13,069 research outputs found

    Flow visualization techniques, new developments and modernization of the existing Schlieren system in the Trisonic Wind Tunnel

    Get PDF
    Schlieren flow visualization methods are an important part of high speed wind tunnel testing, being a fast and reliable method of graphically presenting complex dynamic phenomena that occur in high subsonic, transonic and supersonic regimes. Images can be processed and effects of configuration changes can be understood faster. Quantitative variations of the Schlieren method enable CFD simulations to use real data, resulting in greater precision and thus help improve efficiency of the re-design phase for the aerodynamic object. A modification of the classic Schlieren system is proposed, that would enable extraction of such data with minimal cost

    Results of winglet development studies for DC-10 derivatives

    Get PDF
    The results of investigations into the application of winglets to the DC-10 aircraft are presented. The DC-10 winglet configuration was developed and its cruise performance determined in a previous investigation. This study included high speed and low speed wind tunnel tests to evaluate aerodynamic characteristics, and a subsonic flutter wind tunnel test with accompanying analysis and evaluation of results. Additionally, a configuration integration study employed the results of the wind tunnel studies to determine the overall impact of the installation of winglets on the DC-10 aircraft. Conclusions derived from the high speed and low speed tests indicate that the winglets had no significant effects on the DC-10 stability characteristics or high speed buffet. It was determined that winglets had a minimal effect on aircraft lift characteristics and improved the low speed aircraft drag under high lift conditions. The winglets affected the DC-10 flutter characteristics by reducing the flutter speed of the basic critical mode and introducing a new critical mode involving outer wing torsion and longitudinal bending. The overall impact of winglets was determined to be of sufficient benefit to merit flight evaluation

    Overview of the Applied Aerodynamics Division

    Get PDF
    A major reorganization of the Aeronautics Directorate of the Langley Research Center occurred in early 1989. As a result of this reorganization, the scope of research in the Applied Aeronautics Division is now quite different than that in the past. An overview of the current organization, mission, and facilities of this division is presented. A summary of current research programs and sample highlights of recent research are also presented. This is intended to provide a general view of the scope and capabilities of the division

    Wind-Tunnel Investigation of an Advanced General Aviation Canard Configuration

    Get PDF
    Wind-tunnel tests of a model of an advanced canard configuration designed for general aviation were conducted in the Langley 30- by 60-Foot Tunnel. The objective of the tests was to determine the aerodynamic stability and control characteristics of the configuration for a large range of angles of attack and sideslip at several power conditions. Analysis of the aerodynamic data indicates significant effects of power and of center-of-gravity location. For forward center-of-gravity locations, the configuration had extremely stall-resistant stability and control characteristics. For aft center-of-gravity locations and high-power conditions, the combined effects of increased pitch control and reduced longitudinal stability overpowered the stall resistance provided by the canard, which led to a high-angle-of-attack, deep-stall trim condition. Other aspects of the aerodynamic characteristics studied include the following: flow-visualization study, effect of negative angles of attack, lateral-directional characteristics, and comparison of the stall characteristics with another canard configuration

    Langley aerospace test highlights, 1985

    Get PDF
    The role of the Langley Research Center is to perform basic and applied research necessary for the advancement of aeronautics and space flight, to generate new and advanced concepts for the accomplishment of related national goals, and to provide research advice, technological support, and assistance to other NASA installations, other government agencies, and industry. Significant tests which were performed during calendar year 1985 in Langley test facilities, are highlighted. Both the broad range of the research and technology activities at the Langley Research Center and the contributions of this work toward maintaining United States leadership in aeronautics and space research, are illustrated. Other highlights of Langley research and technology for 1985 are described in Research and Technology-1985 Annual Report of the Langley Research Center

    Experimental study of delta wing leading-edge devices for drag reduction at high lift

    Get PDF
    The drag reduction devices selected for evaluation were the fence, slot, pylon-type vortex generator, and sharp leading-edge extension. These devices were tested on a 60 degree flatplate delta (with blunt leading edges) in the Langley Research Center 7- by 10-foot high-speed tunnel at low speed and to angles of attack of 28 degrees. Balance and static pressure measurements were taken. The results indicate that all the devices had significant drag reduction capability and improved longitudinal stability while a slight loss of lift and increased cruise drag occurred

    Aerated blast furnace slag filters for enhanced nitrogen and phosphorus removal from small wastewater treatment plants

    Get PDF
    Rock filters (RF) are a promising alternative technology for natural wastewater treatment for upgrading WSP effluent. However, the application of RF in the removal of eutrophic nutrients, nitrogen and phosphorus, is very limited. Accordingly, the overall objective of this study was to develop a lowcost RF system for the purpose of enhanced nutrient removal from WSP effluents, which would be able to produce effluents which comply with the requirements of the EU Urban Waste Water Treatment Directive (UWWTD) (911271lEEC) and suitable for small communities. Therefore, a combination system comprising a primary facultative pond and an aerated rock filter (ARF) system-either vertically or horizontally loaded-was investigated at the University of Leeds' experimental station at Esholt Wastewater Treatment Works, Bradford, UK. Blast furnace slag (BFS) and limestone were selected for use in the ARF system owing to their high potential for P removal and their low cost. This study involved three major qperiments: (1) a comparison of aerated vertical-flow and horizontal-flow limestone filters for nitrogen removal; (2) a comparison of aerated limestone + blast furnace slag (BFS) filter and aerated BFS filters for nitrogen and phosphorus removal; and (3) a comparison of vertical-flow and horizontal-flow BFS filters for nitrogen and phosphorus removal. The vertical upward-flow ARF system was found to be superior to the horizontal-flow ARF system in terms of nitrogen removal, mostly thiough bacterial nitrification processes in both the aerated limestone and BFS filter studies. The BFS filter medium (whieh is low-cost) showed a much higher potential in removing phosphortls from pond effluent than the limestone medium. As a result, the combination of a vertical upward-flow ARF system and an economical and effective P-removal filter medium, such as BFS, was found to be an ideal optionfor the total nutrient removal of both nitrogen and phosphorus from wastewater. In parallel with these experiments, studies on the aerated BFS filter effective life and major in-filter phosphorus removal pathways were carried out. From the standard batch experiments of Pmax adsorption capacity of BFS, as well as six-month data collection of daily average P-removal, it was found that the effective life of the aerated BFS filter was 6.5 years. Scanning electron microscopy and X-ray diffraction spectrometric analyses on the surface of BFS, particulates and sediment samples revealed that the apparent mechanisms of P-removal in the filter are adsorption on the amorphous oxide phase of the BFS surface and precipitation within the filter

    The influence of blade curvature and helical blade twist on the performance of a vertical-axis wind turbine

    Get PDF
    Accurate aerodynamic modeling of vertical-axis wind turbines poses a significant challenge, but is essential if the performance of such turbines is to be predicted reliably. The rotation of the turbine induces large variations in the angle of attack of its blades that canmanifest as dynamic stall. In addition, interactions between the blades of the turbine and the wake that they produce can exacerbate dynamic stall and result in impulsive changes to the aerodynamic loading on the blades. The Vorticity Transport Model has been used to simulate the aerodynamic performance and wake dynamics of vertical-axis wind turbines with straight-bladed, curved-bladed and helically twisted configuration. It is known that vertical-axis wind turbines with either straight or curved blades deliver torque to their shaft that fluctuates at the blade passage frequency of the rotor. In contrast, a rotor with helically twisted blades delivers a relatively steady torque to the shaft. In the present paper, the interactions between helically twisted blades and the vortices within their wake are shown to result in localized perturbations to the aerodynamic loading on the rotor that can disrupt the otherwise relatively smooth power output that is predicted by simplistic aerodynamic tools that do not model the wake to sufficient fidelity. Furthermore, vertical-axis wind turbines with curved blades are shown to be somewhat more susceptible to local dynamic stall than turbines with straight blades

    US and USSR Military Aircraft and Missile Aerodynamics 1970-1980. A selected, annotated bibliography, volume 1

    Get PDF
    The purpose of this selected bibliography (281 citations) is to list available, unclassified, unlimited publications which provide aerodynamic data on major aircraft and missiles currently used by the military forces of the United States of America and the Union of Soviet Socialist Republics. Technical disciplines surveyed include aerodynamic performance, static and dynamic stability, stall-spin, flutter, buffet, inlets nozzles, flap performance, and flying qualities. Concentration is on specific aircraft including fighters, bombers, helicopters, missiles, and some work on transports, which are or could be used for military purposes. The bibliography is limited to material published from 1970 to 1980. The publications herein illustrate many of the types of aerodynamic data obtained in the course of aircraft development programs and may therefore provide some guidance in identifying problems to be expected in the conduct of such work. As such, this information may be useful in planning future research programs

    Aerodynamic validation of a SCAR design

    Get PDF
    Wind tunnel test of the McDonnell Douglas Supersonic Cruise Aircraft, designed for a cruise Mach number of 2.2, was conducted in the NASA Ames Unitary Plan Wind Tunnels. Extensive force, pressure, and flow visualization data were obtained over a Mach number range from 0.5 to 2.4. Comparisons between theory and measurements of both forces and pressure concentrate on the results obtained in the supersonic tunnel. Schlieren and tuft pictures are presented to help provide an understanding of the nonlinearities observed at off-design conditions
    corecore