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ABSTRACT
The analysis of gene expression data is a complex task for
biologists wishing to understand the role of genes in the for-
mation of diseases such as cancer. Biologists need greater
support when trying to discover, and comprehend, new re-
lationships within their data. In this paper, we describe an
approach to the analysis of gene expression data where over-
lapping groupings are generated by Formal Concept Analy-
sis and interactively analyzed in a tool called CUBIST. The
CUBIST workflow involves querying a semantic database
and converting the result into a formal context, which can
be simplified to make it manageable, before it is visualized
as a concept lattice and associated charts.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous;
J.3 [Life and Medical Sciences]: Medical information sys-
tems

General Terms
Algorithms, Experimentation.

Keywords
Formal Concept Analysis, Bioinformatics, Visual Analytics,
Association Rules

1. INTRODUCTION
Biology is increasingly an information-centric discipline.

This amplifies the biologist’s need for greater support when
trying to discover, and comprehend, new relationships within
the data [4]. In particular, the analysis of gene expression is
of vital importance to the understanding of the phenomena
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leading to diseases such as cancer, alzheimer’s disease and
multiple sclerosis.

A gene is a unit of instructions that directs the body how
to do one essential task, i.e. create a protein. Gene expres-
sion information describes whether or not a gene is expressed
(active) in a location. There are many types of gene expres-
sion experiment. This work focuses on a technology called
in situ hybridisation (ISH) gene expression. Completed ISH
experiments are published online. For the mouse, one of the
main resources in this field is EMAGE1.

A number of computational methods have been proposed
to help biologists discover unexpected patterns and formu-
late interesting hypotheses. Popular techniques employ un-
supervised classification methods such as clustering, to group
and visualise co-expressed genes (see [15] for a survey). The
main limitation of most clustering algorithms is that they
do not allow clusters to overlap, a counter-intuitive idea in
this domain as genes are not restricted to a specific function
and usually take part in several biological processes when
interacting with other genes.

Other methods use Formal Concept Analysis (FCA) to
mine frequent patterns of gene expression data. FCA emerged
in the early 80’s as a mathematical framework to reveal co-
occurrence patterns between sets of objects and attributes,
usually depicted in a hierarchy of partially-ordered concepts
in a structure known as concept lattice.

One of the main motivations for the use of FCA in life
sciences comes from the idea that FCA provides an intuitive
understanding of generalisation and specialisation relation-
ships among objects and their attributes. In [10] for exam-
ple, FCA was used to extract groups of genes with similar
expressions profiles from data of the fungus Laccaria bicolor.
In [5] authors developed a tool to query a set of extracted
formal concepts in a human gene expression data set accord-
ing to various criteria (e.g. presence of a keyword in a gene
description) and then to cluster concepts according to sim-
ilarity, in terms of the attributes (samples) and the objects
(genes above a threshold of expression) constituting the con-
cepts. They called these clusters quasi-synexpression-groups
(QSGs).

In common with previous works is the traditional Hasse
diagram, used to represent concept lattices. In particular,
they suffer from considerable edge crossings when number of

1http://www.emouseatals.org/emage/
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concepts exceed a few dozen, as is the case of gene expression
data, leading to reduced graph readability and aesthetics
[12]. Visual analytics can be seen as an integral approach
combining visualization, human factors and data analysis
[11] and can greatly enhance the visualisation and explo-
ration of concept lattices [1]. The use of Visual Analytics in
the biology domain is a promising alternative to the large
cluster analysis as demonstrated by Akand et al. in [1]. In
[1] an algorithm is proposed that generates a browse-able
concept lattice, allowing incremental exploitation of large
concept lattices on a biological data set.

In this work we propose a combined approach using FCA,
Association Rules and Visual Analytics to address the chal-
lenges of gene expression analysis, through filtering and clus-
tering of large amounts of data, interactive exploration of the
data, display of relevant statistics and in particular, iden-
tification of inconsistencies. We developed a tool, called
CUBIST, that implements the approach, addressing those
challenges.

This work is part of a three-year project which aims to
unite Semantic Technologies and Business Intelligence in or-
der to facilitate analysis of large volumes of structured and
unstructured data.

The remainder of the paper is organized as follows. Sec-
tion 2 briefly introduces the EMAGE data set. In Section 3
the CUBIST user interface and its functionalities are intro-
duced, after a short introduction to Formal Concept Anal-
ysis. Finally, the conclusion and future work are presented
in Section 4.

2. EMAGE DATA SET
A gene is a unit of instructions that provides directions for

one essential task. Gene expression information describes
whether or not a gene is expressed (active) in a location,
e.g., the gene helps create the heart.

In situ hybridization (ISH) gene expression information
is given in relation to a tissue in an organism. Here the
organism is the developmental mouse. This is the mouse
from the moment it is conceived until it is born - this period
is split into 26 distinct stages called Theiler Stages (TS).
Each stage has its own anatomy (ontology) called EMAP2.

The result of an ISH experiment is analyzed under a mi-
croscope by a human expert. That expert provides a series
of triples (gene - level of expression - tissue) to describe the
result., e.g., bmp4 is weakly expressed in the heart TS17.
“Level” is a textual description of how active (important)
the gene is in the development of the tissue - strongly ex-
pressed genes are very active, weakly expressed genes less so,
and genes that are not expressed are inactive.

The triples are published online in a resource such as
EMAGE3. In this paper tissues may be referred to by EMAP
IDs rather than their full name. Therefore the “heart TS17”
becomes “EMAP:2411”.

A subset of the EMAGE data set, covering the textual
annotations, has been provided to the CUBIST project and
federated into a semantic repository.

ISH information enables biologists to discover relation-
ships between genes, for example, when genes are active in
the same location. Such information provides insights into
the ways in which relationships between genes affect the de-

2http://www.emouseatlas.org/emap/ema/home.html
3http://www.emouseatlas.org/emage/

velopment of a tissue. Comparisons between healthy and
abnormal tissues lead to a better understanding of diseases
(e.g. cancer) and birth defects (e.g. a cleft lip).

Regrettably, the tools for analyzing this information are
still in an early stage of development. Accordingly, sophis-
ticated analysis of the data is beyond the average biologist.
There is a need to enable every biologist to perform complex
investigations of their data. Yet, it is important to remem-
ber that biologists are not computer scientists, i.e. the tools
should be powerful, yet easy to understand and use.

3. BACKGROUND ON FCA
Before proceeding, we would like to recall the FCA termi-

nology. In mathematical terms, a formal context is defined
as a triple K = (G,M, I), with G being a set of objects, M
a set of attributes and I a relation defined between G and
M. The relation I is understood to be a subset of the cross
product between the sets it relates, so I ⊆ G ×M . If an
object g has an attribute m, then g ∈ G relates to m by
I, so we write (g,m) ∈ I, or gIm. For a subset of objects
A ⊆ G, a derivation operator ′ is defined to obtain the set
of attributes, common to the objects in A, as follows:

A′ = {m ∈ M | ∀g ∈ A : gIm}
In a similar manner, for a subset of attributes B ⊆ M, the
derivation operator ′ is defined to obtain the set of objects,
common to the attributes in B, as follows:

B′ = {g ∈ G | ∀m ∈ B : gIm}
A pair (A, B) is a formal concept in a given formal con-

text (G,M, I) only if A ⊆ G, B ⊆ M, A′ = B and B′ = A.
The set A is the extent of the concept and the set B is
the intent of the concept. A formal concept is, therefore, a
closed set of object/attribute relations, in that its extension
contains all objects that have the attributes in its inten-
sion, and the intension contains all attributes shared by the
objects in its extension. The table below shows an exam-
ple of a formal context of genes and EMAP identifiers in
which they were detected. Genes Upk2, Itpr3 and iden-
tifiers EMAP:7847, EMAP:7364, EMAP:7363 constitute a
formal concept because objects Upk2 and Itpr3 share all
attributes EMAP:7847, EMAP:7364, EMAP:7363 and at-
tributes EMAP:7847, EMAP:7364, EMAP:7363 are featured
by both objects Upk2 and Itpr3 (thus making the relation
closed).
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Upk2 × × ×
Itpr3 × × × × ×
Cops7b × ×
Tgfbi × ×

However, density and ‘noise’ of a formal context are fac-
tors that can dramatically increase the number of formal
concepts, which can result in unmanageable concept lattices.
In this case, relevance measures such as stability and sup-
port can minimise input data needed for the computation
of concept lattices [9]. In the subsequent sections we will
describe the techniques we used to deal with noise in data
and reduce the number of concepts generated.
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4. A CONCEPTUAL APPROACH TO GENE
EXPRESSION ANALYSIS ENHANCED BY
VISUAL ANALYTICS

In [3] authors presented an approach to use FCA to anal-
yse large clusters of gene co-expressions. The approach
makes use of the formal context creator FcaBedrock4 and the
formal concept miner In-Close5 (the aforementioned tools
are being redeveloped in CUBIST) to convert and simplify
formal contexts. The workflow is explained as follows. The
user supplies metadata for conversion in FcaBedrock, such
as the names of the genes or tissues and their values, and
with decisions as to what to convert and how to convert
it. These metadata are used to create a formal context.
User-defined constraints, such as object exclusion, attribute
exclusion and attribute restriction, applied to the data, al-
low different analyses to be carried out and the creation of
sub-contexts which only focus on particular portions of the
data. Next, In-Close is applied to the context file gener-
ated in the previous step. Using a trial and error approach,
the user has to find an appropriate minimum size to mine
a small number of large concepts, i.e., find the largest co-
expressions of genes within the data. Finally, a third tool,
Concept Explorer6 was used to visually display the corre-
sponding concept lattice.

Whilst the above workflow required three standalone tools
and FCA expertise, the same workflow has now been in-
corporated in CUBIST. Most of the complexity has been
hidden, empowering the biologists to run the entire work-
flow themselves. Additionally, whilst FCA could only be
visualised via a static lattice, CUBIST provides a series of
analytical features and is able to deal with the implicit re-
lationships and inconsistencies in the EMAGE data.

To illustrate, gene expression information should propa-
gate through the mouse because the anatomy is organized
as a series of part-of relationships, e.g. the paw is part-of
the limb. If a gene is expressed in the paw, it is also found
in the limb. Likewise, if a gene is not expressed in the limb
it cannot be found in the paw. So when one experiment
suggests a gene is expressed in the paw, and a second ex-
periment shows that the same gene is not expressed in the
limb, there is an inconsistency to be handled.

In the following sections we describe the methods to scale
and convert the formal context from a semantic database;
Visually explore clusters of expressed genes; Identify and
treat cases of noise and inconsistencies in the data and; High-
light patterns of co-occurrence with association rules.

4.1 Querying and Converting the Gene Expres-
sion Ontology Data to Formal Contexts

In contrast with traditional FCA, which takes as input a
binary table of objects and attributes, our approach is based
on the querying of ontology data which is then converted to
a formal context in a process transparent to the user. The
conceptual analysis of ontologies provides unique informa-
tion of gene expression data, by grouping entities belonging
to particular properties in a hierarchical fashion and high-
lighting patterns of co-occurrence for those groups. Because
biologists have little or no knowledge of SPARQL, the lan-
guage we use to query ontologies, a set of pre-defined queries

4http://sourceforge.net/projects/fcabedrock
5http://sourceforge.net/projects/inclose
6http://sourceforge.net/projects/conexp

are available.
The procedure consists of translating each object o, at-

tribute a and their incidence relation I in the result table
such as o ∈ G and a ∈ M , to create the formal context
K = (G,M, I). As the number of variables in a query can
be arbitrary, CUBIST has an option that allows users to
select whether a given column in the result table is an ob-
ject column, attribute or none. Contrarily to traditional
FCA tools, in CUBIST the formal context is transparent to
the user. The data is displayed in a table where its rows
contain attributes, followed by attribute values and objects,
in the columns (Figure 1). We found that this structure is
more accessible to non-FCA experts. Filtering, sub-selection
and conversion operations are possible through functionali-
ties that came from the aforementioned tool FcaBedrock.

Figure 1: Genes, tissues and level of expression in
Theiler Stage 9.

After the creation of the formal context, it is passed to the
concept miner, which returns the number of formal concepts
to the user. If the number of formal concepts is too high, the
user can exclude from the computation concepts with fewer
than a user-specified number of attributes and objects (so-
called minimum support), to simplify the context further.
Apart from the user being able to manually define minimum-
support criteria, in CUBIST, the minimum-support feature
is being reconfigured to be automatically calculated and ap-
plied to the formal context without user intervention.

4.2 Visual Analysis of Expression Clusters
Traditional software in FCA makes little use of visuali-

sation techniques, producing poorly readable lattice graphs
when the number of concepts exceeds a few dozen [5, 7]. To
reduce the complexity of lattices, simplified diagrams can
be produced by condensing or clustering concepts accord-
ing to their intent frequency [8]. Visualisations can also
be restricted to portions of the data [7], and concept size
reduction is possible by incorporating conditions into the
data mining process [17]. Finally, conceptual measures can
be applied to identify the most relevant concepts and filter
outliers [13].

CUBIST uses visual analytics techniques to allow users to
interactively analyse the conceptual data, by filtering and
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Figure 2: CUBIST user interface displaying the concept lattice for genes, tissues and level of expression in
Theiler Stage 9 . Its main components: 1) Toolbar; 2) Visualisation canvas; 3) Dashboard; 4) Selection &
entities bar and; 5) Filter bar.

selecting, transforming and clustering concepts. Figure 2
- 2 displays the selected visualisation for the concept lat-
tice. Other visualisation options are: Hasse diagram (lay-
ered graph), matrix (objects × attributes), sunburst (nodes
as concentric arcs), and tree (no edges crossings). A filter
bar (Figure 2 - 5) has two functions: first it allows the fil-
tering of concepts through the visual selection of attributes;
second, it displays the current conceptual distribution for
each attribute. It is possible to perform textual search on the
genes or tissues names for instance, with an auto-completion
feature to help users easily locate the entity they are look-
ing for. The results are dynamically highlighted as the user
searches in the different concept nodes.

In addition to the main concept lattice visualisation, sev-
eral charts display different aspects of the underlying concep-
tual structure such as co-occurrence of attributes, concepts
distribution, stability vs. support, etc. (Figure 2 - 3). Some
charts are updated when the user points the mouse over
a concept, highlighting details of the concept. Similarly,
a selection of a point/series in the chart will highlight the
concerned concepts in the lattice. This technique is called
Linking and Brushing.

Clustering of concepts (as opposed to clustering of objects
or attributes) can be useful to facilitate the browsing of con-
cepts and to identify zones of interest in the gene expression
data. In our experiment (Figure 3), we used a K-means clus-
tering algorithm to identify clusters of gene expression infor-
mation. Some similarity measures are based on the concept
lattice topology (e.g. counting the number of links between
two concepts); Intent/extent similarity (e.g. Jaccard for the
extent); or confidence between two pairs of concepts. In this
case, we used similarity measures proposed by Boutari et al.
[6].

Concept similarity (Jaccard). It is a coefficient for
calculating the ratio of shared attributes between concepts.
We define concept similarity as:

Figure 3: A radial-filling “Sunburst” visualisation
of the gene expression data with colours depicting
clusters.

CSim(A,B) =
|ma ∩mb|
|ma|+ |mb|

+
|ga ∩ gb|
|ga|+ |gb|

(1)

Proximity. Conceptual proximity is the topological dis-
tance between concepts A and B in the concept lattice.

prox(A,B) = 1−
shortestDistance(A,B)

diameter(Lattice)
(2)
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Strength. It is the average concept similarity value (CSim)
along the shortest path between a pair of concepts.

Figure 3 visualises the concept lattice from the context
shown in Figure 1. Each concept is an arc and the hierarchy
is represented from the innermost to the outermost layer.
Colours shows how concepts are distributed in the clusters,
which facilitates the identification of zones of interest (e.g.
concepts related to genes expressed in tissues of the same
organ).

4.3 Dealing with Noise and Inconsistencies
Biological data are naturally inconsistent and incomplete.

This is due to the sheer complexity of the subject matter;
something as simple as a 1◦ degree change in temperature
can cause otherwise identical experiments to provide differ-
ent outcomes. Often experiments are repeated in order to
confirm the original conclusion, yet this creates the potential
for conflicting results, e.g.

bmp4 - strong - epiblast TS8
bmp4 - not detected - epliblast TS8

These two annotations (from two different experiments)
deal with the same gene and the same structure (at the
same point in time). Ideally, they would have the same level
of expression too. Yet, this is not the case: the first anno-
tation suggests the gene is expressed, whilst the second says
it is not. To address inconsistencies of this type, CUBIST
emphasizes the conflict by utilizing distinct colours accord-
ing to the inconsistency type: binary (expressed versus not
expressed) and analogue (e.g. strong expression is distinct
from weak expression despite both levels suggesting a gene
is expressed).

Another cause of inconsistency is the propagation of gene
expression information. The mouse anatomy is a partonomy,
with each tissue being part-of another, .e.g., the brain is
part-of the head. If a gene is expressed in the brain, it
must be expressed in the head, i.e., positive expression is
propagated up the anatomy. In contrast, if a gene is not
expressed in the head, then it cannot be expressed in any
sub-component of the head. Accordingly, the gene is not
expressed in the brain, i.e., negative expression is propagated
down the anatomy. In CUBIST, this information is used
to resolve propagation at run time whenever a user queries
the EMAGE data. Once again, detected inconsistencies are
brought to the user’s attention.

CUBIST also looks for flip-flops. This occurs when a gene
is expressed in stages t and t+ 2 but not in t+ 1. For exam-
ple, a gene is shown to be expressed in the dorsal mesentery
in stages 16 and 18, but is not expressed in TS17. This
flip-flop may be a sign that the annotation for TS17 is ei-
ther missing or incorrect. To tackle this, we created a back-
ground process that is triggered whenever the ontology data
is updated, checking for flip-flops and fixing (adding) miss-
ing annotations. The added instances are marked with an
“autofix” label and stored back in the repository.

Another technique for approximating concepts in CUBIST,
apart from the aforementioned minimum-support, is fault
tolerance [14]. By applying fault tolerance to a formal con-
text, missing data can be inferred, i.e., missing crosses in
the formal context can be assumed to exist. If, for example,
all missing crosses in a formal context are filled, the formal
context can be approximated to a single formal concept. A

practical application of minimum-support and fault toler-
ance is evidenced in [2], where a large co-expression of genes
in the skull bones of a mouse embryo was discovered. This
was possible by mining the EMAGE data for large formal
concepts. Disjoint groups of large concepts were then inden-
tified and fault tolerance applied to each disjoint group to
produce a single very large co-expression from each group.

4.4 Using Association Rules to Highlight Gene
Expression Occurrence Patterns

Association Rules (AR) are under the form premise =⇒
conclusion: m1ANDm2AND...mn =⇒ n1ANDn2AND...nn

for m,n ∈ M and can be used to extract biological knowl-
edge [16]. However, ARs carry very little information about
how they can be visualized. They are typically displayed as
a list of logical sentences, unpractical to analyse when the
number of rules is large.

CUBIST currently provides two visualisations for associ-
ation rules, combined with statistics and charts to enable
progressive exploration of the ruleset: A matrix view, where
each rule is displayed in a row and the concerned pairs of
attribute-value in columns, with purple cells representing
the premise and yellow ones the conclusion. The second
visualisation is a radial graph showing how pairs attribute-
value implies to each other in a radial graph layout. A scat-
terplot matrix in the dashboard shows the distribution of
confidence, support and lift for the association rules, allow-
ing users to graphically select portions of the distribution
they are interested in.

To illustrate, after filtering the rules generated for the
context in Figure 1 by confidence down to a manageable
size, results revealed a few interesting facts. A significant
amount (75%) of the genes detected in the embryo were also
detected in the primitive endoderm (Figure 4) in TS9. This
is not surprising, since the later tissue is part of the former
in the anatomy hierarchy. On the other hand, another rule
showed that 71% of the genes detected in the mesoderm were
detected also in the ectoderm (against 62% the other way
around) in TS9. This follows an intuitive reasoning since
both tissues are part of the same organ.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we described an approach to the analysis of

gene expression data where overlapping groupings are gener-
ated by Formal Concept Analysis and interactively analysed
in an analytical tool called CUBIST. CUBIST workflow al-
lows users to carry out an analysis starting from querying
a semantic database, converting it into a formal context,
simplifying the context to make it manageable, and visual-
ising the result as a concept lattice and associated relevant
statistics.

Existing tools for genes expression analysis, such as Cy-
toscape7 and Orange8 have specific advantages, e.g. Cy-
toscape can run efficient analysis in network data and Or-
ange is a machine learning tool with some predictive fea-
tures. In contrast, CUBIST operates at a conceptual level
and it is less data-mining centric and more analytics ori-
ented (i.e, dashboards, drill-down, selection and filtering,
etc). Besides, those tools are designed to run locally whereas
CUBIST is being designed to run on a cluster of comput-

7http://www.cytoscape.org
8http://orange.biolab.si
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Figure 4: Genes, tissues and level of expression in
Theiler Stage 9.

ers eventually in the cloud. This will allow scalable analysis
of data of orders of magnitude higher than the mentioned
tools.

Although most of the functionalities in CUBIST can be
used with other data than EMAGE (with the corresponding
scaling of data), as future work we will extend our exper-
iments to other genes expression data sets like cancer and
brain development. We also intend to provide a public web
service API to allow interoperability with other platforms.
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