96,957 research outputs found

    A Mouth Full of Words: Visually Consistent Acoustic Redubbing

    Get PDF
    This paper introduces a method for automatic redubbing of video that exploits the many-to-many mapping of phoneme sequences to lip movements modelled as dynamic visemes [1]. For a given utterance, the corresponding dynamic viseme sequence is sampled to construct a graph of possible phoneme sequences that synchronize with the video. When composed with a pronunciation dictionary and language model, this produces a vast number of word sequences that are in sync with the original video, literally putting plausible words into the mouth of the speaker. We demonstrate that traditional, one-to-many, static visemes lack flexibility for this application as they produce significantly fewer word sequences. This work explores the natural ambiguity in visual speech and offers insight for automatic speech recognition and the importance of language modeling

    Visual speech encoding based on facial landmark registration

    Get PDF
    Visual Speech Recognition (VSR) related studies largely ignore the use of state of the art approaches in facial landmark localization, and are also deficit of robust visual features and its temporal encoding. In this work, we propose a visual speech temporal encoding by integrating state of the art fast and accurate facial landmark detection based on ensemble of regression trees learned using gradient boosting. The main contribution of this work is in proposing a fast and simple encoding of visual speech features derived from vertically symmetric point pairs (VeSPP) of facial landmarks corresponding to lip regions, and demonstrating their usefulness in temporal sequence comparisons using Dynamic Time Warping. VSR can be either speaker dependent (SD) or speaker independent (SI), and each of them poses different kind of challenges. In this work, we consider the SD scenario, and obtain 82.65% recognition accuracy on OuluVS database. Unlike recent research in VSR which makes use of auxiliary information such as audio, depth and color channels, our approach does not impose such constraints

    Multimodal Fusion of Polynomial Classifiers for Automatic Person Recognition

    Get PDF
    With the prevalence of the information age, privacy and personalization are forefront in today\u27s society. As such, biometrics are viewed as essential components of current and evolving technological systems. Consumers demand unobtrusive and noninvasive approaches. In our previous work, we have demonstrated a speaker verification system that meets these criteria. However, there are additional constraints for fielded systems. The required recognition transactions are often performed in adverse environments and across diverse populations, necessitating robust solutions. There are two significant problem areas in current generation speaker verification systems. The first is the difficulty in acquiring clean audio signals (in all environments) without encumbering the user with a head-mounted close-talking microphone. Second, unimodal biometric systems do not work with a significant percentage of the population. To combat these issues, multimodal techniques are being investigated to improve system robustness to environmental conditions, as well as improve overall accuracy across the population. We propose a multimodal approach that builds on our current state-of-the-art speaker verification technology. In order to maintain the transparent nature of the speech interface, we focus on optical sensing technology to provide the additional modality–giving us an audio-visual person recognition system. For the audio domain, we use our existing speaker verification system. For the visual domain, we focus on lip motion. This is chosen, rather than static face or iris recognition, because it provides dynamic information about the individual. In addition, the lip dynamics can aid speech recognition to provide liveness testing. The visual processing method makes use of both color and edge information, combined within a Markov random field (MRF) framework, to localize the lips. Geometric features are extracted and input to a polynomial classifier for the person recognition process. A late integration approach, based on a probabilistic model, is employed to combine the two modalities. The system is tested on the XM2VTS database combined with AWGN (in the audio domain) over a range of signal-to-noise ratios

    Speaker-following Video Subtitles

    Full text link
    We propose a new method for improving the presentation of subtitles in video (e.g. TV and movies). With conventional subtitles, the viewer has to constantly look away from the main viewing area to read the subtitles at the bottom of the screen, which disrupts the viewing experience and causes unnecessary eyestrain. Our method places on-screen subtitles next to the respective speakers to allow the viewer to follow the visual content while simultaneously reading the subtitles. We use novel identification algorithms to detect the speakers based on audio and visual information. Then the placement of the subtitles is determined using global optimization. A comprehensive usability study indicated that our subtitle placement method outperformed both conventional fixed-position subtitling and another previous dynamic subtitling method in terms of enhancing the overall viewing experience and reducing eyestrain

    Audio-Visual Speaker Identification using the CUAVE Database

    Get PDF
    The freely available nature of the CUAVE database allows it to provide a valuable platform to form benchmarks and compare research. This paper shows that the CUAVE database can successfully be used to test speaker identifications systems, with performance comparable to existing systems implemented on other databases. Additionally, this research shows that the optimal configuration for decisionfusion of an audio-visual speaker identification system relies heavily on the video modality in all but clean speech conditions

    Speaker Normalization Using Cortical Strip Maps: A Neural Model for Steady State vowel Categorization

    Full text link
    Auditory signals of speech are speaker-dependent, but representations of language meaning are speaker-independent. The transformation from speaker-dependent to speaker-independent language representations enables speech to be learned and understood from different speakers. A neural model is presented that performs speaker normalization to generate a pitch-independent representation of speech sounds, while also preserving information about speaker identity. This speaker-invariant representation is categorized into unitized speech items, which input to sequential working memories whose distributed patterns can be categorized, or chunked, into syllable and word representations. The proposed model fits into an emerging model of auditory streaming and speech categorization. The auditory streaming and speaker normalization parts of the model both use multiple strip representations and asymmetric competitive circuits, thereby suggesting that these two circuits arose from similar neural designs. The normalized speech items are rapidly categorized and stably remembered by Adaptive Resonance Theory circuits. Simulations use synthesized steady-state vowels from the Peterson and Barney [J. Acoust. Soc. Am. 24, 175-184 (1952)] vowel database and achieve accuracy rates similar to those achieved by human listeners. These results are compared to behavioral data and other speaker normalization models.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624

    Benefits for Voice Learning Caused by Concurrent Faces Develop over Time

    Get PDF
    Recognition of personally familiar voices benefits from the concurrent presentation of the corresponding speakers' faces. This effect of audiovisual integration is most pronounced for voices combined with dynamic articulating faces. However, it is unclear if learning unfamiliar voices also benefits from audiovisual face-voice integration or, alternatively, is hampered by attentional capture of faces, i.e., "face-overshadowing". In six study-test cycles we compared the recognition of newly-learned voices following unimodal voice learning vs. bimodal face-voice learning with either static (Exp. 1) or dynamic articulating faces (Exp. 2). Voice recognition accuracies significantly increased for bimodal learning across study-test cycles while remaining stable for unimodal learning, as reflected in numerical costs of bimodal relative to unimodal voice learning in the first two study-test cycles and benefits in the last two cycles. This was independent of whether faces were static images (Exp. 1) or dynamic videos (Exp. 2). In both experiments, slower reaction times to voices previously studied with faces compared to voices only may result from visual search for faces during memory retrieval. A general decrease of reaction times across study-test cycles suggests facilitated recognition with more speaker repetitions. Overall, our data suggest two simultaneous and opposing mechanisms during bimodal face-voice learning: while attentional capture of faces may initially impede voice learning, audiovisual integration may facilitate it thereafter
    corecore