11,778 research outputs found

    Fluorescent-Antibody Targeting of Insulin-Like Growth Factor-1 Receptor Visualizes Metastatic Human Colon Cancer in Orthotopic Mouse Models.

    Get PDF
    Fluorescent-antibody targeting of metastatic cancer has been demonstrated by our laboratory to enable tumor visualization and effective fluorescence-guided surgery. The goal of the present study was to determine whether insulin-like growth factor-1 receptor (IGF-1R) antibodies, conjugated with bright fluorophores, could enable visualization of metastatic colon cancer in orthotopic nude mouse models. IGF-1R antibody (clone 24-31) was conjugated with 550 nm, 650 nm or PEGylated 650 nm fluorophores. Subcutaneous, orthotopic, and liver metastasis models of colon cancer in nude mice were targeted with the fluorescent IGF-1R antibodies. Western blotting confirmed the expression of IGF-1R in HT-29 and HCT 116 human colon cancer cell lines, both expressing green fluorescent protein (GFP). Labeling with fluorophore-conjugated IGF-1R antibody demonstrated fluorescent foci on the membrane of colon cancer cells. Subcutaneously- and orthotopically-transplanted HT-29-GFP and HCT 116-GFP tumors brightly fluoresced at the longer wavelengths after intravenous administration of fluorescent IGF-1R antibodies. Orthotopically-transplanted HCT 116-GFP tumors were brightly labeled by fluorescent IGF-1R antibodies such that they could be imaged non-invasively at the longer wavelengths. In an experimental liver metastasis model, IGF-1R antibodies conjugated with PEGylated 650 nm fluorophores selectively highlighted the liver metastases, which could then be non-invasively imaged. The IGF-1R fluorescent-antibody labeled liver metastases were very bright compared to the normal liver and the fluorescent-antibody label co-located with green fluorescent protein (GFP) expression of the colon cancer cells. The present study thus demonstrates that fluorophore-conjugated IGF-1R antibodies selectively visualize metastatic colon cancer and have clinical potential for improved diagnosis and fluorescence-guided surgery

    EPiK-a Workflow for Electron Tomography in Kepler.

    Get PDF
    Scientific workflows integrate data and computing interfaces as configurable, semi-automatic graphs to solve a scientific problem. Kepler is such a software system for designing, executing, reusing, evolving, archiving and sharing scientific workflows. Electron tomography (ET) enables high-resolution views of complex cellular structures, such as cytoskeletons, organelles, viruses and chromosomes. Imaging investigations produce large datasets. For instance, in Electron Tomography, the size of a 16 fold image tilt series is about 65 Gigabytes with each projection image including 4096 by 4096 pixels. When we use serial sections or montage technique for large field ET, the dataset will be even larger. For higher resolution images with multiple tilt series, the data size may be in terabyte range. Demands of mass data processing and complex algorithms require the integration of diverse codes into flexible software structures. This paper describes a workflow for Electron Tomography Programs in Kepler (EPiK). This EPiK workflow embeds the tracking process of IMOD, and realizes the main algorithms including filtered backprojection (FBP) from TxBR and iterative reconstruction methods. We have tested the three dimensional (3D) reconstruction process using EPiK on ET data. EPiK can be a potential toolkit for biology researchers with the advantage of logical viewing, easy handling, convenient sharing and future extensibility

    From Keyword Search to Exploration: How Result Visualization Aids Discovery on the Web

    No full text
    A key to the Web's success is the power of search. The elegant way in which search results are returned is usually remarkably effective. However, for exploratory search in which users need to learn, discover, and understand novel or complex topics, there is substantial room for improvement. Human computer interaction researchers and web browser designers have developed novel strategies to improve Web search by enabling users to conveniently visualize, manipulate, and organize their Web search results. This monograph offers fresh ways to think about search-related cognitive processes and describes innovative design approaches to browsers and related tools. For instance, while key word search presents users with results for specific information (e.g., what is the capitol of Peru), other methods may let users see and explore the contexts of their requests for information (related or previous work, conflicting information), or the properties that associate groups of information assets (group legal decisions by lead attorney). We also consider the both traditional and novel ways in which these strategies have been evaluated. From our review of cognitive processes, browser design, and evaluations, we reflect on the future opportunities and new paradigms for exploring and interacting with Web search results

    Metabolic fingerprinting to assess the impact of salinity on carotenoid content in developing tomato fruits

    Get PDF
    As the presence of health-promoting substances has become a significant aspect of tomato fruit appreciation, this study investigated nutrient solution salinity as a tool to enhance carotenoid accumulation in cherry tomato fruit (Solanum lycopersicum L. cv. Juanita). Hereby, a key objective was to uncover the underlying mechanisms of carotenoid metabolism, moving away from typical black box research strategies. To this end, a greenhouse experiment with five salinity treatments (ranging from 2.0 to 5.0 decisiemens (dS) m(-1)) was carried out and a metabolomic fingerprinting approach was applied to obtain valuable insights on the complicated interactions between salinity treatments, environmental conditions, and the plant's genetic background. Hereby, several hundreds of metabolites were attributed a role in the plant's salinity response (at the fruit level), whereby the overall impact turned out to be highly depending on the developmental stage. In addition, 46 of these metabolites embraced a dual significance as they were ascribed a prominent role in carotenoid metabolism as well. Based on the specific mediating actions of the retained metabolites, it could be determined that altered salinity had only marginal potential to enhance carotenoid accumulation in the concerned tomato fruit cultivar. This study invigorates the usefulness of metabolomics in modern agriculture, for instance in modeling tomato fruit quality. Moreover, the metabolome changes that were caused by the different salinity levels may enclose valuable information towards other salinity-related plant processes as well

    Improving Livability Using Green and Active Modes: A Traffic Stress Level Analysis of Transit, Bicycle, and Pedestrian Access and Mobility

    Get PDF
    Understanding the relative attractiveness of alternatives to driving is vitally important toward lowering driving rates and, by extension, vehicle miles traveled (VMT), traffic congestion, greenhouse gas (GHG) emissions, etc. The relative effectiveness of automobile alternatives (i.e., buses, bicycling, and walking) depends on how well streets are designed to work for these respective modes in terms of safety, comfort and cost, which can sometimes pit their relative effectiveness against each other. In this report, the level of traffic stress (LTS) criteria previously developed by two of the authors was used to determine how the streets functioned for these auto alternative modes. The quality and extent of the transit service area was measured using a total travel time metric over the LTS network. The model developed in this study was applied to two transit routes in Oakland, California, and Denver, Colorado
    • 

    corecore