6 research outputs found

    IVESA - Visual Analysis of Time-Stamped Event Sequences

    Get PDF
    Time-stamped event sequences (TSEQs) are time-oriented data without value information, shifting the focus of users to the exploration of temporal event occurrences. TSEQs exist in application domains, such as sleeping behavior, earthquake aftershocks, and stock market crashes. Domain experts face four challenges, for which they could use interactive and visual data analysis methods. First, TSEQs can be large with respect to both the number of sequences and events, often leading to millions of events. Second, domain experts need validated metrics and features to identify interesting patterns. Third, after identifying interesting patterns, domain experts contextualize the patterns to foster sensemaking. Finally, domain experts seek to reduce data complexity by data simplification and machine learning support. We present IVESA, a visual analytics approach for TSEQs. It supports the analysis of TSEQs at the granularities of sequences and events, supported with metrics and feature analysis tools. IVESA has multiple linked views that support overview, sort+filter, comparison, details-on-demand, and metadata relation-seeking tasks, as well as data simplification through feature analysis, interactive clustering, filtering, and motif detection and simplification. We evaluated IVESA with three case studies and a user study with six domain experts working with six different datasets and applications. Results demonstrate the usability and generalizability of IVESA across applications and cases that had up to 1,000,000 events

    Interconnected Services for Time-Series Data Management in Smart Manufacturing Scenarios

    Get PDF
    xvii, 218 p.The rise of Smart Manufacturing, together with the strategic initiatives carried out worldwide, have promoted its adoption among manufacturers who are increasingly interested in boosting data-driven applications for different purposes, such as product quality control, predictive maintenance of equipment, etc. However, the adoption of these approaches faces diverse technological challenges with regard to the data-related technologies supporting the manufacturing data life-cycle. The main contributions of this dissertation focus on two specific challenges related to the early stages of the manufacturing data life-cycle: an optimized storage of the massive amounts of data captured during the production processes and an efficient pre-processing of them. The first contribution consists in the design and development of a system that facilitates the pre-processing task of the captured time-series data through an automatized approach that helps in the selection of the most adequate pre-processing techniques to apply to each data type. The second contribution is the design and development of a three-level hierarchical architecture for time-series data storage on cloud environments that helps to manage and reduce the required data storage resources (and consequently its associated costs). Moreover, with regard to the later stages, a thirdcontribution is proposed, that leverages advanced data analytics to build an alarm prediction system that allows to conduct a predictive maintenance of equipment by anticipating the activation of different types of alarms that can be produced on a real Smart Manufacturing scenario

    Interconnected Services for Time-Series Data Management in Smart Manufacturing Scenarios

    Get PDF
    xvii, 218 p.The rise of Smart Manufacturing, together with the strategic initiatives carried out worldwide, have promoted its adoption among manufacturers who are increasingly interested in boosting data-driven applications for different purposes, such as product quality control, predictive maintenance of equipment, etc. However, the adoption of these approaches faces diverse technological challenges with regard to the data-related technologies supporting the manufacturing data life-cycle. The main contributions of this dissertation focus on two specific challenges related to the early stages of the manufacturing data life-cycle: an optimized storage of the massive amounts of data captured during the production processes and an efficient pre-processing of them. The first contribution consists in the design and development of a system that facilitates the pre-processing task of the captured time-series data through an automatized approach that helps in the selection of the most adequate pre-processing techniques to apply to each data type. The second contribution is the design and development of a three-level hierarchical architecture for time-series data storage on cloud environments that helps to manage and reduce the required data storage resources (and consequently its associated costs). Moreover, with regard to the later stages, a thirdcontribution is proposed, that leverages advanced data analytics to build an alarm prediction system that allows to conduct a predictive maintenance of equipment by anticipating the activation of different types of alarms that can be produced on a real Smart Manufacturing scenario

    Visual Analysis of Large, Time-Dependent, Multi-Dimensional Smart Sensor Tracking Data

    Get PDF
    Technological advancements over the past decade have increased our ability to collect data to previously unimaginable volumes [Kei02]. Understanding temporal patterns is key to gaining knowledge and insight. However, our capacity to store data now far exceeds the rate at which we are able to understand it [KKEM10]. This phenomenon has led to a growing need for advanced solutions to make sense and use of an ever-increasing data space. Abstract temporal data provides additional challenges in its, representation, size, and scalability, high dimensionality, and unique structure.One instance of such temporal data is acquired from smart sensor tags attached to freely roaming animals recording multiple parameters at infra-second rates which are becoming commonplace, and are transforming biologists understanding of the way wild animals behave.The excitement at the potential inherent in sophisticated tracking devices has, however, been limited by a lack of available software to advance research in the field. This thesis introduces methodologies to deal with the problem of the analysis of the large, multi-dimensional, time-dependent data acquired. Interpretation of such data is complex and currently limits the ability of biologists to realise the value of their recorded information.We present several contributions to the field of time-series visualisation, that is, the visualisation of ordered collections of real value data attributes at successive points in time sampled at uniform time intervals. Traditionally, time-series graphs have been used for temporal data. However, screen resolution is small in comparison to the large information space commonplace today. In such cases, we can only render a proportion of the data.It is widely accepted that the effective interpretation of large temporal data sets requires advanced methods and interaction techniques. In this thesis, we address these issues to enhance the exploration, analysis, and presentation of time-series data for movement ecologists in their smart sensor data analysis

    Visual-Interactive Preprocessing of Time Series Data

    No full text
    Time series data is an important data type in many different application scenarios. Consequently, there are a great variety of approaches for analyzing time series data. Within these approaches different strategies for cleaning, segmenting, representing, normalizing, comparing, and aggregating time series data can be found. When combining these operations, the time series analysis preprocessing workflow has many degrees of freedom. To define an appropriate preprocessing pipeline, the knowledge of experts coming from the application domain has to be included into the design process. Unfortunately, these experts often cannot estimate the effects of the chosen preprocessing algorithms and their parameterizations on the time series. We introduce a system for the visual-interactive exploitation of the preprocessing parameter space. In contrast to 'black box'-driven approaches designed by computer scientists based on the requirements of domain experts, our system allows these experts to visual-interactively compose time series preprocessing pipelines by themselves. Visual support is provided to choose the right order and parameterization of the preprocessing steps. We demonstrate the usability of our approach with a case study from the digital library domain, in which time-oriented scientific research data has to be preprocessed to realize a visual search and analysis application
    corecore