12 research outputs found

    Caractérisation intégrative et développement d’outils moléculaires chez la bactérie "Mesoplasma florum"

    Get PDF
    L’émergence de la biologie synthétique marque l’entrée dans une nouvelle ère où il sera possible de modifier et reprogrammer des génomes entiers afin de répondre à des besoins spécifiques. Ce domaine de recherche est par conséquent appelé à jouer un rôle de premier plan dans le développement de nouvelles technologies visant à s’attaquer à certains des plus grands défis du 21e siècle tels que la multirésistance aux antibiotiques, la production d’énergies renouvelables et le traitement de maladies comme le cancer ou le diabète. Notre habileté actuelle à programmer des comportements cellulaires prévisibles est cependant très limitée, principalement parce que les organismes modèles couramment utilisés possèdent une complexité qui dépasse nos capacités d’analyse et que les règles fondamentales qui gouvernent le fonctionnement global des cellules demeurent encore mal comprises. En raison de leurs génomes remarquablement petits, les bactéries appartenant à la classe des Mollicutes représentent des candidats particulièrement intéressants afin de décortiquer le fonctionnement intégral de cellules via les approches intégratives de la biologie des systèmes et de la génomique synthétique. La majorité de ces microorganismes sont toutefois caractérisés par un style de vie parasitaire, des capacités métaboliques réduites et une croissance relativement lente nécessitant l’utilisation de milieux de culture complexes. Conjointement au manque d’outils génétiques efficaces, ces caractéristiques restreignent considérablement leur manipulation en laboratoire. Certains Mollicutes se démarquent néanmoins en tant qu’organismes modèles pour l’avancement de la biologie synthétique et de la biologie des systèmes. C’est le cas pour Mesoplasma florum, une bactérie étroitement apparentée aux mycoplasmes du groupe de Mycoplasma mycoides (mycoides cluster). Contrairement à la plupart des mycoplasmes, M. florum ne possède aucun pouvoir pathogène connu et croît rapidement en conditions de laboratoire. De plus, M. florum possède un génome comprenant seulement 793 224 paires de bases et 685 séquences codantes pour des protéines, ce qui positionne cette bactérie parmi les organismes à réplication autonome les plus simples connus à ce jour. Malgré ces avantages considérables, seulement quelques études avaient jusqu’à tout récemment spécifiquement exploré la biologie de M. florum, et ce même si sa découverte remonte à près de 40 ans. Ainsi, lors du commencement de mon doctorat, plusieurs aspects importants concernant ce microorganisme demeuraient toujours à définir. Par exemple, pratiquement aucune donnée quantitative sur la physiologie de cette bactérie était à ce moment-là disponible dans la littérature, et aucune étude sur l’expression de ses gènes n’avait encore été entreprise. De plus, très peu voire même aucun outil moléculaire n’était disponible afin de modifier le génome de M. florum, ce qui constituait une limitation technique importante à l’étude de la biologie de cet organisme, en plus de restreindre son utilisation en tant que châssis cellulaire pour l’ingénierie microbienne et le développement d’applications biotechnologiques. Face à cette problématique, j’ai tout d’abord développé un système de culture en continu flexible et peu dispendieux permettant de faire croître M. florum dans des conditions contrôlées, stables et hautement reproductibles. Cet appareil offre plusieurs modes de fonctionnement pour accommoder les différents besoins rencontrés en laboratoire, et nous avons rendu les détails de sa conception entièrement disponibles pour l’ensemble de la communauté scientifique. En diminuant les fluctuations physiologiques des cellules, ce système de culture permet de réduire les variations expérimentales lors de l’étude de M. florum, et ainsi de générer des données plus facilement interprétables et comparables entre expériences. J’ai ensuite développé les tout premiers plasmides spécifiquement conçus pour se répliquer chez M. florum. Basés sur l’origine de réplication du chromosome, ces plasmides ont permis de tester la fonctionnalité de différents marqueurs de sélection aux antibiotiques, en plus de mettre au point différentes méthodes de transformation pour cette bactérie. Grâce à leur tendance naturelle à recombiner avec le chromosome, ces plasmides ont d’ailleurs servi de fondement à la technique développée par notre laboratoire afin de cloner le génome complet de M. florum dans la levure. Cette souche de levure peut maintenant servir de plateforme afin de modifier efficacement le génome de M. florum et ensuite le transplanter dans une cellule réceptrice. Finalement, j’ai procédé à la caractérisation approfondie de cette bactérie quasi minimale en combinant différentes méthodes expérimentales et approches intégratives. Cette caractérisation intégrative comprend la mesure de plusieurs aspects physiques et physiologiques propres à M. florum, incluant son temps de doublement, diamètre cellulaire, masse cellulaire sèche, ainsi que la définition des fractions macromoléculaires de celle-ci. J’ai également réalisé les premières analyses du transcriptome et du protéome de ce microorganisme afin de définir les unités transcriptionnelles, estimer les abondances moléculaires absolues de chacun des transcrits et protéines exprimées, de même qu’évaluer l’importance globale des fonctions cellulaires prédites. En plus d’augmenter nos connaissances fondamentales sur différents aspects de la biologie de M. florum, ces efforts de caractérisation serviront de fondation pour le développement d’un modèle à l’échelle du génome décrivant le métabolisme de cette bactérie. L’ensemble de ces efforts visent à acquérir les connaissances et les outils moléculaires nécessaires afin de transformer M. florum en une plateforme simplifiée, hautement caractérisée et spécialement conçue pour explorer les règles gouvernant l’organisation et la plasticité des génomes, ainsi que les mécanismes cellulaires à la base du fonctionnement des cellules. Une telle plateforme a le potentiel de transformer la biologie synthétique en une discipline logique, prévisible et reproductible, rendant ainsi possible le prototypage rationnel et efficace de génomes dans le but de produire des souches bactériennes capables d’accomplir des tâches bien précises

    Undergraduate Catalog of Studies, 2021-2022

    Get PDF

    Undergraduate Catalog of Studies, 2021-2022

    Get PDF

    Identification et caractérisation de gènes chez Salmonella enterica sérovar Typhi impliqués dans l’interaction avec les macrophages humains

    Full text link
    Le genre bactérien Salmonella regroupe plus de 2500 sérovars, mais peu sont responsables de pathologies humaines. Salmonella enterica sérovar Typhi (S. Typhi) est reconnu pour son importance médicale à travers le globe. S. Typhi cause la fièvre typhoïde chez l’Homme, une maladie infectieuse létale caractérisée par la dissémination systémique de la bactérie vers des organes du système réticulo-endothélial. La fièvre typhoïde représente un fardeau pour la santé mondiale, notamment auprès des pays en développement où les conditions sanitaires sont désuètes. La situation se complique davantage par l’apparition de souches résistantes aux antibiotiques. De plus, les deux vaccins licenciés sont d’efficacité modérée, présentent certaines contraintes techniques et ne sont pas appropriés pour les jeunes enfants et nourrissons. La phase systémique de l’infection par Salmonella repose sur sa survie dans les macrophages du système immunitaire. Dans ce compartiment intracellulaire, la bactérie module les défenses antimicrobiennes grâce à de multiples facteurs de virulence encodés dans son génome. Les mécanismes moléculaires sollicités sont complexes et finement régulés. Malgré les progrès scientifiques réalisés précédemment, plusieurs incompréhensions persistent au sujet de l’adaptation de ce pathogène dans les macrophages de l’hôte. Pour mieux concevoir les déterminants génétiques de S. Typhi impliqués dans l’interaction avec ces cellules, une stratégie de sélection négative a été appliquée afin de vérifier systématiquement l’effet direct des gènes pendant l’infection. En premier temps, une librairie de mutants par transposon chez S. Typhi a été créée pour l’infection de macrophages humains en culture. Après 24 heures d’infection, la présence des mutants fut évaluée simultanément par analyse sur des biopuces de Salmonella. Au total, 130 gènes ont été sélectionnés pour leur contribution potentielle auprès des macrophages infectés. Ces gènes comptaient des composantes d’enveloppe bactérienne, des éléments fimbriaires, des portions du flagelle, des régulateurs, des facteurs de pathogenèse et plusieurs protéines sans fonction connue. En deuxième temps, cette collection de gènes a dirigé la création de 28 mutants de délétion définie chez S. Typhi. Les capacités d’entrée et de réplication intracellulaire de ces mutants au sein des macrophages humains ont été caractérisées. D’abord, les macrophages ont été co-infectés avec les mutants en présence de la souche sauvage, pour vérifier la compétitivité de chacun d’eux envers cette dernière. Ensuite, les mutants ont été inoculés individuellement chez les macrophages et leur infectivité fut mesurée comparativement à celle de la souche sauvage. Sommairement, 26 mutants ont présenté des défauts lorsqu’en compétition, tandis que 14 mutants se sont montrés défectueux lorsque testés seuls. Par ailleurs, 12 mutants ont exposé une déficience lors de l’infection mixte et individuelle, incluant les mutants acrA, exbDB, flhCD, fliC, gppA, mlc, pgtE, typA, waaQGP, STY1867-68, STY2346 et SPI-4. Notamment, 35 nouveaux phénotypes défectueux d’entrée ou de survie intracellulaire chez Salmonella ont été révélés par cette étude. Les données générées ici offrent plusieurs nouvelles pistes pour élucider comment S. Typhi manipule sa niche intracellulaire, menant à l’infection systémique. Les gènes décrits représentent des cibles potentielles pour atténuer la bactérie chez l’humain et pourraient contribuer au développement de meilleures souches vaccinales pour immuniser contre la fièvre typhoïde.The bacterial genus Salmonella holds over 2500 serovars, but few are responsible for human pathologies. Salmonella enterica serovar Typhi (S. Typhi) is recognized across the globe for its medical importance. S. Typhi causes typhoid fever in humans, a lethal infectious disease characterized by systemic dissemination of the bacteria to organs of the reticulo-endothelial system. Typhoid fever represents a burden for public health, notably in developing countries where sanitary conditions are obsolete. The situation is further complicated by the appearance of strains resistant to antibiotics. Moreover, both of the licensed vaccines are of moderate efficiency, present certain technical constraints and are not appropriate for young children and newborns. The systemic phase of infection by Salmonella relies on its survival within macrophages of the immune system. In this intracellular compartment, the bacterium modulates antimicrobial defenses thanks to multiple virulence factors encoded within its genome. Molecular mechanisms taking place are complex and finely regulated. Despite scientific advances made previously, many misunderstandings persist concerning the adaptation of this pathogen within host macrophages. To better conceive the genetic determinants of S. Typhi involved in interaction with these cells, a negative selection strategy was applied to systematically verify the direct effect of genes during infection. Firstly, a library of transposon insertion mutants in S. Typhi was created for infection of cultured human macrophages. After 24 hours of infection, the presence of mutants was evaluated simultaneously by analysis on Salmonella microarrays. In total, 130 genes were selected for their potential contribution within infected macrophages. These genes included bacterial envelope components, fimbrial elements, portions of the flagellum, regulators, pathogenesis factors, and many proteins of unknown function. Secondly, this collection of genes led to the creation of 28 defined deletion mutants in S. Typhi. The ability of entry and intracellular replication of these mutants within human macrophages were characterized. To start, macrophages were coinfected with mutants in the presence of the wild-type strain, in order to verify the competitiveness of each of them against the latter. Then, mutants were inoculated individually into macrophages and their infectiveness was measured in comparison with the wild-type strain. In summary, 26 mutants presented defects when in competition, whereas 14 mutants were shown defective when tested alone. Furthermore, 12 mutants exposed a deficiency during mixed and individual infection experiments, including mutants acrA, exbDB, flhCD, fliC, gppA, mlc, pgtE, typA, waaQGP, STY1867-68, STY2346, and SPI-4. In particular, 35 new defective phenotypes of Salmonella entry or intracellular survival were revealed in this study. Data generated here provides significant novel insight for elucidating how S. Typhi manipulates its intracellular niche, leading to systemic infection. Genes described represent potential targets for attenuating the bacteria in the human host and could contribute to the development of better vaccine strains to immunize against typhoid fever

    Catalog of Studies, 2007-2008

    Get PDF

    Catalog of Studies, 2008-2009

    Get PDF
    corecore