210 research outputs found

    Enabling technologies for precise aerial manufacturing with unmanned aerial vehicles

    Get PDF
    The construction industry is currently experiencing a revolution with automation techniques such as additive manufacturing and robot-enabled construction. Additive Manufacturing (AM) is a key technology that can o er productivity improvement in the construction industry by means of o -site prefabrication and on-site construction with automated systems. The key bene t is that building elements can be fabricated with less materials and higher design freedom compared to traditional manual methods. O -site prefabrication with AM has been investigated for some time already, but it has limitations in terms of logistical issues of components transportation and due to its lack of design exibility on-site. On-site construction with automated systems, such as static gantry systems and mobile ground robots performing AM tasks, can o er additional bene ts over o -site prefabrication, but it needs further research before it will become practical and economical. Ground-based automated construction systems also have the limitation that they cannot extend the construction envelope beyond their physical size. The solution of using aerial robots to liberate the process from the constrained construction envelope has been suggested, albeit with technological challenges including precision of operation, uncertainty in environmental interaction and energy e ciency. This thesis investigates methods of precise manufacturing with aerial robots. In particular, this work focuses on stabilisation mechanisms and origami-based structural elements that allow aerial robots to operate in challenging environments. An integrated aerial self-aligning delta manipulator has been utilised to increase the positioning accuracy of the aerial robots, and a Material Extrusion (ME) process has been developed for Aerial Additive Manufacturing (AAM). A 28-layer tower has been additively manufactured by aerial robots to demonstrate the feasibility of AAM. Rotorigami and a bioinspired landing mechanism demonstrate their abilities to overcome uncertainty in environmental interaction with impact protection capabilities and improved robustness for UAV. Design principles using tensile anchoring methods have been explored, enabling low-power operation and explores possibility of low-power aerial stabilisation. The results demonstrate that precise aerial manufacturing needs to consider not only just the robotic aspects, such as ight control algorithms and mechatronics, but also material behaviour and environmental interaction as factors for its success.Open Acces

    Aerial robotics in building inspection and maintenance

    Get PDF
    Buildings need periodic revision about their state, materials degrade with time and repairs or renewals have to be made driven by maintenance needs or safety requirements. That happens with any kind of buildings and constructions: housing, architecture masterpieces, old and ancient buildings and industrial buildings. Currently, nearly all of these tasks are carried out by human intervention. In order to carry out the inspection or maintenance, humans need to access to roofs, façades or other areas hard to reach and otherwise potentially hazardous location to perform the task. In some cases, it might not be feasible to access for inspection. For instance, in industry buildings operation must be often interrupted to allow for safe execution of such tasks; these shutdowns not only lead to substantial production loss, but the shutdown and start-up operation itself causes risks to human and environment. In touristic buildings, access has to be restricted with the consequent losses and inconveniences to visitors. The use of aerial robots can help to perform this kind of hazardous operations in an autonomous way, not only teleoperated. Robots are able to carry sensors to detect failures of many types and to locate them in a previously generated map, which the robot uses to navigate. Some of those sensors are cameras in different spectra (visual, near-infrared, UV), laser, LIDAR, ultrasounds and inertial sensory system. If the sensory part is crucial to inspect hazardous areas in buildings, the actuation is also important: the aerial robot can carry small robots (mainly crawler) to be deployed to perform more in-depth operation where the contact between the sensors and the material is basic (any kind of metallic part: pipes, roofs, panels…). The aerial robot has the ability to recover the deployed small crawler to be reused again. In this paper, authors will explain the research that they are conducting in this area and propose future research areas and applications with aerial, ground, submarine and other autonomous robots within the construction field.Peer ReviewedPostprint (author's final draft

    Compliant aerial manipulation.

    Get PDF
    The aerial manipulation is a research field which proposes the integration of robotic manipulators in aerial platforms, typically multirotors – widely known as “drones” – or autonomous helicopters. The development of this technology is motivated by the convenience to reduce the time, cost and risk associated to the execution of certain operations or tasks in high altitude areas or difficult access workspaces. Some illustrative application examples are the detection and insulation of leaks in pipe structures in chemical plants, repairing the corrosion in the blades of wind turbines, the maintenance of power lines, or the installation and retrieval of sensor devices in polluted areas. Although nowadays it is possible to find a wide variety of commercial multirotor platforms with payloads from a few gramps up to several kilograms, and flight times around thirty minutes, the development of an aerial manipulator is still a technological challenge due to the strong requirements relative to the design of the manipulator in terms of very low weight, low inertia, dexterity, mechanical robustness and control. The main contribution of this thesis is the design, development and experimental validation of several prototypes of lightweight (<2 kg) and compliant manipulators to be integrated in multirotor platforms, including human-size dual arm systems, compliant joint arms equipped with human-like finger modules for grasping, and long reach aerial manipulators. Since it is expected that the aerial manipulator is capable to execute inspection and maintenance tasks in a similar way a human operator would do, this thesis proposes a bioinspired design approach, trying to replicate the human arm in terms of size, kinematics, mass distribution, and compliance. This last feature is actually one of the key concepts developed and exploited in this work. Introducing a flexible element such as springs or elastomers between the servos and the links extends the capabilities of the manipulator, allowing the estimation and control of the torque/force, the detection of impacts and overloads, or the localization of obstacles by contact. It also improves safety and efficiency of the manipulator, especially during the operation on flight or in grabbing situations, where the impacts and contact forces may damage the manipulator or destabilize the aerial platform. Unlike most industrial manipulators, where force-torque control is possible at control rates above 1 kHz, the servo actuators typically employed in the development of aerial manipulators present important technological limitations: no torque feedback nor control, only position (and in some models, speed) references, low update rates (<100 Hz), and communication delays. However, these devices are still the best solution due to their high torque to weight ratio, low cost, compact design, and easy assembly and integration. In order to cope with these limitations, the compliant joint arms presented here estimate and control the wrenches from the deflection of the spring-lever transmission mechanism introduced in the joints, measured at joint level with encoders or potentiometers, or in the Cartesian space employing vision sensors. Note that in the developed prototypes, the maximum joint deflection is around 25 degrees, which corresponds to a deviation in the position of the end effector around 20 cm for a human-size arm. The capabilities and functionalities of the manipulators have been evaluated in fixed base test-bench firstly, and then in outdoor flight tests, integrating the arms in different commercial hexarotor platforms. Frequency characterization, position/force/impedance control, bimanual grasping, arm teleoperation, payload mass estimation, or contact-based obstacle localization are some of the experiments presented in this thesis that validate the developed prototypes.La manipulación aérea es un campo de investigación que propone la integración de manipuladores robóticos in plataformas aéreas, típicamente multirotores – comúnmente conocidos como “drones” – o helicópteros autónomos. El desarrollo de esta tecnología está motivada por la conveniencia de reducir el tiempo, coste y riesgo asociado a la ejecución de ciertas operaciones o tareas en áreas de gran altura o espacios de trabajo de difícil acceso. Algunos ejemplos ilustrativos de aplicaciones son la detección y aislamiento de fugas en estructura de tuberías en plantas químicas, la reparación de la corrosión en las palas de aerogeneradores, el mantenimiento de líneas eléctricas, o la instalación y recuperación de sensores en zonas contaminadas. Aunque hoy en día es posible encontrar una amplia variedad de plataformas multirotor comerciales con cargas de pago desde unos pocos gramos hasta varios kilogramos, y tiempo de vuelo entorno a treinta minutos, el desarrollo de los manipuladores aéreos es todavía un desafío tecnológico debido a los exigentes requisitos relativos al diseño del manipulador en términos de muy bajo peso, baja inercia, destreza, robustez mecánica y control. La contribución principal de esta tesis es el diseño, desarrollo y validación experimental de varios prototipos de manipuladores de bajo peso (<2 kg) con capacidad de acomodación (“compliant”) para su integración en plataformas aéreas multirotor, incluyendo sistemas bi-brazo de tamaño humano, brazos robóticos de articulaciones flexibles con dedos antropomórficos para agarre, y manipuladores aéreos de largo alcance. Puesto que se prevé que el manipulador aéreo sea capaz de ejecutar tareas de inspección y mantenimiento de forma similar a como lo haría un operador humano, esta tesis propone un enfoque de diseño bio-inspirado, tratando de replicar el brazo humano en cuanto a tamaño, cinemática, distribución de masas y flexibilidad. Esta característica es de hecho uno de los conceptos clave desarrollados y utilizados en este trabajo. Al introducir un elemento elástico como los muelles o elastómeros entre el los actuadores y los enlaces se aumenta las capacidades del manipulador, permitiendo la estimación y control de las fuerzas y pares, la detección de impactos y sobrecargas, o la localización de obstáculos por contacto. Además mejora la seguridad y eficiencia del manipulador, especialmente durante las operaciones en vuelo, donde los impactos y fuerzas de contacto pueden dañar el manipulador o desestabilizar la plataforma aérea. A diferencia de la mayoría de manipuladores industriales, donde el control de fuerzas y pares es posible a tasas por encima de 1 kHz, los servo motores típicamente utilizados en el desarrollo de manipuladores aéreos presentan importantes limitaciones tecnológicas: no hay realimentación ni control de torque, sólo admiten referencias de posición (o bien de velocidad), y presentan retrasos de comunicación. Sin embargo, estos dispositivos son todavía la mejor solución debido al alto ratio de torque a peso, por su bajo peso, diseño compacto y facilidad de ensamblado e integración. Para suplir estas limitaciones, los brazos robóticos flexibles presentados aquí permiten estimar y controlar las fuerzas a partir de la deflexión del mecanismo de muelle-palanca introducido en las articulaciones, medida a nivel articular mediante potenciómetros o codificadores, o en espacio Cartesiano mediante sensores de visión. Tómese como referencia que en los prototipos desarrollados la máxima deflexión articular es de unos 25 grados, lo que corresponde a una desviación de posición en torno a 20 cm en el efector final para un brazo de tamaño humano. Las capacidades y funcionalidades de estos manipuladores se han evaluado en base fija primero, y luego en vuelos en exteriores, integrando los brazos en diferentes plataformas hexartor comerciales. Caracterización frecuencial, control de posición/fuerza/impedancia, agarre bimanual, teleoperación de brazos, estimación de carga, o la localización de obstáculos mediante contacto son algunos de los experimentos presentados en esta tesis para validar los prototipos desarrollados por el auto

    Visual and Kinematic Coordinated Control of Mobile Manipulating Unmanned Aerial Vehicles

    Get PDF
    Manipulating objects using arms mounted to unmanned aerial vehicles (UAVs) is attractive because UAVs may access many locations that are otherwise inaccessible to traditional mobile manipulation platforms such as ground vehicles. Historically, UAVs have been employed in ways that avoid interaction with the environment at all costs. The recent trend of increasing small UAV lift capacity and the reduction of the weight of manipulator components make the realization of mobile manipulating UAVs imminent. Despite recent work, several major challenges remain to be overcome before it will be common practice to manipulate objects from UAVs. Among these challenges, the constantly moving UAV platform and compliance of manipulator arms make it difficult to position the UAV and end-effector relative to an object of interest precisely enough for reliable manipulation. Solving this challenge will bring UAVs one step closer to being able to perform meaningful tasks such as infrastructure repair, disaster response, law enforcement, and personal assistance. Toward a solution to this challenge, this thesis describes a way forward that uses the UAV as a means to crudely position a manipulator within reach of the end-effector's goal position in the world. The manipulator then performs the fine positioning of the end-effector, rejecting position perturbations caused by UAV motions. An algorithm to coordinate the redundant degrees of freedom of an aerial manipulation system is described that allows the motions of the manipulator to serve as inputs to the UAV's position controller. To demonstrate this algorithm, the manipulator's six degrees of freedom are servoed using visual sensing to drive an eye-in-hand camera to a specified pose relative to a target while treating motions of the host platform as perturbations. Simultaneously, the host platform's degrees of freedom are regulated using kinematic information from the manipulator. This ultimately drives the UAV to a position that allows the manipulator to assume a pose relative to the UAV that maximizes reachability, thus facilitating the arm's ability to compensate for undesired UAV motions. Maintaining this loose kinematic coupling between the redundant degrees of freedom of the host UAV and manipulator allows this type of controller to be applied to a wide variety of platforms, including manned aircraft, rather than a single instance of a purpose-built system. As a result of this loose coupling, careful consideration must be given to the manipulator design so that it can achieve useful poses while minimally influencing the stability of the host UAV. Accordingly, the novel application of a parallel manipulator mechanism is described.Ph.D., Mechanical Engineering -- Drexel University, 201

    Hierarchical task control for aerial inspection

    Get PDF
    This paper presents a task oriented control strategy for aerial vehicles equipped with a robotic arm and a camera attached to its end-effector. With this setting the camera can reach a new set of orientations previously not feasible for the quadrotor. The over-actuation of the whole system is exploited with a hierarchical control law to achieve a primary task consisting on a visual servoing control, whilst secondary tasks can also be attained to minimize gravitational effects or undesired arm configurations. Results are shown in a Robot Operating System (ROS) simulation.Peer ReviewedPostprint (author’s final draft

    A review of aerial manipulation of small-scale rotorcraft unmanned robotic systems

    Get PDF
    Small-scale rotorcraft unmanned robotic systems (SRURSs) are a kind of unmanned rotorcraft with manipulating devices. This review aims to provide an overview on aerial manipulation of SRURSs nowadays and promote relative research in the future. In the past decade, aerial manipulation of SRURSs has attracted the interest of researchers globally. This paper provides a literature review of the last 10 years (2008–2017) on SRURSs, and details achievements and challenges. Firstly, the definition, current state, development, classification, and challenges of SRURSs are introduced. Then, related papers are organized into two topical categories: mechanical structure design, and modeling and control. Following this, research groups involved in SRURS research and their major achievements are summarized and classified in the form of tables. The research groups are introduced in detail from seven parts. Finally, trends and challenges are compiled and presented to serve as a resource for researchers interested in aerial manipulation of SRURSs. The problem, trends, and challenges are described from three aspects. Conclusions of the paper are presented, and the future of SRURSs is discussed to enable further research interests

    A Manipulator-Assisted Multiple UAV Landing System for USV Subject to Disturbance

    Full text link
    Marine waves significantly disturb the unmanned surface vehicle (USV) motion. An unmanned aerial vehicle (UAV) can hardly land on a USV that undergoes irregular motion. An oversized landing platform is usually necessary to guarantee the landing safety, which limits the number of UAVs that can be carried. We propose a landing system assisted by tether and robot manipulation. The system can land multiple UAVs without increasing the USV's size. An MPC controller stabilizes the end-effector and tracks the UAVs, and an adaptive estimator addresses the disturbance caused by the base motion. The working strategy of the system is designed to plan the motion of each device. We have validated the manipulator controller through simulations and well-controlled indoor experiments. During the field tests, the proposed system caught and placed the UAVs when the disturbed USV roll range was approximately 12 degrees

    Mobile-manipulating UAVs for Sensor Installation, Bridge Inspection and Maintenance

    Get PDF
    Mobile manipulating UAVs have great potential for bridge inspection and maintenance. Since 2002, the PI has developed UAVs that could fly through in-and-around buildings and tunnels. Collision avoidance in such cluttered near-Earth environments has been a key challenge. The advent of light-weight, computationally powerful cameras led to breakthroughs in SLAM even though SLAM-based autonomous aerial navigation around bridges remains an unsolved problem. In 2007, the PI integrated a mobile manipulation function into UAVs, greatly extending the capabilities of UAVs from passive survey of environments with cameras to active interaction with environments using limbs. Mobile-manipulating UAVs have since been demonstrated to successfully turn valves, install sensors, open doors, and drag ropes. Their research and development face several challenges. First, limbs add weight to aircraft. Second, rotorcraft, like a quadcopter, is an under-actuated system whose stability can be easily affected by limb motions. Third, when performing a task like turning a valve, limbs demand compensation for torque-force interactions. Thus, even if battery technologies afford the additional payload of limbs, current knowledge for manipulation with under-actuated systems remains sparse. This project aims to develop and prototype a mobile-manipulating UAV for bridge maintenance and disaster cleanup through further study on SLAM technology for robust navigation, impedance controllers to ensure UAV’s stability with limb motion, and coordinated and cooperative motions of multiple limbs to perform simple tasks like bearings cleaning and crack sealing in concrete bridges. Two strategies will be explored for bridge maintenance: (a) A UAV brings and uses a can of compressed air for bridge cleaning, and (2) Two UAVs airlift, position, and operate hoses from ground, and clean bridges with air or water. The latter can be potentially implemented by including a station-keeping, lighter-than-air UAV like blimp that can airlift a hose and remain airborne for extended periods. The mobile-limbed UAVs can then pull-and-drag the hose into areas that need to be cleaned. The blimp-based approach is attractive because it is easier for a UAV to drop hose lengths rather than pull the hose up in air
    corecore