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ABSTRACT
The freely available nature of the CUAVE database allows
it to provide a valuable platform to form benchmarks and
compare research. This paper shows that the CUAVE data-
base can successfully be used to test speaker identifications
systems, with performance comparable to existing systems
implemented on other databases. Additionally, this research
shows that the optimal configuration for decision-fusion of
an audio-visual speaker identification system relies heavily
on the video modality in all but clean speech conditions.

1. INTRODUCTION

Clemson University’s CUAVE [1] database is a relatively
new, and small entrant to the field of audio-visual data-
bases, alongside existing databases such as XM2VTS [2],
and M2VTS [3]. However, one great advantage of CUAVE
is that it is freely available, so its use in forming bench-
marks will become very valuable to the research community
in a number of fields. CUAVE was originally designed with
audio-visual speech recognition in mind, and it has been
used for both regular [4] and simultaneous speaker speech
recognition [5]. However other fields of research such as
audio-visual mutual information [6] and eye-tracking [7]
have also used this database to good effect.

In this paper, we implement an audio-visual speaker
identification (AVSPI) system using the CUAVE database.
The CUAVE database has not previously been used for
speaker recognition experiments, with most existing re-
search [8, 9] using the XM2VTS database for this task. One
of the main advantages provided by XM2VTS over CUAVE
is the large number of subjects (295 compared to CUAVE’s
36) means it is better suited to evaluating the speaker identi-
fication task. We believe, however, that the freely available
nature of CUAVE will provide a valuable platform for com-
parison of AVSPI research, even if the individual systems
cannot be evaluated nearly as completely on 36 speakers as
it could on 295.

The system implemented in this paper is a text-
dependent, decision-fusion, audio-visual speaker recogni-

tion system. A block diagram of this system is shown in
Figure 1. Decision fusion was chosen because it can be
weighted in regards to the reliability of each mode, which is
not possible with feature fusion.

2. EXPERIMENTAL SETUP

The stationary-speech sections of the CUAVE database
were used for this experiment, however the first stationary
continuous speech section was omitted because there was
often still significant movement while the speaker moved
from the profile view to the front-one view during the early
speech-events. This choice of sequences from CUAVE re-
sulted in 7 ten-digit sequences for each of the 36 speakers of
which 2 were continuous and 5 were spoken with the words
isolated.

For each speaker, 1 continuous and 4 isolated seg-
ments were chosen as the training set, with 1 continu-
ous and 1 isolated segment used for testing. The test-
ing segments were corrupted with speech-babble noise at
{−6,−3, 0, 3, 6, 9, 12} dB signal-to-noise ratio (SNR) to
investigate the response of the system to noisy train/test
mismatch.

Testing was performed in a text-dependent manner, with
the text used being each of the digits in the test set. For
this reason, the test set was further segmented into words
using the word segmentation data supplied with the CUAVE
database.
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Figure 1: Block Diagram of decision-fusion AVSPI system
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Figure 2: Overview of lip tracking system.

3. ACOUSTIC FEATURES

Mel frequency cepstral coefficients (MFCCs) were used
to represent the acoustic features in these experiments be-
cause of their general application to both speech and speaker
recognition. Each feature vector consisted of first 15
MFCCs, normalised energy coefficient, and the first and
second time derivates of those 16 features to result in a
48 dimensional feature vector. These features were calcu-
lated every 10 milliseconds using 25 millisecond Hamming-
windowed speech signals.

4. VISUAL FEATURES

The visual speech features extracted for this research con-
sisted of PCA, or eigenlip, based feature vectors extracted
from the lip region of interest (ROI). These features were
chosen because they have been shown to work well for vi-
sual speaker recognition on other databases [10].

4.1. Lip location and tracking

To extract features from the lip ROI, this region first needs
to be located in each frame of the video. For this research,
this was performed in three main stages, face location, eye
location and lip location. As shown in Figure 2, each stage
was used to help form a search region for the next stage.

4.1.1. Face Location

Before face location was performed on the videos, 10 man-
ually selected skin points for each speaker are used to form
thresholds for the Red, Green and Blue (r, g, b) values in
colour-space for skin segmentation. The thresholds for each
colour-space were calculated from the skin points as

µc − σc ≤ pc ≤ µc + σc, (1)

Where c ∈ {r, g, b}, µc and σc are the mean and standard
deviation of the 10 points in colour-space c, and pc is the
value of the pixel being thresholded in colour-space c.

Once the thresholds were calculated, they were used
for skin segmentation of the video to generate a bounding
box of the face region within the frames every 20 frames,
and this face location was remembered in the intermediate
frames. While there were some false positives from shirt
and hair for some speakers, they were not serious enough to
harm the eye location and tracking.

4.1.2. Eye Location and Tracking

When transformed into YCbCr space, the eye region of face
images exhibit a high concentration of blue-chrominance,
and a low concentration of red-chrominance. Therefore eye
detection can be done in the Cr − Cb space with reason-
able results. However, eyebrows often appear as false pos-
itives and can degrade results. To remove the influence of
eyebrows the Cr − Cb image can be shifted vertically and
subtracted from the original Cr − Cb image. This will
cancel the eyebrow minima by subtracting the eye minima,
whereas the eye minima will be subtracted by the high val-
ues in the skin region and receive a large negative value suit-
able for thresholding [11].

To locate the eyes from the face region from the previous
stage, the top half of the face region was designated as the
eye search-area, which was then searched using the shifted
Cr − Cb algorithm for the eye locations. The possible eye
candidates were searched for two points that were not too
large, too close horizontally, and not too distant vertically.
Finally the two candidates which had the largest horizontal
distance were chosen to be the eye locations. This process
was performed every 10 frames, and the locations were re-
membered in the intermediate frames.

To ensure that the eye locations were correct, the located
position was compared to the previous eye location. If the
locations had varied more than 30 pixels, they were assumed
to be in error and ignored, thereby keeping the previous eye
locations. The previous eye locations were also kept if no
eyes were found.

While this algorithm worked well for the majority of the
sequences we used from the CUAVE database, a significant
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Figure 3: Calculating lip search region from eye locations.

Figure 4: Sample lip ROIs from the CUAVE database.

portion had problems with not locating eyes, or incorrect
eye locations. These sequences were labelled manually with
the eye locations every 50 frames.

4.1.3. Lip Location and Tracking

Once the eye locations have been found, they are used to
calculate a lip search region, as shown in Figure 3. The lip
search region is then rotation-normalised, converted to R/G
colour-space, and thresholded between two multiples, deter-
mined empirically, of the average value within the region.
The lip candidates from the thresholding are examined to
remove unlikely lip locations (eg. too small, wrong shape).
A search-window of 125 × 75 pixels is then scanned over
the lip candidate image to find the windows with the highest
concentration of lip candidate regions. The final lip ROI is
chosen as the lowest, most central of these windows.

To handle situations where incorrect lip location occurs,
the new location is compared to the old location, and re-
jected if it strays too far. Also, to smooth out the movement
of the lip ROI, the final lip ROI is calculated by performing
a moving average on the last 10 lip ROIs. Some examples
of the captured lip ROIs are shown in Figure 4.

4.2. Visual feature extraction

Fifty representative eigenlips were trained based on 1,000
lip frames randomly chosen from both the training and test-
ing set. These eigenlips were then used to project every
lip frame in both the training and testing sets into 50-
dimensional PCA-space. The PCA-features were therefore
extracted at the same rate as the video frames, 29.97 fps, or
aproximately 1 frame every 33.4 ms.

5. MODELLING AND FUSION

In its simplest form, speaker identification is the process of
choosing the correct speaker from a set of possible speakers
trained previously. This is referred to as closed-set iden-
tification, and this is the task undertaken by these experi-
ments. A more complicated form of speaker identification is
open-set identification, where the possibility that the tested
speaker is not within the set of trained speakers is consid-
ered, but this will not be considered for these experiments.
For these experiments, text-dependent speaker modelling
will be performed, meaning that the speakers say the same
utterance for both training and testing. 10 experiments are
therefore run, one for each digit in the CUAVE database.

Using phoneme transcriptions obtained using earlier re-
search on the CUAVE database [12], speaker independent
HMMs were trained for each phoneme separately in for
both the audio and visual modalities. The structure of these
HMMs were identical for both modalities, with 3 hidden
states for the phone models, and 1 hidden state for the
short pause model. These speaker independent models were
then adapted using MLLR adaption into speaker-dependent
models. The HMM Toolkit, HTK [13] was used to train and
test HMMs for these experiments.

Once the speaker-dependent (SD) phone models were
created, the test audio and video streams were segmented
into the individual digits using the digit transcriptions pro-
vided with the CUAVE database. For each specific digit
(i.e., ‘one’, ‘two’, . . . ) the SD phone models corresponding
to the specified word for each speaker, in both audio and
video, were examined to determine the top 10 most likely
speakers, along with a score for each speaker. This process
was also repeated in the audio modality over test audio that
had been corrupted with speech-babble noise at a range of
signal-to-noise ratios.

Once the top 10 speakers for each sequence were de-
termined in both modalities, the results were recalculated
using a simple weighted sum late fusion,

ŝF = α× ŝA + (1− α)× ŝV (2)

where ŝi is the score in mode i, normalised to the range
0 → 1.
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Figure 5: Response of AVSPI system to speech-babble noise.

The fusion experiments were carried out over the entire
test set, including noisy audio. Optimum α values were ob-
tained for each signal-to-noise ratio by testing every value
of α from 0 to 1 in steps of 0.01.

6. RESULTS

The response of this fused system to speech-babble audio
corruption over a range of signal-to-noise ratios is shown
in Figure 5(a). The dashed line indicates the lowest error
rates of any α value for a particular noise level. This line
indicates the performance that could be obtained with per-
fect adaptive fusion, where the fusion parameter α could be
determined by estimating the noisyness of a signal. Adap-
tive fusion would allow the fused system to perform as well
as the visual system in noisy speech, and better than both
systems in clean speech.

It can be seen that the best non-adaptive, or static, fusion
performance of this system can be obtained with relatively
low value for the fusion parameter α. As an example, the
performance corresponding to α = 0.02, or 2% audio, is
nearly as good as the visual (at least when compared to the
audio) in very noisy speech, and only slightly worse that the
audio in clean speech. This indication of little dependency
on the acoustic domain can be backed up by looking at the
values of α that produce the lowest error for each of the
noise levels in Figure 5(b). Other than clean speech, it can
clearly be seen that better performance can be obtained at all
noise levels by placing a high dependence upon the visual
modality.

These results have shown that the visual domain is very
good at speaker recognition, and this high level of perfor-
mance can help the acoustic modality at all noise levels.
Because the PCA-based visual features are extracted from

a region around the lips, as shown in Figure 4, a lot of sta-
tic speaker-specific information is also captured with the
more speech-related, and dynamic lip-configuration infor-
mation. This speaker-specific information includes things
like the colour of the skin and lips, the presence of facial hair
and any other distinguishing marks within that region of the
face. It is this speaker-related static information, more so
than the speech-related dynamic information, that accounts
for the good performance of the visual speaker recognition
task, and its corresponding positive impact on the fusion re-
sults.

7. CONCLUSION

This paper has shown that the CUAVE database is a suitable
platform for implementing an audio-visual speaker identifi-
cation system. The performance of this system appears to be
in the same magnitude as existing AVSPI research [8, 9] on
the XM2VTS database, and the performance doesn’t appear
to be excessively inflated due to the low number of speak-
ers compared to XM2VTS. However, to evaluate the relative
performance completely this system should be implemented
on the XM2VTS database as well. Additionally, research
into the data requirements to adequately test AVSPI systems
would be valuable to determine if CUAVE can adequately
test an AVSPI system.

Additionally this research has shown that decision-
fusion, audio-visual speaker recognition systems can
achieve best performance by relying heavily on the video
in all but the cleanest of speech. This high performance in
the visual domain is caused by primarily by static, speaker-
dependent information in the lip ROI. This information al-
lows fusion to provide significant improvement on acoustic
speaker recognition in both noisy and clean speech.
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