1,941 research outputs found

    Visualising computational intelligence through converting data into formal concepts

    Get PDF

    Knowledge discovery through creating formal contexts

    Get PDF
    Knowledge discovery is important for systems that have computational intelligence in helping them learn and adapt to changing environments. By representing, in a formal way, the context in which an intelligent system operates, it is possible to discover knowledge through an emerging data technology called formal concept analysis (FCA). This paper describes a tool called FcaBedrock that converts data into formal contexts for FCA. This paper describes how, through a process of guided automation, data preparation techniques such as attribute exclusion and value restriction allow data to be interpreted to meet the requirements of the analysis. Examples are given of how formal contexts can be created using FcaBedrock and then analysed for knowledge discovery, using real datasets. Creating formal contexts using FcaBedrock is shown to be straightforward and versatile. Large datasets are easily converted into a standard FCA format

    Knowledge discovery through creating formal contexts

    Get PDF
    Knowledge discovery is important for systems that have computational intelligence in helping them learn and adapt to changing environments. By representing, in a formal way, the context in which an intelligent system operates, it is possible to discover knowledge through an emerging data technology called Formal Concept Analysis (FCA). This paper describes a tool called FcaBedrock that converts data into Formal Contexts for FCA. The paper describes how, through a process of guided automation, data preparation techniques such as attribute exclusion and value restriction allow data to be interpreted to meet the requirements of the analysis. Creating Formal Contexts using FcaBedrock is shown to be straightforward and versatile. Large data sets are easily converted into a standard FCA format

    A conceptual approach to gene expression analysis enhanced by visual analytics

    Get PDF
    The analysis of gene expression data is a complex task for biologists wishing to understand the role of genes in the formation of diseases such as cancer. Biologists need greater support when trying to discover, and comprehend, new relationships within their data. In this paper, we describe an approach to the analysis of gene expression data where overlapping groupings are generated by Formal Concept Analysis and interactively analyzed in a tool called CUBIST. The CUBIST workflow involves querying a semantic database and converting the result into a formal context, which can be simplified to make it manageable, before it is visualized as a concept lattice and associated charts

    Conceptual structures in LEADing and best enterprise practices

    Get PDF
    Conceptual Structures, namely Conceptual Graphs (CGs) and Formal Concept Analysis (FCA) are beginning to make an impact in Industry. This is evidenced in LEAD as it seeks to provide its 3100+ industry practitioners in many Fortune 500 and public organisations with capabilities that can handle ontology and semantics. The existing ontology and semantics work in LEAD,supported by the Global University Alliance, is described and how CGs, FCA and their tools (e.g. CoGui, CG-FCA) enhance this endeavour

    Creating corroborated crisis reports from social media data through formal concept analysis

    Get PDF
    During a crisis citizens reach for their smart phones to report, comment and explore information surrounding the crisis. These actions often involve social media and this data forms a large repository of real-time, crisis related information. Law enforcement agencies and other first responders see this information as having untapped potential. That is, it has the capacity extend their situational awareness beyond the scope of a usual command and control centre. Despite this potential, the sheer volume, the speed at which it arrives, and unstructured nature of social media means that making sense of this data is not a trivial task and one that is not yet satisfactorily solved; both in crisis management and beyond. Therefore we propose a multi-stage process to extract meaning from this data that will provide relevant and near real-time information to command and control to assist in decision support. This process begins with the capture of real-time social media data, the development of specific LEA and crisis focused taxonomies for categorisation and entity extraction, the application of formal concept analysis for aggregation and corroboration and the presentation of this data via map-based and other visualisations. We demonstrate that this novel use of formal concept analysis in combination with context-based entity extraction has the potential to inform law enforcement and/or humanitarian responders about on-going crisis events using social media data in the context of the 2015 Nepal earthquake. Keywords : formal concept analysis, crisis management, disaster response, visualisation, entity extraction

    Cooperation of Nature and Physiologically Inspired Mechanism in Visualisation

    Get PDF
    A novel approach of integrating two swarm intelligence algorithms is considered, one simulating the behaviour of birds flocking (Particle Swarm Optimisation) and the other one (Stochastic Diffusion Search) mimics the recruitment behaviour of one species of ants – Leptothorax acervorum. This hybrid algorithm is assisted by a biological mechanism inspired by the behaviour of blood flow and cells in blood vessels, where the concept of high and low blood pressure is utilised. The performance of the nature-inspired algorithms and the biologically inspired mechanisms in the hybrid algorithm is reflected through a cooperative attempt to make a drawing on the canvas. The scientific value of the marriage between the two swarm intelligence algorithms is currently being investigated thoroughly on many benchmarks and the results reported suggest a promising prospect (al-Rifaie, Bishop & Blackwell, 2011). We also discuss whether or not the ‘art works’ generated by nature and biologically inspired algorithms can possibly be considered as ‘computationally creative’

    Modularising the complex meta-models in enterprise systems using conceptual structures

    Get PDF
    The development of meta-models in Enterprise Modelling, Enterprise Engineering, and Enterprise Architecture enables an enterprise to add value and meet its obligations to its stakeholders. This value is however undermined by the complexity in the meta-models which have become difficult to visualise thus deterring the human-driven process. These experiences have driven the development of layers and levels in the modular meta-model. Conceptual Structures (CS), described as “Information Processing in Mind and Machine”, align the way computers work with how humans think. Using the Enterprise Information Meta-model Architecture (EIMA) as an exemplar, two forms of CS known as Conceptual Graphs (CGs) and Formal Concept Analysis (FCA) are brought together through the CGtoFCA algorithm, thereby mathematically evaluating the effectiveness of the layers and levels in these meta-models. The work reveals the useful contribution that this approach brings in actualising the modularising of complex meta-models in enterprise systems using conceptual structures

    Applying blended conceptual spaces to variable choice and aesthetics in data visualisation

    Get PDF
    Computational creativity is an active area of research within the artificial intelligence domain that investigates what aspects of computing can be considered as an analogue to the human creative process. Computers can be programmed to emulate the type of things that the human mind can. Artificial creativity is worthy of study for two reasons. Firstly, it can help in understanding human creativity and secondly it can help with the design of computer programs that appear to be creative. Although the implementation of creativity in computer algorithms is an active field, much of the research fails to specify which of the known theories of creativity it is aligning with. The combination of computational creativity with computer generated visualisations has the potential to produce visualisations that are context sensitive with respect to the data and could solve some of the current automation problems that computers experience. In addition theories of creativity could theoretically compute unusual data combinations, or introducing graphical elements that draw attention to the patterns in the data. More could be learned about the creativity involved as humans go about the task of generating a visualisation. The purpose of this dissertation was to develop a computer program that can automate the generation of a visualisation, for a suitably chosen visualisation type over a small domain of knowledge, using a subset of the computational creativity criteria, in order to try and explore the effects of the introduction of conceptual blending techniques. The problem is that existing computer programs that generate visualisations are lacking the creativity, intuition, background information, and visual perception that enable a human to decide what aspects of the visualisation will expose patterns that are useful to the consumer of the visualisation. The main research question that guided this dissertation was, “How can criteria derived from theories of creativity be used in the generation of visualisations?”. In order to answer this question an analysis was done to determine which creativity theories and artificial intelligence techniques could potentially be used to implement the theories in the context of those relevant to computer generated visualisations. Measurable attributes and criteria that were sufficient for an algorithm that claims to model creativity were explored. The parts of the visualisation pipeline were identified and the aspects of visualisation generation that humans are better at than computers was explored. Themes that emerged in both the computational creativity and the visualisation literature were highlighted. Finally a prototype was built that started to investigate the use of computational creativity methods in the ‘variable choice’, and ‘aesthetics’ stages of the data visualisation pipeline.School of ComputingM. Sc. (Computing
    corecore