso de enfoques que necesitan aprovechar GPU, de mayores costes, para computación de propósito general. Se han obtenido diferentes publicaciones para conseguir el objetivo final. Las mismas describen métodos para aumentar la precisión de la reconstrucción y la localización del paciente en su pose, teniendo en cuenta la visualización de la posición ideal del paciente con respecto a su posición actual, para ayudar al profesional que realiza la colocación del paciente. También se han propuesto métodos de realidad aumentada junto con algoritmos para seguimiento 3D en tiempo real para conseguir una mejor interacción entre el sistema ideado y el profesional que debe realizar esa labor. De forma añadida, también se han propuesto soluciones para problemas fundamentales relacionados con el uso de marcadores cuadrados que han sido utilizados para conseguir el objetivo de la Tesis. Las soluciones propuestas pueden ser empleadas en el futuro para mejorar otros sistemas. Los problemas citados incluyen la calibración y el mapeo multicámara de alta calidad utilizando los marcadores y la detección de estos marcadores en cámaras de eventos, que son muy útiles en presencia de movimientos rápidos de la cámara. Al final, concluimos que es posible aumentar la precisión de la reconstrucción y localización en 3D combinando los actuales algoritmos de visión por ordenador, que usan marcadores cuadrados de referencia, con sensores RGB-D. Los resultados obtenidos con respecto al error que el sistema obtiene al reproducir el posicionamiento del paciente suponen un importante avance en el estado del arte de este tópico

    Investigation Of The Microsoft Kinect V2 Sensor As A Multi-Purpose Device For A Radiation Oncology Clinic

    Get PDF
    For a radiation oncology clinic, the number of devices available to assist in the workflow for radiotherapy treatments are quite numerous. Processes such as patient verification, motion management, or respiratory motion tracking can all be improved upon by devices currently on the market. These three specific processes can directly impact patient safety and treatment efficacy and, as such, are important to track and quantify. Most products available will only provide a solution for one of these processes and may be outside the reach of a typical radiation oncology clinic due to difficult implementation and incorporation with already existing hardware. This manuscript investigates the use of the Microsoft Kinect v2 sensor to provide solutions for all three processes all while maintaining a relatively simple and easy to use implementation. To assist with patient verification, the Kinect system was programmed to create a facial recognition and recall process. The basis of the facial recognition algorithm was created by utilizing a facial mapping library distributed by Microsoft within the Software Developers Toolkit (SDK). Here, the system extracts 31 fiducial points representing various facial landmarks. 3D vectors are created between each of the 31 points and the magnitude of each vector is calculated by the system. This allows for a face to be defined as a collection of 465 specific vector magnitudes. The 465 vector magnitudes defining a face are then used in both the creation of a facial reference data set and subsequent evaluations of real-time sensor data in the matching algorithm. To test the algorithm, a database of 39 faces was created, each with 465 vectors derived from the fiducial points, and a one-to-one matching procedure was performed to obtain sensitivity and specificity data of the facial identification system. In total, 5299 trials were performed and threshold parameters were created for match determination. Optimization of said parameters in the matching algorithm by way of ROC curves indicated the sensitivity of the system for was 96.5% and the specificity was 96.7%. These results indicate a fairly robust methodology for verifying, in real-time, a specific face through comparison from a pre-collected reference data set. In its current implementation, the process of data collection for each face and subsequent matching session averaged approximately 30 seconds, which may be too onerous to provide a realistic supplement to patient identification in a clinical setting. Despite the time commitment, the data collection process was well tolerated by all participants. It was found that ambient light played a crucial role in the accuracy and reproducibility of the facial recognition system. Testing with various light levels found that ambient light greater than 200 lux produced the most accurate results. As such, the acquisition process should be setup in such a way to ensure consistent ambient light conditions across both the reference recording session and subsequent real-time identification sessions. In developing a motion management process with the Kinect, two separate, but complimentary processes were created. First, to track large scale anatomical movements, the automatic skeletal tracking capabilities of the Kinect were utilized. 25 specific body joints (head, elbow, knee, etc) make up the skeletal frame and are locked to relative positions on the body. Using code written in C#, these joints are tracked, in 3D space, and compared to an initial state of the patient allowing for an indication of anatomical motion. Additionally, to track smaller, more subtle movements on a specific area of the body, a user drawn ROI can be created. Here, the depth values of all pixels associated with the body in the ROI are compared to the initial state. The system counts the number of live pixels with a depth difference greater than a specified threshold compared to the initial state and the area of each of those pixels is calculated based on their depth. The percentage of area moved (PAM) compared to the ROI area then becomes an indication of gross movement within the ROI. In this study, 9 specific joints proved to be stable during data acquisition. When moved in orthogonal directions, each coordinate recorded had a relatively linear trend of movement but not the expected 1:1 relationship to couch movement. Instead, calculation of the vector magnitude between the initial and current position proved a better indicator of movement. 5 of the 9 joints (Left/Right Elbow, Left/Right Hip, and Spine-Base) showed relatively consistent values for radial movements of 5mm and 10mm, achieving 20% - 25% coefficient of variation. For these 5 joints, this allowed for threshold values for calculated radial distances of 3mm and 7.5 mm to be set for 5mm and 10mm of actual movement, respectively. When monitoring a drawn ROI, it was found that the depth sensor had very little sensitivity of movement in the X (Left/Right) or Y (Superior/Inferior) direction, but exceptional sensitivity in the Z (Anterior/Posterior) direction. As such, the PAM values could only be coordinated with motion in the Z direction. PAM values of over 60% were shown to be indicative of movement in the Z direction equal to that of the threshold value set for movement as small as 3mm. Lastly, the Kinect was utilized to create a marker-less, respiratory motion tracking system. Code was written to access the Kinect’s depth sensor and create a process to track the respiratory motion of a subject by recording the depth (distance) values obtained at several user selected points on the subject, with each point representing one pixel on the depth image. As a patient breathes, a specific anatomical point on the chest/abdomen will move slightly within the depth image across a number of pixels. By tracking how depth values change for a specific pixel, instead of how the anatomical point moves throughout the image, a respiratory trace can be obtained based on changing depth values of the selected pixel. Tracking of these values can then be implemented via marker-less setup. Varian’s RPM system and the Anzai belt system were used in tandem with the Kinect in order to compare respiratory traces obtained by each using two different subjects. Analysis of the depth information from the Kinect for purposes of phase based and amplitude based binning proved to be correlated well with the RPM and Anzai systems. IQR values were obtained which compared times correlated with specific amplitude and phase percentage values against each product. The IQR spans of time indicated the Kinect would measure a specific percentage value within 0.077 s for Subject 1 and 0.164s for Subject 2 when compared to values obtained with RPM or Anzai. For 4D-CT scans, these times correlate to less than 1mm of couch movement and would create an offset of one half an acquired slice. These minimal deviations between the traces created by the Kinect and RPM or Anzai indicate that by tracking the depth values of user selected pixels within the depth image, rather than tracking specific anatomical locations, respiratory motion can be tracked and visualized utilizing the Kinect with results comparable to that of commercially available products

    Criterion Validity of Catapult ClearSky T6 Local Positioning System for Measuring Inter-Unit Distance

    Get PDF
    The validity of a local positioning system (LPS) to measure inter-unit distance was investigated during a team sport movement circuit. Eight recreationally active, female indoor team-sport players completed a circuit, comprising seven types of movements (walk, jog, jump, sprint, 45° change of direction and shuffle), on an indoor court. Participants wore a receiver tag (ClearSky T6, Catapult Sports) and seven reflective markers, to allow for a comparison with the reference system (©Vicon Motion Systems, Oxford Metrics, UK). Inter-unit distance was collected for each combination of participants. Validity was assessed via root mean square error, mean bias and percentage of variance accounted for, both as an overall dataset and split into distance bands. The results presented a mean root mean square error of 0.20 ± 0.05 m, and mean bias detected an overestimation for all distance bands. The LPS shows acceptable accuracy for measuring inter-unit distance, opening up opportunities to utilise player tracking for tactical variables indoors

    Autonomous Tissue Scanning under Free-Form Motion for Intraoperative Tissue Characterisation

    Full text link
    In Minimally Invasive Surgery (MIS), tissue scanning with imaging probes is required for subsurface visualisation to characterise the state of the tissue. However, scanning of large tissue surfaces in the presence of deformation is a challenging task for the surgeon. Recently, robot-assisted local tissue scanning has been investigated for motion stabilisation of imaging probes to facilitate the capturing of good quality images and reduce the surgeon's cognitive load. Nonetheless, these approaches require the tissue surface to be static or deform with periodic motion. To eliminate these assumptions, we propose a visual servoing framework for autonomous tissue scanning, able to deal with free-form tissue deformation. The 3D structure of the surgical scene is recovered and a feature-based method is proposed to estimate the motion of the tissue in real-time. A desired scanning trajectory is manually defined on a reference frame and continuously updated using projective geometry to follow the tissue motion and control the movement of the robotic arm. The advantage of the proposed method is that it does not require the learning of the tissue motion prior to scanning and can deal with free-form deformation. We deployed this framework on the da Vinci surgical robot using the da Vinci Research Kit (dVRK) for Ultrasound tissue scanning. Since the framework does not rely on information from the Ultrasound data, it can be easily extended to other probe-based imaging modalities.Comment: 7 pages, 5 figures, ICRA 202

    Hybrid Simulation and Planning Platform for Cryosurgery with Microsoft HoloLens

    Get PDF
    Cryosurgery is a technique of growing popularity involving tissue ablation under controlled freezing. Technological advancement of devices along with surgical technique improvements have turned cryosurgery from an experimental to an established option for treating several diseases. However, cryosurgery is still limited by inaccurate planning based primarily on 2D visualization of the patient's preoperative images. Several works have been aimed at modelling cryoablation through heat transfer simulations; however, most software applications do not meet some key requirements for clinical routine use, such as high computational speed and user-friendliness. This work aims to develop an intuitive platform for anatomical understanding and pre-operative planning by integrating the information content of radiological images and cryoprobe specifications either in a 3D virtual environment (desktop application) or in a hybrid simulator, which exploits the potential of the 3D printing and augmented reality functionalities of Microsoft HoloLens. The proposed platform was preliminarily validated for the retrospective planning/simulation of two surgical cases. Results suggest that the platform is easy and quick to learn and could be used in clinical practice to improve anatomical understanding, to make surgical planning easier than the traditional method, and to strengthen the memorization of surgical planning
    corecore