1,450 research outputs found

    Gauge Invariant Framework for Shape Analysis of Surfaces

    Full text link
    This paper describes a novel framework for computing geodesic paths in shape spaces of spherical surfaces under an elastic Riemannian metric. The novelty lies in defining this Riemannian metric directly on the quotient (shape) space, rather than inheriting it from pre-shape space, and using it to formulate a path energy that measures only the normal components of velocities along the path. In other words, this paper defines and solves for geodesics directly on the shape space and avoids complications resulting from the quotient operation. This comprehensive framework is invariant to arbitrary parameterizations of surfaces along paths, a phenomenon termed as gauge invariance. Additionally, this paper makes a link between different elastic metrics used in the computer science literature on one hand, and the mathematical literature on the other hand, and provides a geometrical interpretation of the terms involved. Examples using real and simulated 3D objects are provided to help illustrate the main ideas.Comment: 15 pages, 11 Figures, to appear in IEEE Transactions on Pattern Analysis and Machine Intelligence in a better resolutio

    Comparing Features of Three-Dimensional Object Models Using Registration Based on Surface Curvature Signatures

    Get PDF
    This dissertation presents a technique for comparing local shape properties for similar three-dimensional objects represented by meshes. Our novel shape representation, the curvature map, describes shape as a function of surface curvature in the region around a point. A multi-pass approach is applied to the curvature map to detect features at different scales. The feature detection step does not require user input or parameter tuning. We use features ordered by strength, the similarity of pairs of features, and pruning based on geometric consistency to efficiently determine key corresponding locations on the objects. For genus zero objects, the corresponding locations are used to generate a consistent spherical parameterization that defines the point-to-point correspondence used for the final shape comparison

    Volume rendering with multidimensional peak finding

    Get PDF
    Journal ArticlePeak finding provides more accurate classification for direct volume rendering by sampling directly at local maxima in a transfer function, allowing for better reproduction of high-frequency features. However, the 1D peak finding technique does not extend to higherdimensional classification. In this work, we develop a new method for peak finding with multidimensional transfer functions, which looks for peaks along the image of the ray. We use piecewise approximations to dynamically sample in transfer function space between world-space samples. As with unidimensional peak finding, this approach is useful for specifying transfer functions with greater precision, and for accurately rendering noisy volume data at lower sampling rates. Multidimensional peak finding produces comparable image quality with order-of-magnitude better performance, and can reproduce features omitted entirely by standard classification. With no precomputation or storage requirements, it is an attractive alternative to preintegration for multidimensional transfer functions

    On the Topological Characterization of Near Force-Free Magnetic Fields, and the work of late-onset visually-impaired Topologists

    Get PDF
    The Giroux correspondence and the notion of a near force-free magnetic field are used to topologically characterize near force-free magnetic fields which describe a variety of physical processes, including plasma equilibrium. As a byproduct, the topological characterization of force-free magnetic fields associated with current-carrying links, as conjectured by Crager and Kotiuga, is shown to be necessary and conditions for sufficiency are given. Along the way a paradox is exposed: The seemingly unintuitive mathematical tools, often associated to higher dimensional topology, have their origins in three dimensional contexts but in the hands of late-onset visually impaired topologists. This paradox was previously exposed in the context of algorithms for the visualization of three-dimensional magnetic fields. For this reason, the paper concludes by developing connections between mathematics and cognitive science in this specific context.Comment: 20 pages, no figures, a paper which was presented at a conference in honor of the 60th birthdays of Alberto Valli and Paolo Secci. The current preprint is from December 2014; it has been submitted to an AIMS journa

    Harmonic Change Detection from Musical Audio

    Get PDF
    In this dissertation, we advance an enhanced method for computing Harte et al.’s [31] Harmonic Change Detection Function (HCDF). HCDF aims to detect harmonic transitions in musical audio signals. HCDF is crucial both for the chord recognition in Music Information Retrieval (MIR) and a wide range of creative applications. In light of recent advances in harmonic description and transformation, we depart from the original architecture of Harte et al.’s HCDF, to revisit each one of its component blocks, which are evaluated using an exhaustive grid search aimed to identify optimal parameters across four large style-specific musical datasets. Our results show that the newly proposed methods and parameter optimization improve the detection of harmonic changes, by 5.57% (f-score) with respect to previous methods. Furthermore, while guaranteeing recall values at > 99%, our method improves precision by 6.28%. Aiming to leverage novel strategies for real-time harmonic-content audio processing, the optimized HCDF is made available for Javascript and the MAX and Pure Data multimedia programming environments. Moreover, all the data as well as the Python code used to generate them, are made available.<br /

    Doctor of Philosophy

    Get PDF
    dissertationThe medial axis of an object is a shape descriptor that intuitively presents the morphology or structure of the object as well as intrinsic geometric properties of the object’s shape. These properties have made the medial axis a vital ingredient for shape analysis applications, and therefore the computation of which is a fundamental problem in computational geometry. This dissertation presents new methods for accurately computing the 2D medial axis of planar objects bounded by B-spline curves, and the 3D medial axis of objects bounded by B-spline surfaces. The proposed methods for the 3D case are the first techniques that automatically compute the complete medial axis along with its topological structure directly from smooth boundary representations. Our approach is based on the eikonal (grassfire) flow where the boundary is offset along the inward normal direction. As the boundary deforms, different regions start intersecting with each other to create the medial axis. In the generic situation, the (self-) intersection set is born at certain creation-type transition points, then grows and undergoes intermediate transitions at special isolated points, and finally ends at annihilation-type transition points. The intersection set evolves smoothly in between transition points. Our approach first computes and classifies all types of transition points. The medial axis is then computed as a time trace of the evolving intersection set of the boundary using theoretically derived evolution vector fields. This dynamic approach enables accurate tracking of elements of the medial axis as they evolve and thus also enables computation of topological structure of the solution. Accurate computation of geometry and topology of 3D medial axes enables a new graph-theoretic method for shape analysis of objects represented with B-spline surfaces. Structural components are computed via the cycle basis of the graph representing the 1-complex of a 3D medial axis. This enables medial axis based surface segmentation, and structure based surface region selection and modification. We also present a new approach for structural analysis of 3D objects based on scalar functions defined on their surfaces. This approach is enabled by accurate computation of geometry and structure of 2D medial axes of level sets of the scalar functions. Edge curves of the 3D medial axis correspond to a subset of ridges on the bounding surfaces. Ridges are extremal curves of principal curvatures on a surface indicating salient intrinsic features of its shape, and hence are of particular interest as tools for shape analysis. This dissertation presents a new algorithm for accurately extracting all ridges directly from B-spline surfaces. The proposed technique is also extended to accurately extract ridges from isosurfaces of volumetric data using smooth implicit B-spline representations. Accurate ridge curves enable new higher-order methods for surface analysis. We present a new definition of salient regions in order to capture geometrically significant surface regions in the neighborhood of ridges as well as to identify salient segments of ridges

    Doctor of Philosophy

    Get PDF
    dissertationVolumetric parameterization is an emerging field in computer graphics, where volumetric representations that have a semi-regular tensor-product structure are desired in applications such as three-dimensional (3D) texture mapping and physically-based simulation. At the same time, volumetric parameterization is also needed in the Isogeometric Analysis (IA) paradigm, which uses the same parametric space for representing geometry, simulation attributes and solutions. One of the main advantages of the IA framework is that the user gets feedback directly as attributes of the NURBS model representation, which can represent geometry exactly, avoiding both the need to generate a finite element mesh and the need to reverse engineer the simulation results from the finite element mesh back into the model. Research in this area has largely been concerned with issues of the quality of the analysis and simulation results assuming the existence of a high quality volumetric NURBS model that is appropriate for simulation. However, there are currently no generally applicable approaches to generating such a model or visualizing the higher order smooth isosurfaces of the simulation attributes, either as a part of current Computer Aided Design or Reverse Engineering systems and methodologies. Furthermore, even though the mesh generation pipeline is circumvented in the concept of IA, the quality of the model still significantly influences the analysis result. This work presents a pipeline to create, analyze and visualize NURBS geometries. Based on the concept of analysis-aware modeling, this work focusses in particular on methodologies to decompose a volumetric domain into simpler pieces based on appropriate midstructures by respecting other relevant interior material attributes. The domain is decomposed such that a tensor-product style parameterization can be established on the subvolumes, where the parameterization matches along subvolume boundaries. The volumetric parameterization is optimized using gradient-based nonlinear optimization algorithms and datafitting methods are introduced to fit trivariate B-splines to the parameterized subvolumes with guaranteed order of accuracy. Then, a visualization method is proposed allowing to directly inspect isosurfaces of attributes, such as the results of analysis, embedded in the NURBS geometry. Finally, the various methodologies proposed in this work are demonstrated on complex representations arising in practice and research
    • …
    corecore