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CHAPTER 1 “INTRODUCTION” 

In 1953, just 60 years after Wilhelm Röntgen discovered X-rays and both Marie Curie 

and Henri Becquerel discovered radioactivity, the first linear accelerator (linac) based 

radiotherapy treatment of cancer was performed in London. Over the next 60 years, radiotherapy 

treatments using linacs have advanced dramatically to allow for increased precision while 

decreasing unwanted dose1. Procedures such as Stereotactic Radiosurgery (SRS), Stereotactic 

Body Radiation Therapy (SBRT), and Volume Modulated Arc Therapy (VMAT)  all allow for 

highly conformal radiotherapy treatments to be created for a wide array of tumors and locations. 

As improvements upon these procedures progresses, each requires an ever increasing amount of 

supplemental software and hardware to ensure the treatment to be delivered is done so with 

extreme accuracy.  

The tracking of patients through identity verification procedures and through intra- and 

inter-fraction motion ensures these exacting and precise procedures are performed to the correct 

patient and to the correct treatment location. Tracking of the patient and verifying identity as 

they progress through a radiation oncology clinic becomes exceedingly important to ensure 

patient safety. Tracking of intra- and inter-fraction motion in real-time helps ensure that these 

complex and conformal treatments are as precise as possible as well as quantifying said motion 

to understand how it can affect treatment. Multiple vendors produce a wide variety of devices to 

fulfill these needs within a radiation oncology clinic, allowing for the clinic to increase patient 

safety and treatment efficacy using real-time identification and real-time motion tracking. 

Patient Verification 

In a radiation oncology clinic, verification procedures can generally be grouped into two 

major categories: Plan Verification and Patient Verification. Both are integral to ensuring patient 
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safety throughout the treatment process and both have recommendations from various governing 

bodies to ensure clinics meet specific standards for each verification process. Plans created 

utilizing techniques such as Intensity Modulated Radiation Therapy (IMRT) or Volume 

Modulated Radiation Therapy (VMAT) are run through various QA procedures to verify the 

highly specific MLC movements and beam modulation calculated within the treatment planning 

system by delivering the plan to phantoms or other radiation measuring devices. These pre-

treatment QA delivery procedures are compared to the original plan and are required to pass 

specific criteria before actual patient treatment can proceed2,3. For all non-IMRT treatment plans, 

AAPM TG-40 and TG-114 recommend that monitor units calculated from a treatment planning 

system have an independent, secondary calculation performed for various sites within treatment 

plan4,5. This ensures that the physicist is not required to solely rely on the ever increasing 

complexity of the treatment planning system’s MU calculations, but rather ensure that two 

independent systems can calculate the same number of MU’s to a specific point on a patient to 

deliver a specified dose. 

 In contrast, procedures utilized for patient identify verification as they enter into a 

radiation oncology clinic do not currently have the same extensive requirements of those applied 

to plan verification procedures. The 2017 National Patient Safety Goals only require a minimum 

of two patient identifiers when verifying identity and, typically, these simply involve the 

patient’s name and date of birth6. As a minimal improvement on this, most clinics have also 

incorporated a photograph of the patient to be added to the electronic chart for increased 

verification accuracy. As technology advances and becomes more readily attainable, many new 

devices have become commercially available for use to increase the accuracy and reliability of 

patient identification and verification beyond these simple measures. Disposable RFID bracelets 
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are often utilized in clinics and issued to patients in order to be scanned as a patient enters or 

exits various rooms throughout the facility 

7,8. Still other clinics have implemented more 

advanced identification devices such as palm scanners 9, iris scanners 

10, or fingerprint scanners  

11. 

All of these procedures are implemented to help increase accuracy and speed of patient 

verification and are especially useful for clinics with a large patient load. 

Facial recognition has become a novel approach to patient verification and identification. 

With this process, human errors can be eliminated when a patient answers to the wrong name or 

when photograph identification is not sufficient. Devices that implement facial recognition can 

be incorporated into the treatment planning system in order to include patient check in, automatic 

setup of couch, and patient verification as they enter the treatment vault  

12,13. These additional 

features to facial recognition processes can make patient verification and identification a quick 

and easy process that can facilitate movement and treatment of a patient through a radiation 

oncology clinic. 

Patient Motion Tracking 

In a typical treatment process, once identity has been confirmed and the patient is setup 

on the couch prior to treatment, setup images are taken utilizing either kV imaging or Cone 

Beam CT (CBCT) imaging procedures available onboard the linac. Alignment verification of the 

patient and internal anatomy is then performed by comparing the current images to those taken 

during Computed Tomography Simulation (CT-SIM). For any misalignments that cannot be 

easily adjusted by use of a couch shift, the radiation oncologist may need to be notified to decide 

if the patient can be treated with the newly shifted alignment. This process can take extended 

periods of time due to the fact that the oncologist not only needs to be available at the time to 

make the decision, but to also physically come down to the treatment console in order to confirm 
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if treatment should continue. During this time, the patient is required to remain in the exact same 

position as for the CBCT acquisition. In order to quantify this extended period of time required 

by the patient, the latent time between CBCT and treatment was measured for 593 cases at the 

Karmanos Cancer Institute in Detroit, MI. It was found that this time period took, on average, 4 

minutes, with a maximum value of 14 minutes (see Figure 1).  

 

 

Figure 1: A frequency plot of latent time to treatment post CBCT 

 

Depending on the specific type of radiotherapy treatment being performed, treatment 

times can range from 5 minutes to 15 minutes  

14,
 

15. When adding together the gap between CBCT 

and treatment as well as the treatment time itself, this can require the patient to remain in the 

same position for a timeframe ranging anywhere from 5 minutes to 30 minutes. In addition to the 

extended period of time required to remain still, some treatments require the patient to remain in 

an unnatural position. Lung or breast treatments, for example, require the patient to raise one or 
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both arms over their head while in a supine position. When holding this position for extended 

periods of time, patients may, unconsciously, adjust one arm or simply move an arm down to 

their side due to strain or discomfort. Doing so can drastically shift positioning of treatment areas 

compared to setup positioning. Correcting large movements such as this becomes difficult as the 

therapist must continuously monitor the patient through a CCTV camera and treatment must be 

paused to ensure proper patient positioning for the rest of the treatment. 

While gross movements of major body parts may be visible through monitoring of the 

CCTV camera, smaller movements can occur that may not be as noticeable. Pain in a patient’s 

hip while in the supine position due to the hard surface of the couch may cause the patient to 

shift their body positioning or a slight sinking of the patient’s body into an alpha cradle can 

occur after the patient has begun to relax. In each case, these minor movements can cause an 

unexpected deformation of the body. For treatments with higher dose rates, a minor shift of a few 

mm due to these factors could cause a drastic dose deposition outside of the intended PTV. As 

the movements become smaller and more subtle, they becomes difficult, if not impossible, to 

identify when the only visual queue is coming from the CCTV camera.  

The PTV itself is created during the planning process to accommodate the uncertainties 

of patient motions. The ICRU Report 50 and Report 62 originally defined the PTV to encompass 

the tumor volume (GTV), microscopic disease (CTV), as well as internal volume movement 

(ITV) and any movement of the patient that may occur during setup16,
 

17. Although the PTV was 

originally created as a simple margin added to the volumes just described, its application has 

changed since its inception due to the increased precision and accuracy of radiation therapy 

procedures. The created PTV may now vary in size for different treatment locations in the body 

and for different treatment techniques. The expansion can vary from a few mm to over a cm and 
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can be done so with margins set to different sizes in different anatomical directions18,
 

19. Much 

research and studies have been done to determine optimal PTV expansions based on different 

treatment sites and treatment modalities. Bell et al. found that, for post-prostatectomy IMRT 

treatments, the optimal PTV included an expansion of 0.5 cm in all directions except for the AP 

direction, which required a 1 cm expansion20. Chen et al. found that a 0.3 cm expansion in all 

directions was optimal for the PTV in cases of head and neck IMRT treatments21. Burgdorf et al. 

found that reducing the PTV for whole breast treatments from 0.7 cm to 0.5 cm, doses to the 

heart and lungs could be reduced while achieving a similar success rate22. As radiation 

prescriptions may incorporate the volume of the created PTV to ensure a specific percent of the 

volume receives a specific dose, it becomes paramount that extraneous movement be accounted 

for to ensure that the PTV does not move from the expected position. 

To address this issue, various vendors have created devices to continuously monitor the 

patient in order to quantify any patient movement all while displaying the information in real-

time. Vision RT created the AlignRT system which uses multiple IR cameras and sensors 

mounted around the patient to create a deformable, 3D representation of a user specified area on 

the patient being monitored23. It does so by projecting a known pseudo-random speckle pattern 

onto the patient and the system analyzes how that pattern is deformed compared to the known 

pattern. The use of multiple cameras allows the system to calculate and display various 

parameters of the patient’s current position compared to an initial position, including orthogonal 

movement and rotational movement (see Figure 2a). C-RAD created the Catalyst system which 

utilizes near UV wavelengths of light in order to create a similar 3D representation of the patient 

with real-time displays24. As with the AlignRT, the Catalyst utilizes multiple cameras to achieve 

deformable registration of the body as well as ascertain patient movement in multiple directions 
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(see Figure 2b). With the ability to detect movement in the mm range, devices such as these are 

integrated into the linac software to not only give a visual indication to the therapist that the 

patient has moved outside an accepted threshold, but to also ensure that treatment can 

automatically be paused if those movement thresholds are reached. This visual feedback and 

ability to create thresholds for movement by the user ensures increased accuracy of treatment 

without the need to constantly monitor the CCTV cameras. 

(a)           (b)  

Figure 2: Images of the user interface for (a) AlignRT and (b) Catalyst23,24. Both systems allow for threshold 

values to be set for movements and rotations of the patient. 

 

Respiratory Motion Tracking 

While tracking gross motion associated with the patient’s body requires a high degree of 

spatial resolution to ensure accuracy in the millimeter range, motion associated with a patient’s 

respiratory cycle requires a high degree of both spatial and temporal resolution. Due to its 

involuntary and cyclic nature, respiratory motion should be monitored and accounted for 

whenever treatments involve the thoracic or abdominal region. Depending on the type of 

breathing performed (shallow versus deep), studies have shown that organs such as the liver, 

kidney, or pancreas, move anywhere from 10mm up to 80mm in the superior-inferior (SI) 

direction during a respiratory cycle25,
 

26,
 

27. These large deviations from the expected position for 

these organs create unwanted uncertainties in the treatment planning process. Additionally, when 
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focused on just tumor movement located within the lungs, positional variation can occur in all 

three orthogonal directions. Studies have shown that movement in the superior-inferior (SI) 

direction can vary drastically (from 0mm up to 30mm) with smaller, yet still significant, 

movements in the anterior-posterior (AP) and left-right (LR) directions (from 0mm up to 

10mm)28,
 

29,
 

30.   

In 2006, AAPM Task Group 76 was created to address the difficulties of managing 

respiratory motion within a radiation oncology setting31. Aside from attempting to eliminate 

respiratory motion during treatments through the use of compression, breath-holds, and shallow 

breathing techniques, many different respiratory gating techniques are discussed. Tracking and 

recording of the respiratory cycle allows for a quantification and visualization of the respiration 

process by use of some external imaging device and is utilized during CT-SIM and, if tumor 

excursion is excessive, during actual radiotherapy treatments by gating the radiation beam during 

specific portions of the respiratory cycle. This former process, CT-SIM, is the beginning of every 

radiotherapy treatment planning as this is where the CT images are acquired for treatment 

planning and creates a baseline to which the patient is aligned during treatment.  

When utilizing respiratory tracking with CT-SIM, a retrospective binning process is used 

for the images obtained to create a 4D-CT image set. Figure 3 gives an example of this binning 

process by which images obtained at specific points along the respiratory cycle are placed into 

corresponding bins. Ideally, the images within each bin will be exactly the same as each image 

represents the same position of internal structures at the same time in each respiratory cycle. The 

images for each bin are then averaged and the average for each bin is stitched together to create, 

essentially, a movie. This movie then represents the internal motion of the tumor and internal 

organs throughout one respiratory cycle  

32. It is at this point that the determination is made 
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whether or not gaiting may be required during treatment based on the maximum movement of 

the tumor. Many centers consider the threshold of tumor movement to be 1.0 cm before gaiting is 

required for treatment and Liu et al. have shown that major component of tumor movement in 

the lungs was in the cranial-caudal direction33. With this threshold, it becomes important that any 

device used for measuring a respiratory trace have significant spatial and temporal resolution. 

 

 

Figure 3: Example of binning CT images during respiration cycle34 

 

To visualize and obtain a patient’s respiratory cycle, be it for binning of CT images or 

gating radiation therapy, or both, an external imaging device is typically required. Current 

devices such as Vision RT’s GateCT, Varian’s RPM Respiratory Gating System, and the Anzai 

Gating system all utilize different processes to obtain the respiratory trace23,35,
 

36,
 

37. While some 

devices require physical apparatus to be in contact with the patient either by use of an external 

marker on the patient or pressure sensor belt attached to the patient, newer technologies are 

allowing the same trace to be obtained using a marker-less process. In either case, a cyclic, 
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respiratory motion trace is created by the device’s software and is incorporated into the treatment 

planning process for purposes of 4D-CT creation and, if warranted by tumor movement beyond 

the clinic threshold, assisting in gated radiation therapy treatments. To accomplish gating during 

radiation therapy, the device tracks the same respiratory motion as was done during CT-SIM, but 

now interacts with the linac in order to turn the beam on/off during specific portions of the 

patient’s respiratory cycle38.  This allows for radiation treatment to occur when the tumor is in 

the exact expected position within the breathing cycle based on the 4D-CT images created during 

CT-SIM. 

Microsoft Kinect v2 Camera 

It is the purpose of this manuscript to detail the processes by which the Microsoft Kinect 

v2 Camera can be implemented to solve the need of a radiation oncology clinic for patient 

verification, gross motion management, and respiratory motion tracking. Outlined in the 

following chapters are details on the hardware and software involved when working with the 

Kinect v2 (Chapter 2), as well as specifics on how the Kinect can be utilized for patient 

verification by way of facial recognition and recall (Chapter 3), to track both gross anatomical 

patient motion as well as smaller localized motion within a user drawn ROI (Chapter 4), and to 

generate respiratory traces of patients with accuracy comparable to currently available 

commercial hardware (Chapter 5). Creation and validation of these processes will help 

widespread incorporation of the Kinect as a multi-purpose device within a radiotherapy clinic. 
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CHAPTER 2 “MICROSOFT KINECT V2 SENSOR” 

The Kinect v2 is multi-sensor camera/microphone system developed by Microsoft for the 

purposes of anatomical motion tracking. Developed and produced in 2014, the Kinect v2 is the 

successor to the original Kinect produced by Microsoft in 2010 (see Figure 4). Many of the 

specific differences and improvements upon the Kinect are listed in Table 139. The largest 

improvement upon the Kinect involves the depth camera resolution which is based upon an 

updated measurement process. The original version of the Kinect implemented a Pattern 

Projection principle by which a known pseudo-random speckle pattern was projected by the IR 

projector onto objects within its field of view. The resulting IR pattern was then captured by the 

IR sensor and the system analyzed any deformation by comparing to the known pattern40,
 

41. With 

a known distance between the IR sensor and IR projector, the disparity between the reference 

and live speckle pattern allows for a depth value calculation for each pixel within the frame. 

 

(a) (b)  

 

(c)  

Figure 4: Images of original Kinect (a), Kinect v2 (b), and internal structure of Kinect v2 (c)42 
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Specification Kinect v1 Kinect v2 

Color Camera Resolution 640 x 480 1920 x 1080 

Depth Camera Resolution 320 x 240 512 x 424 

Depth Measurement Process Pattern Projection Time-Of-Flight 

Horizontal FOV 57 degrees 70 degrees 

Vertical FOV 43 degrees 60 degrees 

Skeleton Joints Defined 20 Joints 25 Joints 

Simultaneous Bodies Tracked 2 Bodies 6 Bodies 

Table 1: Specification differences between Kinect v1 and Kinect v2 

 

To more accurately calculate depth values for each pixel, the Kinect v2 IR sensor was 

upgraded to include a time-of-flight camera. Many commercial devices currently available for 

purchase include time-of-flight cameras for purposes of distance measurement due to the 

increased resolution and accuracy when compared to IR pattern projection processes  

43-46. With 

typical time-of-flight cameras, the IR projector emits photons of a highly specific IR frequency. 

As the light is reflected off an object and back to the IR sensor, a phase shift occurs which is then 

computed by the system and allows for depth values to be calculated for each pixel within the 

array (see Figure 5). The Kinect improves upon this basic process by emitting three specific IR 

frequencies (120 MHz, 80 MHz, and 16 MHz)  

39. The use of three different emitted frequencies 

was added as a tradeoff between depth measurement precision and maximum measurable range.  

A larger frequency (shorter wavelength) assists in increasing the resolution of the camera due to 

smaller possible phase shifts that could occur corresponding to smaller possible distances. A 

smaller frequency (longer wavelength) allows for much larger possible phase shifts to occur 

which are associated with measurements of larger maximal distances  

47. The combination of three 

different frequencies produced by the Kinect, allows for a unique middle ground that ensures 

precision of measurement out to a larger distance 

48.  
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Additionally, the use of three different frequencies allows for a less computationally 

intensive process to solve the problem of phase wrapping that occurs for time-of-flight recorders. 

For a photon with a specific frequency/wavelength, the phase is typically given in radians from 

0-2π and describes the cyclic nature of the propagating wave. When a photon is reflected, the 

wavelength of that reflected photon can be offset from the original photon depending on the 

distance traveled. This offset is the phase shift and can easily be measured by the system when 

the reflected photon interacts with the detector. However, if the reflected photon is shifted far 

enough, it can appear in phase again given that phase shift values can only occur between 0-2π. 

For example, a photon could appear to be π/2 out of phase, but this calculated shift would be the 

same if the reflected photon was 5π/2, 9π/2, or 13π/2 out of phase given that each of these phase 

shifts are simply π/2 + 2π*k where k is some integer multiple. The system that absorbs and 

records the reflected photon must have a way to distinguish the total phase shift of the reflected 

photon in order to determine the total distance traveled. Utilizing 3 different frequencies allows 

for a phase unwrapping that becomes a simple implementation into the hardware and remains 

accurate enough to overcome noise (see Figure 6)49,
 

50. This unwrapping occurs when the phase 

shifts of all three frequencies line up allowing for the actual distance traveled to become 

apparent. Including this process into the distance measurement procedure allows the Kinect to 

calculate distance values for each pixel in increments as small as 1mm while measuring out to a 

distance of 4.5m. 
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Figure 5: Example of specific IR frequency signal emitted (blue, sE(t)) and phase-shifted IR signal received 

(red, sR(t))51 

 

 

 

Figure 6: Visualization of phase unwrapping with multiple frequencies. Each colored line represents data 

from three different frequencies. The dots represent multiple measurements for each frequency. When 

comparing each frequency to each other, only one distance value, the correct distance, will properly unwrap 

the phases50. 

 

The IR sensor in the Kinect v2 is also unique in that it is made up of a differential pixel 

array. Here, each pixel contains two photodiodes which are timed to be turned on/off with the 
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same clock signal that controls the IR emitter. The actual IR signals emitted are square 

waveforms and, as such, the clock signals are either in a high or low state.  If each pixel has 

photodiodes A and B, when the clock is in a high state, the photons falling onto the pixel will 

contribute charge [a] to A. When the clock is in a low state, the photons falling onto the pixel 

will contribute charge [b] to B. According to Sell et al, this allows for extraction of useful 

properties from the image acquired48,
 

52: 

 

• [a] – [b] indicates phase information that is used to calculate the depth values after 

an arctangent calculation 

• [a] + [b] indicates a “normal” grayscale image which is illuminated by ambient 

light (“ambient image”) 

• √∑([𝑎] − [𝑏])2 indicates the grayscale image that is independent of ambient light 

(“active image”) 

 

In order to easily access the data and imaging information generated, Microsoft has 

created the Kinect to function on a royalty-free development platform and has distributed a free 

software development kit (SDK) containing many sample applications to allow quick access to 

the various processes of the Kinect. These include accessing depth information, color images, 

body and skeletal joint tracking, as well as basic facial recognition53,
 

54. Interfacing with the 

Kinect is relatively simple and the hardware supports programming languages of C++, HTML, 

Java, as well as C#. Coding done throughout this dissertation was accomplished utilizing C# 

within Visual Studio. The sample applications provided within the SDK created a basis for 

accessing various features of the Kinect, but the projects mentioned in subsequent chapters 

expanded upon these samples to accomplish specific goals. 
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The programming framework utilized by the Kinect groups much of the information into 

classes for various “frames” Each class has a number of properties and sub-classes associated 

with it including frame descriptions (width, height, number of pixels in image, etc), time stamp 

for the frame, as well as the raw frame data acquired by the Kinect. Each of the “frames” created 

are associated with the different imaging hardware attached to the Kinect. The “DepthFrame” 

contains information associated with the depth calculations for each pixel within the IR sensor. 

The “ColorFrame” contains imaging information related to the high resolution color camera. The 

“BodyFrame” and “BodyIndexFrame” contains information specific to how many bodies are 

recognized by the Kinect, the tracked joints associated with each body, and which pixels are 

associated with each body recognized.  

Accessing the information associated with these frames requires understanding of exactly 

how the data is formatted. The information contained within the DepthFrame is utilized 

extensively throughout this dissertation given its importance in tracking and imaging objects in 

3D space. The raw depth data is simply the actual depth value registered to an object in front of 

the camera per pixel within the 512 x 424 frame. Instead of a 2D array of values, the depth 

values are contained within a 1D array of 217088 values, the total number of pixels associated 

with the 512 x 424 IR sensor. In this manner, isolating an area of pixels within the depth frame 

for a Region of Interest (ROI), requires knowledge of the pixel locations on the 512 x 424 grid. 

This can be accomplished in a two-step process. First, by utilizing the (X,Y) pixel location of the 

upper left corner ROI, the starting index within the 1D array of depth values can be located with 

the following line of code: 
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𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 =  (𝑋 +  (𝑌 ∗  𝑑𝑒𝑝𝑡ℎ𝐹𝑟𝑎𝑚𝑒. 𝐹𝑟𝑎𝑚𝑒𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛. 𝑊𝑖𝑑𝑡ℎ))  −  1 

 

Here, startIndex is the variable integer that will be saved as the starting index for the depth 

values required, and depthFrame.FrameDescription.Width is a call to obtain the width of the 

original DepthFrame. 

 The second step to parse out the specific depth values within an ROI requires creating a 

new 1D array of depth values by looping through the original array and incorporating only those 

pixels within the ROI: 

 

𝑓𝑜𝑟 (𝑖𝑛𝑡 𝑖 = 0, 𝑖 <  𝑅𝑂𝐼𝐻𝑒𝑖𝑔ℎ𝑡, 𝑖 + +) 

{ 

𝐴𝑟𝑟𝑎𝑦. 𝐶𝑜𝑝𝑦(𝑑𝑒𝑝𝑡ℎ𝐹𝑟𝑎𝑚𝑒,  

(𝑠𝑡𝑎𝑟𝑡𝐼𝑛𝑑𝑒𝑥 +  𝑖 ∗  𝑑𝑒𝑝𝑡ℎ𝐹𝑟𝑎𝑚𝑒. 𝐹𝑟𝑎𝑚𝑒𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛. 𝑊𝑖𝑑𝑡ℎ), 

𝑛𝑒𝑤𝐷𝑒𝑝𝑡ℎ𝐹𝑟𝑎𝑚𝑒, 𝑖 ∗  𝑅𝑂𝐼𝑊𝑖𝑑𝑡ℎ, 𝑅𝑂𝐼𝑊𝑖𝑑𝑡ℎ); 

} 

 

In this piece of code, the Array.Copy function will populate the array called “newDepthFrame” 

by looping through all data within the original “depthFrame.” It will do so according to the 

following algorithm: 

1. Start at the index startIndex in the original depthFrame as i=0 

2. Copy a ROIWidth number of values into newDepthFrame where ROIWidth is the pixel 

width of the ROI 

3. Increase i by one 
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4. Start at the index startIndex + i*depthFrame.FrameDescription.Width in depthFrame as 

this will be the starting point of the next row in the original 512 x 424 frame 

5. Copy a ROIWidth number of values into newDepthFrame starting at the index of 

i*ROIWidth of newDepthFrame where ROIWidth is the pixel width of the ROI 

6. Repeat 3-5 until i < ROIHeight, where ROIHeight is the pixel height of the ROI. 

 

Through this simple line of code, depth values within the ROI created and be extracted without 

the need to analyze the entire data set of depth values obtained by the Kinect.  

 The “BodyIndexFrame” is also a very useful frame to incorporate into this process as this 

allows for the created ROI to be cross referenced in order to eliminate pixels that are not 

associated with a specific body. The raw data within this frame is similar to the depth frame in 

that it consists of a 1D array of 217088 values (the total number of pixels in the 512 x 424 IR 

sensor). Each value in this array is either a 0 or 255 where a value of 0 indicates there is no body 

present in that specific pixel and a value of 255 indicates a body is present in that specific pixel. 

Given the similar structure of the BodyIndexFrame from the DepthFrame, the same algorithm 

used for the depth frame can be applied to retrieve information only applicable to a created ROI. 

Combining the two filtered arrays together allows the program to analyze information only 

applicable to data within the ROI and data only applicable to the body recognized by the Kinect 

within that same ROI. 

The easy to access data generated by the Kinect and the open-sourced, multi-faceted 

availability facilitated by Microsoft with the available SDK has allowed Kinect developers to 

create an array of applications for research and commercial purposes: 

 

• Real-time translation of sign language into spoken language and vice versa  

55 
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• Controlling robotics with hand and body movements56,
 

57 

• Manipulation of 3D models for biology, engineering, and geography education58 

 

Apart from widespread commercial use, the Kinect has been heavily researched for 

applications within the medical community. Its ability to combine accurate depth data with high 

resolution color images have enable researchers and programmers to utilize this versatile devices 

for numerous medical research opportunities and applications: 

 

• Touch-less interaction of computer systems within surgical suites59 

• Assisting in muscle rehabilitation and stroke recovery60,61 

• Tracking of head orientation during PET scans62 

• Assist in early detection of autism in children63,
 

64 

• Monitor elderly patient’s daily movements to analyze gait and potential falls65 

 

Because imaging plays such a large role within radiation oncology, researchers within the 

field have identified many uses for the Kinect and much research has been completed on the 

Kinect since its inception:  

 

• Automatic couch and positioning setup for radiotherapy sessions66 

• 3D scanning of surface to allow for bolus creation from 3D printer67 

• Assist in patient thickness estimations to improve x-ray imaging techniques  

68 

• Respiratory motion tracking using physical markers69,70 

• Real-time monitoring of patients during radiotherapy treatments71,72 
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With many different devices currently available that assist in real-time positioning or 

patient monitoring that work on similar principles, the Kinect offers a chance for smaller or more 

independent clinics to incorporate these advancements in technology and improve their radiation 

treatment techniques. In subsequent chapters, implementations of these various processes are 

presented and analyzed for their accuracy and feasibility. 
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CHAPTER 3 “IMPLEMENTATION OF FACIAL RECOGNITION WITH MICROSOFT 

KINECT V2 SENSOR FOR PATIENT VERIFICATION” 

 

With radiotherapy procedures becoming more precise and complex, ensuring that errors 

in treatment do not occur becomes exceedingly important. The process of eliminating errors in 

treatment starts with patient verification. Although the Joint Commission has stated that patient 

identification within a hospital setting only requires two identifiers  

6, typically given as a verbal 

recall of the patient’s name and date of birth, many clinics continue to improve upon this process 

by requiring additional identifiers. Some may simply add a patient photograph to the chart for 

visual identification, while others have installed palm or iris scanners outside of the treatment 

vault to scan a patient before entering 9,
 

10,
 

73,
 

74. In either case, additional verification procedures 

such as these can greatly benefit any radiation oncology clinic to ensure that patient errors are 

kept to a minimum.  

To continue with the advancement of patient verification processes, the Kinect v2 was 

adapted to create a facial recognition process. The Kinect SDK was used to begin this process as 

it contains a facial mapping library that can be utilized to collect the coordinates of a vast 

number of facial feature locations in 3D space.  It also includes a sample application for a basic 

implementation of this library.  However, facial mapping is distinct from facial recognition, and 

methodology was created to use this mapping information in a manner that facilitates facial 

identification. The information presented in this chapter has been published within Medical 

Physics in 2017 but is also presented here as part of this dissertation75. 

For this process, we have used the facial mapping library to create a straightforward 

system for performing facial recognition and recall. The matching algorithm is based on the 

comparison of vector magnitudes between facial fiducial points in a pre-collected reference set to 
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those collected through real-time sensor capture.  The overall performance of the system has 

been benchmarked through a sensitivity and specificity analysis, and potential limitations of the 

system are analyzed with respect to varying light conditions between reference data collection 

and real-time matching to collected sensor data.   

The Kinect v2 camera was utilized to image and capture facial details. The example 

application presented in the SDK utilizing the HDFaceMapping library was used as a basis for 

the data collection process.  The flowchart given in Figure 7 displays an overview of the entire 

process. This begins with the system recognizing the closest body to the camera, and isolating 

the body on the screen, removing all background. The patient then interacts with the Kinect by 

way of a hand gesture recognition process to initiate the facial mapping. Then, the data collection 

process of facial features begins through user interactions, facilitated by on-screen instructions 

and chimes to indicate when each action is complete. The system then continues through the 

calculations used to specify the details of a specific face, and through the comparison algorithm 

used to identify whether or not a facial match has been made. Lastly, it concludes with 

interaction from the individual, via hand gesture recognition, to verify their identity to that of the 

match made within the database. 

The initial facial contour mapping completed by the HDFaceMapping library does so by 

capturing 16 specific frames from the Kinect utilizing both the color and depth camera: 4 facing 

the camera, 4 with the head rotated 45° to the right, 4 with the head rotated 45° to the left, and 4 

with the head pitched upward at 45°. Figure 8 displays the 4 specific poses needed by the user in 

order to complete the data collection process. Rotation, pitch, and yaw of the head are all 

calculated by the system and are incorporated into this process to determine the extent at which 

the head is still required to be moved.  
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Figure 7: Flowchart illustrating patient interface and program processes from initiation to match 

confirmation. Body recognition and patient initiation is contained on the left of the flowchart and SDK data 

acquisition is contained within the middle of the flowchart. Algorithm, calculations, and database references 

are all part of the code written for this process and are displayed on the right side of the flowchart. 

 

 

The facial contour created by the SDK from the 16 specific frames consists of 1347 facial points 

tracked in 3D space to specific locations on the individual’s face as it moves in front of the 

camera. Of the points collected, 35 are specific to various facial landmarks (see Table 2 and 

Figure 8). Through initial analysis of the data extracted, it was found that 4 points were highly 

variable when capturing facial data from the same person through subsequent acquisitions. These 

4 points were located on the corners of the mouth and center of the lower lip. As such, they were 

ignored during the analysis leaving a total of 31 points to be used for facial comparisons.  
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Midline Bilateral Removed 

Chin Cheekbone Mouth – Left Corner 

Forehead Cheek – Center Mouth – Right Corner 

Mouth Upper Lip – Mid Bottom Eyebrow – Center Mouth Lower Lip – Mid Bottom 

Mouth Upper Lip – Mid Top Eyebrow – Inner Mouth Lower Lip – Mid Top 

Nose Bottom Eyebrow – Outer  

Nose Tip Eye – Inner Corner  

Nose Top Eye – Mid Bottom  

 Eye – Mid Top  

 Outer Corner  

 Lower Jaw – End  

 Nose Bottom  

 Nose Top  

Table 2: List of facial location for the 35 extracted facial points including 4 points removed from the analysis 

due to their extreme variability within acquired data. The nomenclature refers to that used in the SDK 

 

 

For any point, p, the position in 3D space with respect to the color camera lens is 

extracted from the system as p=(x, y, z). For any two points, p1 and p2, the absolute vector 

magnitude between those points can be calculated using of the following: 

                                              𝑝1 = (𝑥1, 𝑦1, 𝑧1)    𝑝2 = (𝑥2, 𝑦2, 𝑧2)    (1) 

                                        |�⃑�12| = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2          (2) 

To ensure these 3D points are being collected from the same reference position for each 

acquisition, the individual is instructed to look straight into the camera while the 3D positions of 

the 31 points are collected. From the 31 points extracted, 465 absolute vectors magnitudes are 

calculated and saved such that all 465 absolute vector magnitudes act as a representation of the 

original face. 
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(a)  (b)   

      (c)   (d)  

Figure 8: 4 poses required to complete the facial mapping procedure: (a) Straight ahead. (b) 45° rotation to 

the right. (c) 45° rotation to the left. (d) 45° pitch upwards. 31 Facial Points used in the analysis are also 

shown. All points remain on specific facial landmarks as the head moves throughout 3D space. 

 

For each acquisition, the Kinect was mounted on a tripod set to a height of 160 cm (see  

Figure 9). To ensure data collection under identical conditions, optimal camera-to-individual 

distance was needed and was found to be dictated by two competing processes: body tracking 

requirements and depth sensor resolution. The Kinect software has the ability to detect when a 
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human body has entered the frame of the camera. The software can then isolate and differentiate 

said body when compared to a non-human object such as a chair or animal. Once detected, the 

software will track the body while it is still within the frame. Isolation of the body within the 

frame can then be utilized to create a “green screen effect” such that all background is removed 

from the image and only the individual is displayed. However, the body detection and isolation 

can only occur if a significant portion of the individual’s body (head + torso) is visible within the 

frame. This “green screen effect” was implemented into the code and dictated the minimal 

camera-to-individual distance required.  

The maximum camera-to-individual distance was dictated by the depth sensor resolution 

which was a function of the Kinect hardware. Specifications on the depth sensor state that it has 

the ability to detect distances ranging from 0.5m to 4.5m76. However, given that the absolute 

magnitudes being calculated are within the mm range and area represented by an individual pixel 

increases with distance, having the individual as close to the camera as possible allows increased 

accuracy while measuring such minute details. As such, a distance of 1m was chosen to 

maximize the percentage of a body within the frame while minimizing resolution loss of the 

depth sensor. This is incorporated into the display and will indicate to the individual how close 

or far away they are from the required distance of 1m.  
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Figure 9: Kinect mounted on tripod set at height of 160 cm. Additional light source was added to the top of 

the Kinect allowing for consistent lighting during each acquisition. 

 

Additionally, to ensure the process is as user friendly as possible, a hand gesture 

recognition feature was implemented with the interface. The Microsoft SDK contains sample 

codes to recognize hand gestures such as an open palm or a closed fist. The code itself is 

minimal and is easily implemented into any existing code. As such, the hand gesture recognition 

process was incorporated into the facial recognition process to allow for a tactile-free interface. 

To initiate facial recognition, the user can simply open their palm to the camera. Once the 

recognition process has been completed, the user can use an open palm to confirm identity or a 
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closed fist to deny identity. In each case, the user is prompted through visual cues within the 

display to interact with the system in this manner.  

As the facial mapping process is susceptible to varying levels of lighting, an LX1330B 

Digital Lux Meter was used to measure the ambient light 1m from the camera. Typical values 

ranged between 110 Lux to 220 Lux and were highly dependent on the room or hallway used 

during the acquisition. In an attempt to create identical lighting conditions for each location used, 

an additional light source was added to the tripod, above the Kinect camera, to ensure adequate 

and identical lighting (see Figure 9). 

The recognition algorithm relies upon the calculation of the absolute magnitude 

difference between vectors acquired at a pre-collected reference session and those acquired at 

later verification sessions.  Figure 10 plots sample data calculated for all 465 absolute magnitude 

differences between a sample correct facial match and a sample incorrect facial match. 

Visualizing the data in this manner allowed the identification of the mean, x̄, and median, x̃, of 

these absolute magnitude differences to be tested as similarity scores for match/non-match 

determination due to the fact that a correct facial match appeared to have much lower absolute 

magnitude differences for the majority of the 465 vectors generated. 

In order to adequately test the designed algorithm and determine specific threshold values 

for the mean and median that would indicate a facial match, a study was designed to acquire a 

facial database with as many faces as possible with as many repeated acquisitions as possible. 

This would ensure that the system could not only recognize the same individual over multiple 

sessions, but also be able to discriminate against many different individuals within the database. 

As such, a database of 39 different faces was acquired to begin the testing process. 37 of these 

individuals were compared to the database multiples times over multiple sessions as well as 12 
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additional individuals not in the database. This created a total of 115 specific acquisitions and 

allowed for 5299 individual comparison trials.  For each acquisition, the 465 vector magnitudes 

obtained were stored in a separate database for further analysis. 

 

 

 

Figure 10: Graph of the Absolute Magnitude Differences calculated for a correct facial match and an 

incorrect facial match. Values for each absolute magnitude difference for a correct facial match (green) are 

much lower than that for an incorrect match (red). 

 

Comparison of the data was done through a one-to-one matching process. This is 

typically a verification of identity in that the face being acquired is simply being checked against 

the existing face on file for that individual. In this case, the face acquired was individually 

compared to each face within the database to allow for True Positive (TP), False Positive (FP), 

True Negative (TN), and False Negative (FN) values to be generated. As the mean and median 

were chosen for similarity scores, each parameter was calculated for the absolute magnitude 
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differences calculated in each comparison. Figure 11 displays the distribution of data for each 

parameter given a correct match and an incorrect match.  As the spread of data for a correct 

match was smaller and more narrowly peaked compared to the large spread of data for an 

incorrect match, both statistical parameters were used for match determination and calculation of 

the optimal threshold for each was then required. To accomplish this, Receiver Operator 

Characteristic (ROC) curves were constructed.     

 

 

 

Figure 11: Plot of Similarity Score distributions calculated for both a correct match and incorrect match 

when mean and median of the absolute magnitude differences are calculated. The correct matches (green) 

show a highly peaked, lower valued mean and median when compared to an incorrect match (red) which has 

a broadly peaked, larger valued mean and median. 
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Although used for many diagnostic testing procedures, ROC curves are also used to 

determine the validity and accuracy of identity verification processes such as fingerprint 

identification scanners77  or, as in this study, facial recognition. Identity verification typically 

involves layers of pattern matching to ensure valid True Positive and True Negative results. The 

ROC curves generated are based off of calculated values for Sensitivity and Specificity given by 

Equations 3 and 4. Both values are important in this study as sensitivity indicates the percentage 

of comparisons that will correctly identify an individual when comparing a live acquisition to a 

previous session (True Positive Rate). The specificity calculated indicates the percentage of 

comparisons correctly identified an incorrect match when comparing a live acquisition to all 

individuals within the database (True Negative Rate).  

The ROC curves in this study were constructed by first calculating the mean and median 

of the absolute magnitude differences in each of the 5299 comparisons in this study. Once 

obtained, the threshold value of each parameter, which would ultimately determine whether a 

comparison was a match, was varied between 0.0007mm and 0.004mm. These threshold limits 

were chosen simply because moving past these values yielded no difference in the TP, FP, TN, 

and FN values. As each threshold value was changed in increments of 0.0001mm, the number of 

TP, FP, TN, and FN were counted with sensitivity and specificity values calculated from those 

counts as defined by Equations 3 and 4. Each pair of sensitivity and specificity values calculated 

were then plotted on a semi-log plot in order to generate the ROC curves.                                                              
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                                                             𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

                                                             𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁+𝐹𝑃
    (4) 

ROC curves generated by varying the match threshold for both similarity scores are 

shown in Figure 12. The area under the curve (AUC) calculated for each curve was ~99% 

indicating that both the mean and median are excellent parameters to differentiate between 

correct and incorrect matches.  

 

 

Figure 12: ROC curves generated from facial match determination by varying threshold of Mean or Median 

value required for a match. Logarithmic scale used to better visualize data. 

 

 

Threshold optimization utilizing the ROC curves was calculated using both the Youden 

Index (largest vertical distance from the line of equality) and the smallest distance from the curve 
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to the point (0,1)78. Both optimization criteria resulted in the threshold of 1.61mm for the mean 

and 1.27mm for the median (see Table 3). These optimization criteria are done without any 

reflection of the type of procedure being performed.  

 

Parameter Threshold Sensitivity Specificity 

Mean 1.61 mm 96.52% (111/115) 96.76% (5016/5184) 

Median 1.27 mm 96.52% (111/115) 96.68% (5012/5184) 

Table 3: Summary of ROC curve analysis and threshold calculations 

 

Although the threshold optimization criteria indicated specific values for the mean and 

median leading to excellent values for sensitivity and specificity (~96% for both), each of these 

parameters are the result of a percentage of False Positives or False Negatives and do not account 

for the actual number of False Positives/Negatives. Given the results from the threshold 

optimization, 170 false positives would have been encountered which is not acceptable for a real-

world biometric verification process. Altering the threshold to more acceptable values can 

dramatically decrease the false positives while increasing the false negatives.  

Lastly, it was found that ambient light plays an important role regarding the consistency 

of the acquisition process. In order to visualize and quantify this effect, two faces were acquired 

under varying levels of light, multiple times. The average of the vector magnitudes were taken 

for each light level and the absolute vector magnitude differences were calculated as done in the 

initial study. In this case, however, each face was only compared to acquisitions of the same face 

(i.e. Face 1 was only compared to Face 1 and Face 2 was only compared to Face 2). Mean and 

median values were determined for these differences and plotted as a function of light level to 

determine the correlation between decreasing light level and acquisition accuracy. 

For this light intensity study, a face was imaged 5 times at 8 specific light levels. These 

levels varied from 60 lux to 285 lux. The 5 acquisitions taken at the highest light level, 285 lux, 
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were averaged together and saved to a database in order to be used as a reference. Each 

acquisition taken at all 8 specific light levels was then compared to the reference facial data 

taken at 285 lux. Comparisons were performed exactly as before but with the average absolute 

magnitude differences calculated for each of the identical 465 vector magnitudes. The mean and 

median of those average differences for each light level was then determined. This acquisition 

study was performed on two different volunteers under identical conditions. The results of this 

analysis are displayed in Table 4 and Figure 13 and show a decrease in both the mean and 

median vector magnitude difference as light level is increased. To achieve the most accurate and 

consistent acquisitions, the ambient light around the face being acquired should be above 200 lux 

and should be consistent from one acquisition to the next. 

Light 

Level 

Face 1 Face 2 

Mean 

Magnitude 

Difference 

Median 

Magnitude 

Difference 

Mean 

Magnitude 

Difference 

Median 

Magnitude 

Difference 

60 lux 0.812 mm 0.710 mm 1.420 mm 1.187 mm 

80 lux 0.781 mm 0.657 mm 1.473 mm 1.249 mm 

105 lux 0.687 mm 0.581 mm 1.452 mm 1.168 mm 

135 lux 0.668 mm 0.578 mm 1.083 mm 0.935 mm 

165 lux 0.643 mm 0.508 mm 0.943 mm 0.708 mm 

185 lux 0.633 mm 0.566 mm 0.786 mm 0.571 mm 

215 lux 0.589 mm 0.536 mm 0.707 mm 0.514 mm 

285 lux 0.399 mm 0.348 mm 0.345 mm 0.328 mm 

Table 4: Mean and Median values of the Absolute Magnitude Differences obtained and varying light levels 

for two volunteers. 

 

Some practicality issues were encountered during this process that should be noted. Light 

glare from a person’s glasses could cause the program to misread facial features and, thus, facial 

points. Scarves around a person’s neck could cause some errors during the gesture recognition 

process and hair covering part or all of the forehead can cause the program to misread facial 

points around that area. All of these issues were overcome through appropriate visual 
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instructions to the participant before data capture, although the need to issue such instructions 

does display some of the weakness of the technique.  

 

 

Figure 13: Mean and Median values of the Absolute Magnitude Differences graphed as a function of light 

level. As ambient light levels are increased, the mean and median of the absolute magnitude differences for 

the same face decrease indicating a more accurate acquisition at higher light levels. 

 

 

Even though this facial recognition process has these limitations, the core technique has 

shown to be functional and has the ability to perform as intended. The unique properties of the 

Kinect enable a 3D facial points to be extracted and utilized in this process all while allowing for 

an interface that only requires hand gestures to operate. Forced interaction with a patient for 

verification may prove to be slightly cumbersome, but further improvements may increase the 

speed of the verification process allowing a more natural interaction between the patient and 

program.  



36 

 

 

 

CHAPTER 4 “AUTOMATIC MARKER-LESS PATIENT MOTION TRACKING 

UTILIZING THE MICROSOFT KINECT V2 SENSOR” 

 

Verification of a patient’s identity enhances patient safety within the radiation oncology 

clinic by ensuring the correct patient is receiving the correct treatment. However, with said 

treatment’s ever increasing precision and complexity, delivery techniques also become more 

advanced. Thus, the next step to ensure patient safety and treatment efficacy is to monitor and 

quantify patient motion before and during radiation treatments. 

Although a small amount of patient motion is accounted for within the setup margin of 

the PTV, gross patient motion can become a significant source of error. Treatment procedures 

such as SBRT and SRS may deliver high dose fractions or high dose-rate treatments where even 

small patient movement could result in not only an underdose to the target, but an excessive 

overdose to surrounding normal tissue  

79. As previously mentioned, for treatments to the lungs or 

breast, patients may be required to hold their arms over their head which can be an unnatural and 

uncomfortable position to hold. Patients may shift position or even move one or both hands 

down to their side, shifting the lungs or breast tissue away from the expected location causing a 

large portion of the dose to be delivered to the incorrect site.  

To ensure little to no patient movement, intra-fraction motion should be monitored both 

during radiotherapy treatment as well as between CBCT alignment and actual treatment. 

Commercial devices such as the Align RT  

80 and C-Rad Catalyst  

24 are currently used for high-

precision, real-time surface tracking but their implementation within a radiotherapy clinic may 

be outside the reach of some locations due to factors such as hardware integration or cost. In this 

chapter, the capabilities of the Microsoft Kinect v2 sensor are investigated in order to accomplish 

similar real-time surface tracking to quantify and monitor both gross and local patient motion to 
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ensure that the initial setup of patient positioning remains throughout the entire treatment. The 

information presented here has been submitted for publication in 2017 within the Journal of 

Applied Clinical Medical Physics but is also presented as a part of this dissertation81 

The Kinect was adapted to save an initial state of a patient’s position and continuously 

compare the patient’s current position to that initial state through the use of both the depth sensor 

and automatic skeletal tracking provided by the SDK. Previous studies with the Kinect have 

provided proof of concept for marker-less patient positioning setup and motion tracking of non-

human shaped objects 

41,
 

66,
 

71. The research presented here builds upon these studies by employing 

real-time patient motion tracking and incorporating automatic skeletal tracking capabilities 

available with the Kinect sensor. With this, the Kinect can identify large anatomical movements 

as well as smaller, more subtle movements associated with the treatment area. 

The data collection processes presented here focused on two separate collection methods. 

The first involved looking at the entire patient to detect gross motion through the use of 3D joint 

data collected by the Kinect’s automatic skeletal tracking. Tracking the position of these joints in 

3D space allows for a broad overview of the patient’s movement while simultaneously allowing 

the user to track and focus on specific joints as needed. The second data collection method 

involved narrowing movement detection from the entire body or specific joints down to a Region 

of Interest (ROI) that could be selected by the user. For this second method, depth values of 

individual pixels within the ROI were tracked and an algorithm was derived to determine 

movement of the ROI based on pixel depth values within it. This allows for tracking in areas of 

the body where the treatment area is small and where the accuracy of the body joint tracking is 

not sufficient for the area of interest. 
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Both of the data collection methods require the use of the Kinect’s depth sensor to obtain 

depth data of objects in front of the camera. As previously mentioned, the depth sensor 

resolution is 512 x 424 and has the ability to detect distances ranging from 0.5m to 4.5m. Depth 

data is returned for each pixel within the 512 x 424 frame in 1mm increments and can image at a 

rate of 30 frames per second76. Acquiring the depth data is relatively simple, requiring only a few 

lines of code, and the SDK produced by Microsoft has multiple applications and examples to 

access the information. The skeletal tracking is accomplished by the system generating 25 

specific anatomical joints and tracking their relative position on the body. Each joint is tracked in 

3D space with X, Y, and Z coordinates given relative to the camera. Specific details regarding 

each process and testing is listed in subsequent subsections.  

As a general overview of the process, after the patient has been placed into the correct 

position on the couch for treatment and the start button is clicked, filters are used to smooth out 

the depth and joint data. 30 frames of depth and joint data (1 second worth of frames) are 

averaged together during this process. The initial segmentation mask, composed of an average of 

30 frames of both joint and depth data, is saved within the program to be used as reference for 

movement. Once the segmentation mask has been compiled, the system will continuously filter 

the live stream of depth and joint data for comparison. For the depth data, a running average of 

30 frames is used and each pixel within the running average is compared to the corresponding 

pixel within the segmentation mask and a depth difference for each pixel is calculated. The depth 

difference calculated for each pixel could be positive or negative depending on whether the area 

represented by the pixel has moved toward or away from the camera. For the joint data, a similar 

process is done by which the data is averaged over 30 frames and the distance between the initial 
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and current positions of each joint are calculated using the X, Y, and Z joint data generated by 

the Kinect. 

Skeletal Tracking 

The incorporation of depth data to begin body and skeletal tracking is done automatically 

through the BodyBasics and BodyIndexBasics libraries within the SDK. The code itself allows 

the system to identify and isolate a body that is present in front of the camera and generate an 

approximation of a simple skeletal structure by the use of 25 specific anatomical joints as listed 

in Table 5 and displayed in Figure 14. Although approximate in their actual anatomical location 

on the body, each joint is locked to relative positions on the tracked body itself.  

The exact process by which these joints are created is not divulged by Microsoft. 

However, the body tracking functionality, and thus, skeletal tracking, is known to incorporate 

body contours and high depth gradients near the edges of the recognized body by the depth 

sensor 

82. Each joint’s position is given in 3D space allowing for the tracking of joints to their 

relative distance and position from the camera. As the joint recognition process is typically used 

on a person standing in front of the camera, it was found that, when in the supine position, some 

joints were not as static as others with regards to their placement on the body. Through this 

study, it was found that 9 specific joints were more stable than the rest and, as such, were the 

only joints tracked for their validity (see Table 5, Figure 14, and Figure 15). 
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Joints Used Joints Ignored 

Spine-Shoulder Head 

Spine-Mid Neck 

Spine-Base Wrist - Left and Right 

Shoulder Left Hand – Left and Right 

Shoulder Right Hand Tip – Left and Right 

Elbow Left Thumb – Left and Right 

Elbow Right Knee – Left and Right 

Hip Left Ankle – Left and Right 

Hip Right Foot – Left and Right 

Table 5: List of the 25 skeletal joint locations created by SDK. The nomenclature refers to that used in the 

SDK. The second column lists the 16 joints not used in this study due to their inconsistent positioning while a 

patient is in the supine position. 

 

 

Figure 14: 25 Skeletal Points created by the Kinect when tracking a body. Square joints are the 17 joints not 

used in this study due to their inconsistent placement.  Circle joints consist of the 9 joints chosen to be tracked 

in this study with the SDK nomenclature identified. 
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(a)           (b)   

Figure 15: Example of image displayed while tracking joint movement of LeftElbow and RightElbow: (a) 

initial position and (b) movement of both arms. Green squares idicate original position of both elbows and 

Red squares indicate current position of tracked joints that have been moved beyond threshold value. 

 

Smoothness and stability of the joint data was accomplished by use of the Holt-Winters 

Double Exponential Smoothing filter 

83. This specific filter removes small fluctuations in the joint 

data while the entire skeleton is tracked and calculated by the system  

82.  Sample code for this 

smoothing filter was also provided by Microsoft and is available on their website  

84.  The double 

exponential filter has the ability to incorporate trends present in data as well as configurability of 

certain parameters in order to better suit specific types of data. This filter is governed by 

Equations 5 and 6 

85: 

 𝑇𝑟𝑒𝑛𝑑: 𝑏𝑛 =  𝛾(�̂�𝑛 − �̂�𝑛−1) + (1 − 𝛾)𝑏𝑛−1                           0 < 𝛾 < 1 (5) 

  𝐹𝑖𝑙𝑡𝑒𝑟 𝑂𝑢𝑡𝑝𝑢𝑡: �̂�𝑛 =  𝛼𝑋𝑛 + (1 − 𝛼)(�̂�𝑛−1 + 𝑏𝑛−1)           0 < 𝛼 < 1 (6) 

Here, γ is the trend smoothing factor that allows configurability of the filter to be slower 

(values closer to 0) or faster (values closer to 1) in correcting towards the raw data. α is the data 

smoothing factor that allows for a smoother trend with increased latency (values closer to 1) or a 

less smooth trend with decreased latency (values closer to 0). When tracking and filtering joint 
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data, 0.25 was given as the optimal value for both γ and α.  The trend value (bn) is essentially a 

smoothed difference of two concurrent filtered values (�̂�𝑛and �̂�𝑛−1) while the current filtered 

value (�̂�𝑛) is an adjustment based on the previous trend value and previous filtered value17.  

Lastly, given that the 3D coordinates measured by the Kinect are utilizing orthogonal 

directions with respect to the Kinect face, any rotation of the Kinect requires rotation of the joint 

coordinates measured by the system. With the Kinect mounted directly over the patient, rotation 

occurs about the X axis (medial-lateral direction). As such, the X coordinate is unaffected but the 

Y (superior-inferior) and Z (anterior-posterior) coordinates are modified by the standard 

coordinate rotation equations for rotations about the X axis: 

 𝑦(𝑡)′ = 𝑦(𝑡)𝑐𝑜𝑠𝜃 − 𝑧(𝑡)𝑠𝑖𝑛𝜃 (7) 

 𝑧(𝑡)′ = 𝑦(𝑡)𝑠𝑖𝑛𝜃 + 𝑧(𝑡)𝑐𝑜𝑠𝜃 (8) 

 Where y(t) and z(t) are the y and z coordinates of the joint at time t, and θ is the angle of 

the Kinect face to the couch. Modifying the joint coordinates generated by the Kinect with these 

equations allows the new coordinates to be within same coordinate system as movement in the 

plane of the couch. 

In order to verify the accuracy of the skeletal joint data, a volunteer was imaged while 

lying on a PerfectPitch 6DoF couch. This couch allows for highly accurate movements, down to 

1/10mm, to ensure joint movement picked up by the Kinect can be correlated to exacting 

movement of the couch. The couch was moved in increments of 2mm along each orthogonal 

direction (X, Y, and Z) with recordings of the X, Y, and Z joint positions taken at each interval 

ranging from -10mm to 10mm. Additionally, the couch was moved to radial distances of 5mm, 

10mm, 15mm, and 20mm with varying values of X, Y, and Z coordinates. To calculate the radial 



43 

 

 

 

distance from the 3D coordinates of a joint, the 3D vector magnitude is calculated using the 

following: 

 𝑝1 = (𝑥1, 𝑦1, 𝑧1)    𝑝2 = (𝑥2, 𝑦2, 𝑧2) (9) 

 |�⃑�12| = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 + (𝑧2 − 𝑧1)2              (10) 

Where p1 is the live 3D position of the joint and p2 is the initial 3D position of the joint. 

3D coordinates and radial distances recorded by the Kinect were then compared to actual couch 

movements in order to quantitatively assess the accuracy of the joint positions. 

A plot of the joint data recorded for the “Elbow Left” joint is shown in Figure 16. 

Although a general linear correlation can be seen between the X, and Z movement recorded for 

these joints and the actual couch movement, the linearity was not exactly 1:1 (i.e. 5mm of couch 

movement was not necessarily recorded as 5mm by the Kinect). The Y coordinate was 

particularly poor when recording movement values and continuously under reported the 

movement in that direction. 

To ensure that the angle of the Kinect or unforeseen rotations were not interfering with 

the results, the radial distance moved was then calculated given that the calculation of the 3D 

vector magnitude is rotation invariant. Table 6 displays the average radial distances calculated 

for radial movements on the couch of 5mm, 10mm, 15mm and 20mm and indicate that some 

joints are more sensitive to movement than others. Additionally, Figure 17 displays the 

Coefficient of Variation (COV) attached to each joint for those same radial couch movements. 
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Figure 16: Plots of recorded movement for the ElbowLeft joint. Couch movement performed was done so in 

three orthogonal directions (X, Y, and Z) from -10mm to +10mm. 

 

 

 

Joint 
Average Radial Distance Measured By Kinect [mm] 

Rc=5mm Rc =10mm Rc =15mm Rc =20mm 

Spine-Shoulder 3.22 ± 1.07 7.60 ± 2.49 12.14 ± 6.60 18.25 ± 7.58 

Spine-Mid 4.12 ± 0.64 6.67 ± 2.30 11.43 ± 4.77 16.84 ± 4.72 

Shoulder Left 2.52 ± 0.55 5.37 ± 2.88 9.04 ± 7.82 16.20 ± 6.61 

Shoulder Right 3.73 ± 1.08 5.78 ± 2.49 8.96 ± 3.14 18.14 ± 9.28 

Spine-Base 5.27 ± 1.35 9.41 ± 2.45 13.45 ± 3.74 20.38 ± 8.71 

Elbow Left 5.10 ± 0.82 9.28 ± 1.40 16.43 ± 2.56 17.61 ± 2.10 

Elbow Right 4.82 ± 1.06 10.25 ± 2.48 16.33 ± 1.86 18.18 ± 3.92 

Hip Left 5.03 ± 1.06 8.60 ± 2.90 12.33 ± 3.20 14.79 ± 3.13 

Hip Right 5.89 ± 1.76 10.20 ± 2.20 14.40 ± 4.50 18.26 ± 6.11 

Table 6: Average radial distance and standard deviation measured for each joint measured by the Kinect. Rc 

indicates the radial distance moved by the couch and was done so at distances of 5mm, 10mm, 15mm, and 

20mm for varying values of X, Y, and Z. 
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The Left and Right Elbow joints proved to be the most sensitive with calculated radial 

distances consistently closer to the couch radial movement and COV values consistently lower 

than other joints, typically between 15%-20%. These specific joints can prove to be most useful 

for tracking gross motion during any treatment requiring the patient to hold their arms in an 

overhead position, as the Kinect would be able to track and identify which elbow and arm may 

be involved with movement and alert the user to stop treatment. 

Additionally, the Left and Right Hip joints, as well as the Spine-Base joint, were also 

sensitive to movement, similar to that of the elbow joints for 5mm and 10mm. However, COV 

values increased to 30%-40% for radial movements of 15mm and 20mm. Overall, as couch 

radial distance was increased, the variability of data obtained did appear to increase with larger 

standard deviations and COV calculated for many of the joints as movements increased to 

20mm. As such, the tracking of joint movement for these joints would be most reliable for radial 

movements between 5mm and 10mm.   

For these 5 joints (Left/Right Elbow, Left/Right Hip, and Spine-Base), threshold values 

can be created based on their average distance and standard deviation calculated. For 5mm of 

movement, it would be reasonable to create a threshold of calculated radial distance of 3mm to 

assume 5mm of radial movement based on an average calculated distance of ~5mm and average 

standard deviation of ~1mm. Similarly, for 10mm of radial movement, it would be reasonable to 

create a threshold of calculated radial distance of 7.5mm to assume 10mm of radial movement, 

based on an average calculated distance of ~10mm and average standard deviation of ~2.5mm.   
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(a)  (b)  

(c)  (d)  

Figure 17: Coefficient of Variation (COV) calculated for each joint when the couch was moved radially (a) 

5mm, (b) 10mm, (c) 15mm, and (d) 20mm. COV is defined as the Standard Deviation divided by the Mean 

(σ/μ). 

 

The Left Shoulder, Right Shoulder, Spine-Mid, and Spine-Shoulder joints had calculated 

radial distances consistently lower than the couch radial movement and more variable. As such, 

they may not be viable for tracking movement. Given that joint creation by the Kinect is based 

off of depth contours and gradients, it may be the case that these joints are not as easily tracked 

by the system given that higher gradients do not occur in these regions. 
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When utilizing the skeletal tracking, distance from the camera plays a large role in 

accurate data collection. The depth sensor is the primary method by which the Kinect generates 

the skeletal joints through recognition of body contours and edges. When the body is too close to 

the camera (~ 0.5m – 1m), the skeletal tracking cannot keep a continuous lock onto the patient as 

intended with joints varying wildly in their position. In this study, it was found that a camera-

patient distance is between 1m and 2m was optimal for allowing for appropriate skeletal 

tracking.  Additionally, there are small errors with the depth values generated that should be 

noted. Yang et al. found that, in the optimal range of 1-3m directly in front of the camera face, 

average errors were < 2mm  

42. Beyond that range, the errors in depth can become larger, ranging 

from 2-4mm. As such, ensuring that the camera setup includes an optimal distance to the patient 

will allow for the depth information to be as accurate as possible. 

Depth Data from Region of Interest 

Secondary to the skeletal joint tracking, the Kinect v2 sensor’s depth camera was utilized 

to obtain raw depth information for a user specified region of interest (ROI). One of the 

advantages of incorporating the body tracking capability of the Kinect is its ability to 

differentiate between pixels associated with a body vs. pixels belonging to the background. Once 

the body is recognized by the Kinect, the background can be removed from the image displayed 

allowing for an easy visualization of the patient through the GUI created. Once displayed and 

isolated on the screen, the user can then select a region of interest by simply drawing a rectangle 

on a specific area of the body. As different radiotherapy procedures may require tracking of 

different anatomical locations based on treatment area, the creation of a region of interest enables 

the user to track important anatomical locations without the need to quantify motion throughout 

the rest of the patient’s body. 
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In order to reduce noise as much as possible and to ensure stable information for the 

depth data, a median filtration algorithm was implemented for data obtained within a specific 

frame. Typical noise from the depth sensor registers as either 0 for the depth or a value much 

greater than an expected depth. To account for this, a 7 x 7 grid of pixels is created around the 

pixel containing bad data. Depth values from all 48 surrounding pixels are analyzed and the 

median of those pixels is used as the correct value for the center pixel. This process enables 

correction of the bad pixel data without being effected by any outliers within the 7x7 grid. Figure 

18 gives a visualization of this process. 

To quantify gross movement within this ROI, a threshold value of depth difference is 

needed. This threshold is used by the system to make the determination as to whether or not any 

specific pixel has a depth value that has changed significantly from the corresponding pixel in 

the segmentation mask. A visualization of this is displayed on the screen (Figure 19) with pixels 

within the ROI colored green, blue, or red depending on the depth difference compared to the 

threshold: 

 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 > 𝐷𝑖 − 𝐷𝑡  Pixel Color = Green (11) 

 𝐷𝑖 − 𝐷𝑡 > 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 Pixel Color = Red (12) 

 𝐷𝑖 − 𝐷𝑡 < −𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  Pixel Color = Blue (13) 

Where Di is the depth value of the specific pixel within the segmentation mask and Dt is 

the depth value of the same pixel in the current frame. 
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Figure 18: Visualization of smoothing algorithm for depth data. Left – 7x7 pixel array centered on 0 depth 

value before smoothing process. Right – same pixel array with center pixel corrected with median depth value 

of 48 surrounding pixels 

 

Once the determination of whether one pixel has a depth difference above or below the 

threshold, the system must then determine if the patient has moved. Rather than simply counting 

the fraction of pixels that were turned red or blue, the area represented by individual pixels 

allows for a more accurate quantification of the gross patient movement. Microsoft has provided 

the following formula to calculate the area represented by any specific pixel  

82: 

 𝐴𝑟𝑒𝑎 = (𝑑𝑒𝑝𝑡ℎ𝑉𝑎𝑙𝑢𝑒 ∗ 𝑖𝑛𝑣𝑒𝑟𝑠𝑒𝐹𝑜𝑐𝑎𝑙𝐿𝑒𝑛𝑔𝑡ℎ)2 (14) 

Where the Inverse Focal Length of the Kinect has been calculated by Microsoft to be 

0.0027089166 and the Depth Value is the value returned by the depth sensor for that specific 

pixel in mm. Using this equation, not only can the area represented by pixels that have moved be 

calculated, but the entire area of the body within the ROI can also be calculated. Thus, a 

percentage of body area within the ROI that has moved outside the threshold value can be 

calculated and used as the indicator of movement.  
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(a)  (b)    (c)  

Figure 19: (a) RANDO phantom on couch with background removed and pelvic ROI selected. A threshold of 

5mm was used during comparison. Display of ROI with (b) pixels that have moved away from the camera 

more than 5mm in red and (c) pixels that have moved towards the camera more than 5mm in blue. 

 

To accurately quantify movement for this study, an anthropomorphic RANDO phantom 

was used to ensure that the patient being imaged remained static.  The phantom itself consists of 

a head, chest, abdomen, and pelvic region. To ensure the system would begin the body tracking 

process with the phantom, a jacket, gloves, and pants were added to allow for an approximate, 

humanoid shape that would be recognizable as a body. The phantom was placed on a 

PerfectPitch 6DoF couch, as was done in the joint data study. The couch was again moved in 

increments of 1mm along each orthogonal direction (X, Y, and Z) with data recorded at each 

interval with movement ranging from -10mm to 10mm. Additionally, the couch was moved to 

radial distances of 3mm, 5mm, 7mm, and 10mm with varying values of X, Y, and Z coordinates. 

The ROI was set to the pelvic region and the threshold of movement was set to values between 

1mm and 10mm in 1mm increments. The percentage of pixels and area outside of each threshold 

were recorded and compared to actual couch movement with the “Red”, “Blue” and “Green” 
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area recorded separately for analysis. For the remainder of this section, this value will be referred 

to as Percent Area Movement (PAM). 

Figure 20 and Figure 21 display the data obtained while tracking the pelvic ROI through 

various orthogonal movements. Figure 20 displays plots of PAM with pixel depth differences at 

or greater than the threshold value listed (3 threshold plots are shown as an example). Figure 21 

plots the same calculated PAM but only the values calculated when the couch movement is the 

same as the threshold value (i.e. when the system should indicate movement has occurred).  

As evident in Figure 20, the PAM value for movement at or exceeding a specific 

threshold is highly dependent on the orthogonal direction of movement, with the Y direction 

having the least sensitivity and the Z direction having the most sensitivity, particularly when 

couch movement was at or near threshold. Figure 21 indicates that the PAM obtained when at 

various thresholds does remain relatively constant in the X and Y direction for movement greater 

than 2mm.  

However, when compounded with movement in more than one axis, the percentage 

values were found to no longer be reliable indicators of quantitative motion. For example, when 

moved to the (4mm, 3mm, 0mm) coordinates which represent radial movement of 5mm, the 

PAM was calculated to be 22.2% when threshold was set to 5mm. When set to the same 

threshold and same radial distance but moved to the (4mm, 0mm, 3mm) coordinates instead, the 

resulting PAM was 34.2%. To be a reliable movement indicator, movement at similar radial 

distances in any direction should have similar PAM values, which was not the case here. Table 7 

summarizes some of the values obtained while attempting to validate this process. This trend 

persisted no matter which radii or coordinates were used and was most likely due to the high 

sensitivity of this process for motion in the Z direction. 
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(a)  

(b)  

(c)  

Figure 20: Plots of PAM (Percent Area Movement) within the pelvic ROI with depth differences above the 

threshold value of (a) 3mm, (b) 5mm, and (c) 7mm.  The +/- and X/Y/Z nomenclature within the legend refers 

to movement in the positive or negative direction of the specified orthogonal axis. 
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Figure 21: Plot of PAM (Percent Area Movement) within pelvic ROI with depth difference at or above 

threshold value when the couch had been moved to a distance equal to the threshold. The +/- and X/Y/Z 

nomenclature within the legend refers to movement in the positive or negative direction of the specified 

orthogonal axis 

 

During this analysis, it was found that the PAM for movement in the Z direction when at 

threshold were always large and were larger than values calculated when movement occurred in 

the X or Y direction. The PAM calculated when movement in the Z direction was at threshold 

was always greater than 60%. Knowing this, the PAM for an ROI can simply be utilized as an 

indication of movement within the Z direction. Even when compounded with movement in the X 

or Y direction, the percentage value calculated would only reach over 60% when movement in 

the Z direction reached the threshold value (Table 8). As both the red and blue pixels (movement 

toward and away from the camera, respectively) within the ROI are recorded separately, this 

indication of movement beyond threshold can even indicate which direction along the Z axis that 

movement has occurred. 
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Threshold 

[mm] 

Radius 

[mm] 

Z Movement 

[mm] 

X Movement 

[mm] 

Y Movement 

[mm] 
PAM 

3 3 0 

0.0 3.0 06.9% 

1.6 2.5 17.9% 

3.0 0.0 27.5% 

3 3 1 

0.0 2.8 12.4% 

2.0 2.0 22.9% 

2.8 0.0 32.0% 

3 3 2 

0.0 2.2 25.9% 

1.5 1.6 30.5% 

2.2 0.0 38.6% 

5 5 0 

0.0 5.0 06.6% 

4.0 3.0 22.2% 

5.0 0.0 27.9% 

5 5 1 

0.0 4.9 14.2% 

3.5 3.5 23.9% 

4.9 0.0 29.1% 

5 5 3 

0.0 4.0 17.6% 

2.6 3.0 27.7% 

4.0 0.0 34.2% 

7 7 0 

0.0 7.0 06.4% 

5.0 4.8 19.3% 

7.0 0.0 28.5% 

7 7 1 

0.0 6.8 06.7% 

4.0 5.0 16.5% 

6.8 0.0 27.8% 

7 7 3 

0.0 6.3 10.5% 

4.0 4.9 22.4% 

6.3 0.0 32.8% 

Table 7: Comparison of PAM values calculated for movements occurring at radial distances of 3mm, 5mm, 

and 7mm with the threshold value matching the radial distance. Note the increase in PAM as the X and Z 

movement increases with no consistency in the actual PAM value obtained when compared to similar radial 

distances 

 

Use of a tool such as this that can monitor intrafraction motion for a specific ROI in the Z 

direction can prove quite useful in a clinical setting. Studies regarding intrafraction motion in the 

anterior-posterior direction for prostrate treatments indicate that movement of a few millimeters 

can and does occur even before the start of treatment  

86,
 

87. 
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Threshold 

Value [mm] 

Z Movement 

[mm] 

X Movement 

[mm] 

Y Movement 

[mm] 
PAM 

3 3 

6.3 0.0 65.0% 

4.0 0.0 66.2% 

6.2 1.0 65.4% 

4.0 1.0 62.7% 

5.5 2.0 64.6% 

3.5 2.0 61.7% 

2.6 3.0 64.3% 

5 5 

4.8 0.0 62.4% 

0.0 0.0 66.9% 

4.9 2.0 64.5% 

8.6 2.0 62.1% 

0.0 4.0 64.6% 

7.7 4.0 62.1% 

6.2 6.0 63.1% 

7 7 

7.0 1.0 63.6% 

0.0 1.0 66.3% 

6.8 2.0 63.4% 

5.7 4.0 65.3% 

Table 8: Comparison of PAM values calculated for movements in the Z direction and various movements in 

the X and Y direction. Note the consistent PAM values when movement in the Z direction is at threshold. 

 

These two studies have provided two distinct processes of patient motion tracking with 

the Kinect v2 which can be shown to correlate with actual movement in such a way to create 

threshold values for an indication movement. For large scale anatomical movement, automatic 

skeletal tracking and body recognition by the Kinect showed 5 specific joints to be more accurate 

with gross motion in a radial direction when compared to an initial state:  Left Elbow, Right 

Elbow, Right Hip, Left Hip, and Spine-Base. Their COV calculated for these joints was 

approximately 20% for the Elbow joints and 25% for the Hip and Spine-Base joints when 

measured at 5mm and 10mm radial movements. This allowed for thresholds to be set for 

calculated radial distances of 3mm to indicate 5 mm of actual movement and calculated radial 

distances of 7.5mm to indicate and 10mm of actual movement.  
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For smaller areas or areas of specific interest, a ROI can be drawn on a patient to 

continually monitor a specific portion of the body to indicate movement in the Z direction. The 

surface area of the pixels representing the body within the ROI can be calculated and if the 

percentage of that area that has moved beyond a threshold value exceeds 60%, it can be 

interpreted that the ROI has moved in the Z direction beyond said threshold. The combination of 

both the joint tracking and ROI with the Kinect allow for a robust implementation of patient 

motion tracking for both small and large patient movements allowing the user to receive 

indication that a beam shutoff is required or that re-imaging may be required due to extraneous 

patient movement from the initial setup position. 
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CHAPTER 5 “COMPARATIVE ANALYSIS OF RESPIRATORY MOTION TRACKING 

USING MICROSOFT KINECT V2 SENSOR” 

 

Previous chapters have explored using the Kinect to improve patient safety and treatment 

efficacy in the radiation oncology clinic by imaging with the assumption of a static patient or 

area of interest in front of the camera. Although this assumption may be valid for many treatment 

sites, the simple act of breathing can deform a patient’s external contours and induce internal 

motion. This movement becomes exceedingly important to track and quantify for tumors located 

within the thorax and abdomen as they are significantly affected by respiratory motion28,
 

29, 30. As 

radiotherapy treatments become increasingly precise, identifying and visualizing tumor 

movement during treatment becomes exceedingly important.  

One specific way to acquire and process this information is through the use of a 4DCT, 

by which the respiratory motion of the patient is tracked using a respiratory surrogate 31,
 

88. As 

mentioned previously, these processes typically require some manner of physical device attached 

to the patient by way of a marker placed on the patient’s surface or apparatus worn by the 

patient. However, these may require repositioning and multiple attempts to get an accurate 

respiratory motion trace due to irregular breathing and can restrict the respiratory motion 

tracking to one specific area on the patient, typically the lower abdomen. Here, the Microsoft 

Kinect v2 sensor was adapted to trace and record a patient’s breathing cycle by way of a marker-

less process, doing away with any requirement for external hardware to be attached to the 

patient. 

Previous research into respiratory motion tracking using the Kinect utilized either the 

Kinect v1 or required a translational marker to be placed on the patient surface or embedded 

within clothing worn by the patient, similar to other respiratory tracking systems currently 
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available for purchase 69,70,89. The latest version of the Kinect contains higher resolution sensors 

than the previous model, which helps remove the requirement for a translational marker to track 

respiratory motion. The removal of this requirement allows a simpler process to be employed 

with less trial-and-error to obtain a useful respiratory trace.  

In this chapter, the Microsoft Kinect v2 sensor’s ability to trace and record a patient’s 

breathing cycle by way of a marker-less process was investigated. The cost of utilizing a marker-

less approach is the inability to guarantee tracking of a specific point on the patient’s surface. 

This is due to the fact that the tracking process is done with respect to pixels in an image frame 

as opposed to fixed anatomical locations. Motion of the patient’s surface during breathing will, 

in general, cause slightly different anatomical points within some connected surface area to pass 

through the tracked pixels within the image. This inherent difference between marker-based and 

marker-less tracking could theoretically lead to differences in recorded breathing traces between 

the methodologies. As a result, our evaluation of the Kinect v2 sensor as a motion tracking 

device also includes, by necessity, an overarching evaluation of a general marker-less approach 

whereby the motion tracking is in some sense decoupled from the motion of singular points on 

the patient’s surface. The information presented here has been submitted for publication in 2017 

within the Journal of Applied Clinical Medical Physics but is also presented as part of this 

dissertation90. 

The Kinect respiratory tracking process created was compared against both the Varian 

RPM Respiratory Gating system (RPM) and the Anzai Gating system (Anzai). For comparison 

and accuracy measurements, RPM and Anzai were both employed on a subject at the same time 

with the Kinect mounted above the patient. RPM traces the movement of a propriety marker 

placed on the subject’s abdomen through the use of infrared sensors at a rate of 30 fps  

35. Anzai 



59 

 

 

 

utilizes a belt strapped around the subject’s abdomen which contains a pressure sensor to track 

the respiratory motion at a rate of 40 fps  

36,
 

37. The Kinect returns depth values, in mm, for every 

pixel within the depth frame at a rate of 30 fps  

82. All three devices acquired data simultaneously 

with the RPM marker placed directly on top of the Anzai belt and data were  exported from all 

three for analysis. 

Currently available 4DCT procedures employ either a phase based or amplitude based 

binning process when incorporating respiratory motion  

91,
 

92. As such, the traces recorded for all 

three devices were analyzed with each process in mind. With a phase based binning process, the 

period of one cycle is obtained and divided up into 10 phase portions with bins of equal width. 

With an amplitude based binning process, the bins are divided up into percentages of the 

maximum and minimum amplitude throughout one cycle, typically calculated as 100%, 80%, 

60%, 40%, 20%, and 0%. These percentages correspond to specific physical states of the 

breathing cycle (mid-inhalation, maximum exhalation, etc.). Figure 22 gives a visualization of the 

difference between the two processes. Given irregularities that can occur in a patient’s breathing 

pattern which may cause shifts in the phase but not amplitude, many binning procedures are 

moving away from a phased based process in favor of an amplitude based process  

93. However, in 

this manuscript, both binning procedures are used to test the validity of data being recorded by 

the Kinect. 
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Figure 22: Visualization of a phase based binning process (top) and an amplitude based binning process 

(bottom). Notice the equal width of bins for the phase based binning process compared to the variable bin 

widths for the amplitude based binning process94. 

 

 

Calculation and identification of the local maximum and minimum for each breathing 

cycle (100% amplitude, and 0% amplitude, respectively) was implemented through a simple 

local comparison algorithm. To mitigate possible misidentification of per-cycle maxima and 

minima due to temporally small, noisy perturbations, each individual data point of the trace was 

compared to the 10 data points acquired before and after, allowing for 20 comparisons in total. If 

the data point in question was greater than or equal to the 20 points surrounding it in time, it was 

considered 100% amplitude for that breathing cycle. If the data point was less than or equal to 

the 20 points surrounding it in time, it was considered 0% amplitude. Similar to analyses 

performed in the clinic when acquiring respiratory traces, multiple values of 100% or 0% 
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amplitude may be identified by the system for the same breathing cycle. As such, manual 

adjustment was required to remove duplicate local maximum or minimums. 

In order to obtain data for the respiratory trace, the Kinect v2’s depth camera was 

utilized. The depth camera returns depth data for each pixel within its 512 x 424 frame in 1mm 

increments. Rather than track movement associated with a specific location on the body and 

monitor depth changes as it moves across the frame, as would be done with a physical marker, 

the system is designed to track specific pixels from the depth image and record the depth values 

returned over time. Although different from the typical respiratory tracking processes, which 

track a specific location on the body, this study investigates if both processes can produce the 

same respiratory trace with congruent results. 

To begin the data collection process, the user manually selects 5-12 points anywhere on 

the patient for respiratory motion tracking. Data collection duration is also selected by the user 

and the process can be stopped manually if needed. Each point has depth data continuously 

recorded during the acquisition process, with visual displays of each trace, and the program can 

choose the most accurate representation of the respiratory motion by calculating the largest 

difference between the maximum and minimum distances recorded for each point created. 

Additionally, as all traces during acquisition are saved, the user has the ability to view and select 

traces from different points to those chosen by the program in order represent respiratory motion 

if so desired. 

To ensure that the data collection process and GUI were as user friendly as possible, the 

body tracking capabilities of the Kinect were implemented. The Kinect software has the ability 

to detect when a human body has entered the frame of the camera and can differentiate between 

pixels associated with a body versus pixels belonging to the background. Once the body is 
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recognized by the Kinect, the background can be removed from the image displayed allowing for 

an easy visualization of the patient. The advantage to utilizing this process is that the image 

displayed is aligned, pixel for pixel, exactly to the depth images generated. This allows selection 

of specific points on the patient to exact depth data generated by the depth sensor.  

During each tracking session, the Kinect was mounted directly over the subject pointing 

down at an angle of roughly 45 degrees and was set at a height of roughly 0.75m. Data 

acquisitions were performed on both a male and female subject for approximately 120s and each 

were asked to breathe in a manner typical for the individual with no breath holds. 

Figure 23 displays a sample respiratory trace from the Kinect with all 12 points selected 

by the user as well as images of each subject with all 12 points shown. As previously mentioned, 

the point selected by the system to represent the respiratory motion is done so by calculating the 

largest amplitude between the traces created for all points selected. In this example, point 5 

(located on the diaphragm) has the largest difference between the maximum and minimum 

values throughout the trace and, as such, it would be chosen by the system as the representation 

of the patient’s respiratory motion.  For analysis of the trace generated by the Kinect, point 5 

from each subject was chosen to represent the respiratory motion. This allowed for analysis and 

comparison of a trace obtained from a location that was different from those obtained from RPM 

and Anzai while still containing amplitudes large enough to be compared to both systems. 
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(a)  

(b)  

Figure 23: (a) Sample respiratory trace from Kinect with all 12 points selected by the user.  Values along the 

y-axis indicate the difference between the current depth value and the maximum depth value for that user 

selected point throughout the recorded trace. (b) Subjects 1 and 2 with points 1-12 selected 
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Initial comparisons of the traces between systems involved implementing typical 

amplitude and phase based binning methods that would be used for gating purposes within the 

clinic. With the amplitude binning method, the maximum and minimum displacement values 

were obtained for each breathing cycle and amplitude values were obtained for 100%, 80%, 

60%, 40%, 20%, and 0% of the maximum value. The times at which each percentage occurred 

within each breathing cycle were then obtained across all three devices. For the phase based 

binning method, the maximum displacement value was again utilized for each breathing cycle 

and the period of the cycle was divided into 10 equal bins. The times for each bin were then 

obtained across all three devices.  

Portions of the data obtained with all three respiratory systems collecting data are 

displayed in Figure 24a and Figure 25a. To align and overlap the data, the relative displacement 

was used based on the global maximum displacement during the respiratory tracking.  Initial 

analysis of the times obtained for the amplitude binning process was accomplished using a 

Bland-Altman approach 

95.  First, measurements between two of the devices were plotted along a 

line of Y=X for simple comparability (see Figure 24b and Figure 25b pertaining to Subjects 1 

and 2, respectively) with one device measurement as the X coordinate for a point, and another 

device measurement as the Y coordinate. The closer each point is to the line of Y=X, the more 

similar the measurements. Next, all comparisons were analyzed utilizing a Bland-Altman plot to 

test for agreement as shown in Figure 24c and Figure 25c for Subjects 1 and 2, respectively. 

Here, the plot contains data comparing two devices with each point on the plot having the X and 

Y coordinates calculated by the following:  
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 (𝑋, 𝑌) = (
𝑡𝐴+𝑡𝐵

2
, 𝑡𝐴 − 𝑡𝐵 ) (15) 

The X coordinate of a point, 
𝑡𝐴+𝑡𝐵

2
, represents the average time measurement for a 

specific amplitude percentage between two devices (tA for device A, and tB for device B). The Y 

value, 𝑡𝐴 − 𝑡𝐵, represents the difference between the time measurements from the two devices 

being compared. In essence, the difference between two time measurements for a specific 

amplitude percentage (Y value) is plotted against the average of those same two measurements 

(X value) 

95,
 

96. The data analyzed here with the Bland-Altman approach only represents the data 

obtained from the amplitude binning process. This was simply done for clarity as analysis for the 

phase based binning process would yield similar results. 

Further analysis utilized the Bland-Altman plots for amplitude time values obtained 

throughout the 120 seconds of recording.  Here, the data is plotted around the line representing 

the mean for all measurements as well as lines representing the mean ± 1.96*SD (i.e. the 95% 

Confidence Interval). Figure 26 displays comparisons from all three devices with values obtained 

for Subject 1 and Subject 2. 

With the Bland-Altman plots created in Figure 26, the agreement between two devices 

producing similar measurements lies with the percentage of values that fall within the span of the 

mean ±1.96*SD.  Typically, two devices can be shown to produce similar measurements if 

roughly 95% of the data within the plot falls inside this range. Table 9 summarizes the percent of 

values within the range specified and indicates that all three devices have similar agreement with 

one another regarding the time values obtained for the amplitude percentages. 
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(a)  

(b)  

 

(c)  

Figure 24: Plots created for Subject 1 based on two full respiratory cycles. (a) Plot with all three traces 

overlapped, (b) plot of time measurement versus time measurement obtained for the amplitude binning 

process for all three device comparisons, (c) Bland-Altman plot generated using the same measured values 

plotted in (b). 

 



67 

 

 

 

(a)  

(b)  

(c)  

Figure 25: Plots created for Subject 2 based on two full respiratory cycles. (a) Plot with all three traces 

overlapped, (b) plot of time measurement versus time measurement obtained for the amplitude binning 

process for all three device comparisons, (c) Bland-Atman plot generated using the same measured values 

plotted in (b). 
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(a)  

 

(b)  

Figure 26: Bland-Altman plots generated for (a) Subject 1 and (b) Subject 2 based on time values obtained 

through the amplitude binning process. Comparisons were made between RPM and Kinect (top plot), RPM 

and Anzai (middle plot), and Anzai and Kinect (bottom plot). The solid line is the mean of all values and the 

dashed lines represent the Mean ±1.96 SD (i.e. the 95% confidence interval). 
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Subject 
Percentage of Values Within 95% Confidence Interval 

RPM-Anzai RPM-Kinect Anzai-Kinect 

Subject 1 96.09% 96.44% 98.93% 

Subject 2 96.03% 93.38% 94.04% 

Table 9: Summary of Bland-Altman values based on the data plotted in Figure 26 

 

Lastly, the difference between the times obtained for each device within the amplitude 

and phase based binning process was calculated and the average difference across devices for 

each percentage was calculated. Figure 27 displays the Interquartile Range (IQR) for the 

amplitude time differences using a Box and Whiskers plot for both subjects. Figure 28 displays 

the IQR for the phase time differences across each of the calculated bins utilizing similar Box 

and Whiskers plots for both subjects.  

The IQR becomes an important quantifier when analyzing the differences between traces 

as it indicates a range of time that specific percentages of amplitude and phase differ between 

devices. A summary of IQR values can be found in Table 10 and Table 11 with Table 10 

displaying the average time span within the IQR for each comparison and Table 11 containing 

the average mean time difference and standard deviation for each comparison. 

When analyzing traces with the amplitude based binning process for each breathing 

cycle, the IQR for the time differences between devices was low overall, typically lower than 

0.2s. Subject 1 had much better agreement across devices with the IQR spanning a time frame of 

~0.07s, while the IQR for Subject 2 spanned a time frame of ~0.15s.  
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(a)  

(b)  

Figure 27: Box and Whiskers plots displaying the IQR of time differences obtained between devices when 

utilizing an amplitude binning process. (a) Subject 1 and (b) Subject 2 both performed natural breathing 

patterns over a period of 120 second. “I” and “E” next to the percentage value on the y-axis indicate 

“Inhalation” and “Exhalation”, respectively. The mean for each comparison is indicated with a point within 

each box. 
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(a)  

(b)  

Figure 28: Box and Whiskers plots displaying the IQR of time differences obtained between devices when 

utilizing a phase based binning process. (a) Subject 1 and (b) Subject 2 both performed natural breathing 

patterns over a period of 120 second. The mean for each comparison is indicated with a point within each 

box. 
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Binning 

Process 
Subject 

Average IQR Time Spans [s] 

RPM-Anzai RPM-Kinect Anzai-Kinect 

Amplitude 
Subject 1 0.056 0.076 0.062 

Subject 2 0.095 0.157 0.160 

Phase 
Subject 1 0.036 0.096 0.110 

Subject 2 0.106 0.167 0.154 

Table 10: Average time spans of the Interquartile Range (Q3-Q1) calculated between each device with 2 

subjects. Values were averaged over all 10 amplitude and 10 phase bins per cycle created in the above 

analysis. 

 

 

Binning 

Process 
Subject 

Average Mean Time Difference Throughout Trace [s] 

RPM-Anzai RPM-Kinect Anzai-Kinect 

Amplitude 
Subject 1 0.009 ± 0.087 -0.002 ± 0.095 -0.011 ± 0.144 

Subject 2 0.020 ± 0.110 -0.007 ± 0.185 -0.026 ± 0.233 

Phase 
Subject 1 -0.137 ± 0.034 -0.031 ± 0.067 0.106 ± 0.0742 

Subject 2 -0.082 ± 0.086 -0.072 ± 0.115 0.010 ± 0.0984 

Table 11: Average time difference throughout trace between each device with 2 subjects. Values were 

averaged over all 10 amplitude and 10 phase bins per cycle created in the above analysis. 

 

 

The largest deviation when comparing all three devices in this manner occurred for 

Subject 2 during the 100% portion (Max Inhalation) and 20% Exhalation portions of the curve. 

Here the IQR spanned ~0.25s for both portions when comparing the Kinect to Anzai or RPM. 

However, when comparing RPM directly to Anzai, the 100% portion had a time span of ~0.12s 

whereas the 20% Exhalation bin spanned ~0.10s.  

When analyzing traces with the phase based binning process, the Kinect values from 

Subject 1 were, again, in much better agreement with RPM and Anzai belt compared with 

Subject 2, yet time differences for each bin between the devices were still quite low. For Subject 

1, the IQR spanned a time frame of ~0.08s when comparing the Kinect to the RPM or Anzai 

verses a difference of ~0.07s when RPM was compared to Anzai directly. For Subject 2, the IQR 



73 

 

 

 

spanned a larger range of ~0.16s when the Kinect was compared to RPM or Anzai but was 

~0.12s when RPM was compared directly to Anzai.  

Given these ranges of time differences for the IQR, it becomes important to quantify how 

this would affect a 4DCT being generated by incorporating the couch feed. In our scanning 

protocols at Karmanos Cancer Institute, a typical 4DCT may include a couch pitch of 0.1, 0.5 

gantry rotations/s, and detector configuration of 24 x 1.2mm, giving the effective movement of 

the couch as 5.76 mm/s. Although the scans are helical in nature, we can estimate reconstruction 

differences of “effective slices” using this information and the variation between the respiratory 

traces.  Assuming a constant rate of movement and 1.5mm thick slices, it can be said that 3.84 

effective slices are acquired every second with deviations of the expected time for slice 

acquisition creating a slice offset.  Table 12 summarizes what minimal impact these IQR values 

would have during a 4DCT acquisition process.  

 

(a) 

Binning 

Process  
Subject 

Couch Movement @ 5.76 mm/s [mm] 

RPM-Anzai RPM-Kinect Anzai-Kinect 

Amplitude 
Subject 1 0.35 0.42 0.37 

Subject 2 0.54 0.83 0.88 

Phase 
Subject 1 0.25 0.48 0.50 

Subject 2 0.67 1.01 1.05 

 

(b) 

Binning 

Process  
Subject 

Fraction of Slice Offset @ 3.84 slices/s 

RPM-Anzai RPM-Kinect Anzai-Kinect 

Amplitude 
Subject 1 0.17 0.21 0.18 

Subject 2 0.26 0.41 0.43 

Phase 
Subject 1 0.13 0.24 0.24 

Subject 2 0.33 0.50 0.52 

Table 12: Summary of (a) couch movement and (b) fraction of slices that would have occurred during the 

IQR time spans calculated for each subject. 
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The analyses presented in this chapter of the respiratory traces obtained with the Kinect 

v2 respiratory tracking process indicate that the Kinect traces are congruent to those obtained 

with RPM and Anzai. Visually, when overlapping traces from all three devices, there is minimal 

difference between them. When analyzing the traces through an amplitude and phase based 

binning process, time values associated with each amplitude and phase percentage were 

extracted and compared across each device. Using the Bland-Altman approach, it was shown that 

between 93%-96% of the time values fell within the 95% confidence interval when comparing 

the Kinect to RPM and between 94%-99% of the time values fell within the 95% confidence 

interval when comparing the Kinect to Anzai. These ranges indicate that each of the devices 

recorded similar measurements to one another. IRQ values were then calculated for comparisons 

between devices for the amplitude and phase based binning processes. Again, values obtained for 

comparisons between the Kinect and RPM or Anzai were shown to be similar to those obtained 

when comparing RPM to Anzai. Deviations that did occur with the IRQ values in these 

comparisons were shown to have minimal effect on the couch movement or slice offsets that 

would occur during a 4DCT acquisition process.  

One item of note is in regards to the time values obtained from the traces associated with 

Subject 2. The traces used in the analysis were noticeably more noisy than those used for Subject 

1, indicating an overall reduction in the magnitude of the patient surface motion. When analyzing 

the raw data, it was found that the reduction of magnitude was evident in that the average 

difference between the maximum and minimum depth values of each respiratory cycle was 

19.1mm for Subject 1 but only 7.8mm for Subject 2. As mentioned previously, the analysis 

performed for the Kinect traces was done so utilizing Point 5 (directly over the diaphragm). This 
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point was chosen as the point of comparison simply to analyze a trace that would be obtained 

from a different location as the RPM and Anzai trace. Although Point 5 was shown to be 

accurate and comparable to both RPM and Anzai, increased agreement between devices could be 

obtained if the system had automatically chosen the point based on the largest amplitude 

difference. With this criterion in mind, Point 9 (directly to the left of the RPM block) would have 

been chosen as the representation for respiratory motion. Here, the average difference between 

the maximum and minimum depth values for each respiratory cycle increased to 9.5mm. 

The difference between the two points can be visualized in Figure 29 which displays 

traces for RPM and Anzai overlapped with traces obtained for both Point 5 and Point 9 from the 

Kinect for Subject 2. Here, much of the noise present for Point 5 during maximum inhalation and 

maximum exhalation has dissipated for the trace associated with point 9. Additionally, Table 13 

shows the change in average IQR time spans when comparing the traces from Point 5 and Point 

9 to RPM and Anzai. It can be seen how the average IQR decreases with the trace from Point 9 

to values that are closer to that of the RPM and Anzai comparison. This indicates that further 

study may be required to determine the effect that selections of different point on the body may 

have on noise introduced within the Kinect system. 
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Figure 29: Overlapped respiratory traces obtained for Subject 2 utilizing RPM, Anzai, and both Point 5 

(diaphragm) and Point 9 (left of RPM block) from the Kinect. Note the noise generated at maximum 

inhalation and exhalation for the trace associated with Point 5 has decreased significantly for the trace 

associated with Point 9. 

  

 

Binning 

Process 
Point 

Subject 2 Average IQR Time Spans [s] 

RPM-Anzai RPM-Kinect Anzai-Kinect 

Amplitude 
Point 5 0.095 0.157 0.160 

Point 9 0.095 0.098 0.108 

Phase 
Point 5 0.106 0.167 0.154 

Point 9 0.106 0.137 0.114 

Table 13: Comparison of the Average IQR time spans obtained for Subject 2’s traces associated with Point 5 

(diaphragm) and Point 9 (left of RPM block). Note the decrease in IQR time spans for Point 9 and their 

similarity to the RPM-Anzai comparison. 

 

Lastly, the previous analyses have quantified the ability of the Kinect to detect standard, 

cyclic breathing patterns but have not indicated its ability to track irregular breathing patterns. As 

a patient attempts to remain still and control their breathing during respiratory tracking sessions, 

the inevitable interruption of the cyclic breathing pattern can occur via hiccough, cough, sneeze, 
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etc. Detection of this interruption should be evident when viewing the respiratory trace being 

recorded. For each type of interruption, the amplitude of the live trace would increase 

considerably from any previous local maxima due to the sharp rise in the patient’s abdominal 

region that would result. When gating radiation therapy or using Deep Inspiration breath Hold 

(DIBH) during therapy sessions with amplitude based tracking, these irregular patterns can 

quantitatively be determined by utilizing thresholds for the maximum amplitude, above which 

the radiation beam can be turned off as the system will have determined irregular breathing has 

occurred. 

Figure 30 displays a sample of irregular breathing patterns obtained from Subject 1 

during a subsequent tracking session. Here, the subject was asked to induce coughing midway 

through the tracking session. Again, the RPM and Anzai systems were tracking respiratory 

motion concurrently with the Kinect. As evidenced by the traces in Figure 30, the first 10 

seconds show 3 cycles of regular breathing patterns. After which, irregular patterns are indicated 

by all three devices due to the induced coughing. One item of note is the slight differences of 

said traces between devices. The Kinect and RPM both track respiratory motion utilizing IR 

imaging (albeit, through difference processes) whereas the Anzai system does so via a pressure 

sensor within a belt around the patient. Although the irregular breathing pattern is visible from 

all three devices, it is the Kinect and RPM system that have very similar traces, especially in the 

regions of extremely high amplitudes, corresponding to fast, abdominal excursions in the anterior 

direction. It would appear that the IR tracking processes are able to track and record subtleties in 

the respiratory motion of the subject during these portions that are not tracked by the pressure 

sensor system of the Anzai belt. This is most likely due to the fact that the IR tracking process 
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records actual distance values moved by the portion being tracked as opposed to pressure values 

recorded by the Anzai pressure sensor.  

 

 

Figure 30: Respiratory traces created from all three devices while subject 1 induced irregular breathing 

patters through coughing. Notice the irregular patterns begin to develop at approximately 10 seconds into the 

tracking session. 

The various analyses performed in this chapter have shown that recording respiratory 

motion with the Kinect v2, by way of recording depth values for specific pixels on the depth 

image, rather than anatomical locations, can be as accurate as the Varian RPM system or Anzai 

belt and can be easily implemented. The ability to select multiple points on a patient to be used 

for respiratory tracking through the GUI, allows for a unique and user-friendly setup. Without 

the need for physical hardware attached to the patient for tracking, points can be selected 
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anywhere on the patient, including the area of the tumor, without interfering with a CT scan or 

radiation therapy.  
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CHAPTER 6 “CONCLUSIONS AND FUTURE WORK” 

 

 This body of work sought to investigate the Microsoft Kinect v2 sensor in a variety of 

ways which could useful within the settings of a radiation oncology clinic. As the sensor has 

already seen many applications within the field of medicine, incorporating it has a multi-purpose 

device within a radiation oncology clinic would be greatly beneficial given its ease of use and 

multi-faceted programs. 

 Firstly, in order to enhance patient safety, a facial recognition and recall process was 

created using the Kinect for patient verification purposes. In Chapter 3, it was shown that by 

utilizing the HDFaceMapping library within the SDK provided by Microsoft, a facial recognition 

process could be created through a specific facial mapping procedure. Here, 31 points are 

mapped to specific facial landmarks with each point given in 3D space. This allowed 3D vectors 

to be calculated between each of the 31 points, resulting in 465 vector magnitudes defining a 

specific face. By creating a database of 39 faces (each represented by 465 vector magnitudes) 

real-time recognition and recall could be performed by calculating the difference between 

identical vector magnitudes for a face being acquired in real-time and those within the database. 

Based on the fact that, under ideal conditions, the average vector magnitude difference for all 

465 vector magnitudes between two acquisitions of the same face should be 0, the mean and 

median of those vector magnitude differences were used as similarity scores.  

Analysis showed that when comparing different acquisitions for the same face, both the 

mean and median of the vector magnitude differences would be very low, whereas, when 

comparing two different faces, the mean and median had a very large spread of values, typically 

much higher. ROC curves generated based on varying thresholds for both the mean and median 

indicated the process was very good at identifying True Positives and True Negatives. Sensitivity 
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and Specificity values were both ~96% with Area Under the Curve (AUC) of approximately 

99% for both parameters. Ambient light was also found to play a crucial role in the acquisition 

process and it was shown that light levels above 200 lux were optimal to ensure consistent and 

accurate acquisitions. 

Although the recognition and identification process is slightly cumbersome for the 

average patient, future iterations of the process may be able to not only decrease the amount of 

time required for interface with a patient but to create a simpler process that requires less 

interaction. Quickly ensuring that the patient in front of the camera is in fact the correct patient 

will facilitate the verification process ensuring better compliance with the process. 

Next, a real-time patient motion tracking system was created utilizing various functions 

of the Kinect. Chapter 4 showed that such a system was possible by implementing two different, 

but complimentary processes. First, by utilizing the skeletal and body tracking capabilities of the 

Kinect, specific joints generated by the system could be tracked, in 3D space for large, 

anatomical motion tracking. By creating an initial reference state of the patient and their joints, 

the total distance each joint moved could be tracked in 3D space. By calculating the radial 

distance moved by each joint, accuracy of movement could be improved by removing any errors 

caused by unforeseen rotations. 5 specific joints (Left/Right Elbow, Left/Right Hip, and Spine-

Base) proved to be stable and consistent enough during tracking to calculate threshold values that 

would relate to actual movement of the patient. For 5mm of actual movement, a threshold 

calculated radial distance of 3mm was created and 10mm of radial movement, a threshold 

calculated radial distance of 7.5mm was created.  

For smaller tracking areas, a region of interest (ROI) could be drawn by the user over the 

patient in order to track more subtle movements. The depth values generated by the Kinect of 
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each pixel within the ROI were tracked and compared to the initial state of the patient. A 

threshold distance value is set by the user to determine when movement has occurred. If the 

difference in a pixel’s live depth value when compared to the initial state is greater than the 

threshold value, the pixel is determined to have moved. The area of each pixel can be calculated 

based on the depth value measured as well as a total area associated with the patient within the 

ROI. Thus, a percentage of area to have moved (termed PAM in this study) can be determined 

and used as a quantifier to alert the user that movement has occurred. 

Through testing of this process, it was determined that the PAM value calculated was not 

sensitive to movement in the X (Left/Right) or Y (Superior/Inferior) direction and no correlation 

could be made between movements in those directions and the PAM value. However, the PAM 

value was particularly sensitive to movement in the Z (Anterior/Posterior) direction and it was 

found that, when movement in the Z direction was at or above the threshold distance set, the 

PAM value would be 60% or greater no matter what distance had been moved in the X or Y 

direction. This allows for a movement tracking process that can indicate subtle movement in the 

Z direction (either towards or away from the camera). 

Creating two different processes to track and quantify patient motion management with 

the Kinect allows for a versatile system to be implemented easily into a radiation oncology 

clinic. With the ability to track large movements in real time, the user would quickly be able to 

identify if the of the hips or arms have moved beyond some threshold value. Additionally, with 

the ability to track smaller movements in the Z direction, this process can be particularly useful 

for patients who may settle into an alpha cradle once relaxed after the initial setup for treatment. 

 Lastly, the Kinect was utilized to create a marker-less, respiratory motion tracking 

process that could be implemented for purposes of 4DCT or gaiting during radiotherapy 



83 

 

 

 

treatments. The unique aspect of this process is that it does away with any physical markers or 

hardware that are typically required to be attached to the patient, as is the case with many other 

devices currently available. With a fixed camera position, natural respiratory motion will slightly 

move a specific anatomical point across the field of view of a camera. Rather than tracking this 

specific point as it moves across the field of view, this process tracks the depth values returned 

by the Kinect for specific user selected pixels. In doing so, respiratory traces were obtained and 

compared to those recorded by the Varian RPM Respiratory Gating system and the Siemens 

Anzai Gating system.  

Overlapping the traces from all three devices showed that they were visually similar to 

each other. Statistical analysis was performed according to phase and amplitude based binning 

processes (similar to binning procedures currently performed in radiation oncology clinics while 

obtaining respiratory traces to be used with 4D-CT). To do so, the times at which each trace 

reached various amplitude percentage levels and the times at which each trace would be binned 

for phase percentage values were extracted. Taking the difference of analogous times between 

one device’s trace to another, the Interquartile Range (IQR) could be calculated for differences 

throughout the traces. For two subjects, the average IQR between the Kinect and either RPM or 

Anzai was very low, with values typically less than 0.16s for either binning process. In terms of 

how this would affect a 4DCT scan, given parameters currently used at Karmanos Cancer 

Center, during this time frame the couch would only have moved approximately 0.9mm resulting 

in a fractional slice offset of approximately 0.5.  

The analyses performed when comparing the Kinect traces to those traces obtained with 

RPM and Anzai have shown that Kinect respiratory tracking system can create traces that are 

comparable to each device. Further improvement upon this process could involve investigation 
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and mitigation of noise introduced for patients who are shallow breathers during maximum 

exhalation. 

The Kinect itself is an easy to use piece of hardware that is easily attainable, and 

affordable, for any radiation oncology clinic. Creating an interface with the Kinect has been 

made relatively simple due to the SDK produced by Microsoft. With many different imaging 

devices currently available to assist in the radiation oncology clinic for patient verification, 

motion management, and respiratory motion tracking, the ability of the Kinect to accomplish all 

of these tasks without complex implementations and with accuracy comparable to current 

commercial hardware, allows it to be a versatile device; one that can be incorporated into a clinic 

as a multi-purpose device. 
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 For a radiation oncology clinic, the number of devices available to assist in the workflow 

for radiotherapy treatments are quite numerous. Processes such as patient verification, motion 

management, or respiratory motion tracking can all be improved upon by devices currently on 

the market. These three specific processes can directly impact patient safety and treatment 

efficacy and, as such, are important to track and quantify. Most products available will only 

provide a solution for one of these processes and may be outside the reach of a typical radiation 

oncology clinic due to time or cost of implementation and incorporation with already existing 

hardware. This manuscript investigates the use of the Microsoft Kinect v2 sensor to provide 

solutions for all three processes all while maintaining a relatively simple and easy to use 

implementation.  

 To assist with patient verification, the Kinect system was programmed to create a facial 

recognition and recall process. The basis of the facial recognition algorithm was created by 

utilizing a facial mapping library distributed by Microsoft within the Software Developers 

Toolkit (SDK). Here, the system extracts 31 fiducial points representing various facial 
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landmarks. 3D vectors are created between each of the 31 points and the magnitude of each 

vector is calculated by the system. This allows for a face to be defined as a collection of 465 

specific vector magnitudes. The 465 vector magnitudes defining a face are then used in both the 

creation of a facial reference data set and subsequent evaluations of real-time sensor data in the 

matching algorithm. To test the algorithm, a database of 39 faces was created, each with 465 

vectors derived from the fiducial points, and a one-to-one matching procedure was performed to 

obtain sensitivity and specificity data of the facial identification system. 

 In total, 5299 trials were performed and threshold parameters were created for match 

determination. Optimization of said parameters in the matching algorithm by way of ROC curves 

indicated the sensitivity of the system was 96.5% and the specificity was 96.7%. These results 

indicate a fairly robust methodology for verifying, in real-time, a specific face through 

comparison from a pre-collected reference data set. In its current implementation, the process of 

data collection for each face and subsequent matching session averaged approximately 30 

seconds, which may be too onerous to provide a realistic supplement to patient identification in a 

clinical setting.  Despite the time commitment, the data collection process was well tolerated by 

all participants.  It was found that ambient light played a crucial role in the accuracy and 

reproducibility of the facial recognition system. Testing with various light levels found that 

ambient light greater than 200 lux produced the most accurate results. As such, the acquisition 

process should be setup in such a way to ensure consistent ambient light conditions across both 

the reference recording session and subsequent real-time identification sessions.   

 In developing a motion management process with the Kinect, two separate, but 

complimentary processes were created. First, to track large scale anatomical movements, the 

automatic skeletal tracking capabilities of the Kinect were utilized. 25 specific body joints (head, 
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elbow, knee, etc) make up the skeletal frame and are locked to relative positions on the body. 

Using code written in C#, these joints are tracked, in 3D space, and compared to an initial state 

of the patient allowing for an indication of anatomical motion. Additionally, to track smaller, 

more subtle movements on a specific area of the body, a user drawn ROI can be created. Here, 

the depth values of all pixels associated with the body in the ROI are compared to the initial 

state. The system counts the number of live pixels with a depth difference greater than a 

specified threshold compared to the initial state and the area of each of those pixels is calculated 

based on their depth. The percentage of area moved (PAM) compared to the ROI area then 

becomes an indication of gross movement within the ROI.  

In this study, 9 specific joints proved to be stable during data acquisition. When moved in 

orthogonal directions, each coordinate recorded had a relatively linear trend of movement but not 

the expected 1:1 relationship to couch movement. Instead, calculation of the vector magnitude 

between the initial and current position proved a better indicator of movement. 5 of the 9 joints 

(Left/Right Elbow, Left/Right Hip, and Spine-Base) showed relatively consistent values for 

radial movements of 5mm and 10mm, achieving 20% - 25% coefficient of variation. For these 5 

joints, this allowed for threshold values for calculated radial distances of 3mm and 7.5 mm to be 

set for 5mm and 10mm of actual movement, respectively. When monitoring a drawn ROI, it was 

found that the depth sensor had very little sensitivity of movement in the X (Left/Right) or Y 

(Superior/Inferior) direction, but exceptional sensitivity in the Z (Anterior/Posterior) direction. 

As such, the PAM values could only be coordinated with motion in the Z direction. PAM values 

of over 60% were shown to be indicative of movement in the Z direction equal to that of the 

threshold value set for movement as small as 3mm. 
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Lastly, the Kinect was utilized to create a marker-less, respiratory motion tracking 

system. Code was written to access the Kinect’s depth sensor and create a process to track the 

respiratory motion of a subject by recording the depth (distance) values obtained at several user 

selected points on the subject, with each point representing one pixel on the depth image. As a 

patient breathes, a specific anatomical point on the chest/abdomen will move slightly within the 

depth image across a number of pixels. By tracking how depth values change for a specific pixel, 

instead of how the anatomical point moves throughout the image, a respiratory trace can be 

obtained based on changing depth values of the selected pixel. Tracking of these values can then 

be implemented via marker-less setup. Varian’s RPM system and the Anzai belt system were 

used in tandem with the Kinect in order to compare respiratory traces obtained by each using two 

different subjects.  

Analysis of the depth information from the Kinect for purposes of phase based and 

amplitude based binning proved to be correlated well with the RPM and Anzai systems. IQR 

values were obtained which compared times correlated with specific amplitude and phase 

percentage values against each product. The IQR spans of time indicated the Kinect would 

measure a specific percentage value within 0.077 s for Subject 1 and 0.164s for Subject 2 when 

compared to values obtained with RPM or Anzai. For 4D-CT scans, these times correlate to less 

than 1mm of couch movement and would create an offset of one half an acquired slice. These 

minimal deviations between the traces created by the Kinect and RPM or Anzai indicate that by 

tracking the depth values of user selected pixels within the depth image, rather than tracking 

specific anatomical locations, respiratory motion can be tracked and visualized utilizing the 

Kinect with results comparable to that of commercially available products.  
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