5 research outputs found

    Evidence for Human Fronto-Central Gamma Activity during Long-Term Memory Encoding of Word Sequences

    Get PDF
    Although human gamma activity (30–80 Hz) associated with visual processing is often reported, it is not clear to what extend gamma activity can be reliably detected non-invasively from frontal areas during complex cognitive tasks such as long term memory (LTM) formation. We conducted a memory experiment composed of 35 blocks each having three parts: LTM encoding, working memory (WM) maintenance and LTM retrieval. In the LTM encoding and WM maintenance parts, participants had to respectively encode or maintain the order of three sequentially presented words. During LTM retrieval subjects had to reproduce these sequences. Using magnetoencephalography (MEG) we identified significant differences in the gamma and beta activity. Robust gamma activity (55–65 Hz) in left BA6 (supplementary motor area (SMA)/pre-SMA) was stronger during LTM rehearsal than during WM maintenance. The gamma activity was sustained throughout the 3.4 s rehearsal period during which a fixation cross was presented. Importantly, the difference in gamma band activity correlated with memory performance over subjects. Further we observed a weak gamma power difference in left BA6 during the first half of the LTM rehearsal interval larger for successfully than unsuccessfully reproduced word triplets. In the beta band, we found a power decrease in left anterior regions during LTM rehearsal compared to WM maintenance. Also this suppression of beta power correlated with memory performance over subjects. Our findings show that an extended network of brain areas, characterized by oscillatory activity in different frequency bands, supports the encoding of word sequences in LTM. Gamma band activity in BA6 possibly reflects memory processes associated with language and timing, and suppression of beta activity at left frontal sensors is likely to reflect the release of inhibition directly associated with the engagement of language functions

    Visual areas become less engaged in associative recall following memory stabilization.

    No full text
    Contains fulltext : 69445.pdf (publisher's version ) (Closed access)Numerous studies have focused on changes in the activity in the hippocampus and higher association areas with consolidation and memory stabilization. Even though perceptual areas are engaged in memory recall, little is known about how memory stabilization is reflected in those areas. Using magnetoencephalography (MEG) we investigated changes in visual areas with memory stabilization. Subjects were trained on associating a face to one of eight locations. The first set of associations ('stabilized') was learned in three sessions distributed over a week. The second set ('labile') was learned in one session just prior to the MEG measurement. In the recall session only the face was presented and subjects had to indicate the correct location using a joystick. The MEG data revealed robust gamma activity during recall, which started in early visual cortex and propagated to higher visual and parietal brain areas. The occipital gamma power was higher for the labile than the stabilized condition (time=0.65-0.9 s). Also the event-related field strength was higher during recall of labile than stabilized associations (time=0.59-1.5 s). We propose that recall of the spatial associations prior to memory stabilization involves a top-down process relying on reconstructing learned representations in visual areas. This process is reflected in gamma band activity consistent with the notion that neuronal synchronization in the gamma band is required for visual representations. More direct synaptic connections are formed with memory stabilization, thus decreasing the dependence on visual areas

    Sensorimotor Alpha Activity is Modulated in Response to the Observation of Pain in Others

    Get PDF
    The perception–action account of empathy states that observation of another person's state automatically activates a similar state in the observer. It is still unclear in what way ongoing sensorimotor alpha oscillations are involved in this process. Although they have been repeatedly implicated in (biological) action observation and understanding communicative gestures, less is known about their role in vicarious pain observation. Their role is understood as providing a graded inhibition through functional inhibition, thereby streamlining information flow through the cortex. Although alpha oscillations have been shown to have at least visual and sensorimotor origins, only the latter are expected to be involved in the empathetic response. Here, we used magnetoencephalography, allowing us to spatially distinguish and localize oscillatory components using beamformer source reconstruction. Subjects observed realistic pictures of limbs in painful and no-pain (control) conditions. As predicted, time–frequency analysis indeed showed increased alpha suppression in the pain condition compared to the no-pain condition. Although both pain and no-pain conditions suppressed alpha- and beta-band activity at both posterior and central sensors, the pain condition suppressed alpha more only at central sensors. Source reconstruction localized these differences along the central sulcus. Our results could not be accounted for by differences in the evoked fields, suggesting a unique role of oscillatory activity in empathetic responses. We argue that alpha oscillations provide a unique measure of the underlying functional architecture of the brain, suggesting an automatic disinhibition of the sensorimotor cortices in response to the observation of pain in others

    Neuronale Synchronisation während perzeptueller Organisation in Schizophrenie-Patienten

    Get PDF
    Current theories of schizophrenia suggest that the pathophysiology of the disorder may be the result of a deficit in the coordination of neural activity within and between areas of the brain, which may lead to impairments in basic cognitive functions such as contextual disambiguation and dynamic grouping (Phillips and Silverstein, 2003). This notion has been supported by recent studies showing that patients with schizophrenia are characterized by reduced synchronous, oscillatory activity in the gamma-frequency band during sensory processing (Spencer et al. 2003, Green et al. 2003, Wynn et al. 2005). However, it is currently unclear to what extent high-frequency gamma-band oscillations (> 60 Hz) contribute to impaired neural synchronization as research has so far focussed on gamma-band oscillations between 30 and 60 Hz. In addition, it is not known whether deficits in high-frequency oscillations are already present at the onset of the disorder and to what extent reductions may be related to the confounding influence of antipsychotic medication. Finally, the neural generators underlying impairments in synchronous oscillatory activity in schizophrenia have not been investigated yet. To address these questions, we recorded MEG activity during a visual closure task (Mooney faces task) in medicated chronic schizophrenia patients, drug-naive first-episode schizophrenia patients and healthy controls. MEG data were analysed for spectral power between 25 and 150 Hz, and beamforming techniques were used to localize the sources of oscillatory gamma-band activity. In healthy controls, we observed that the processing of Mooney faces was associated with sustained high-frequency gamma-band activity (> 60 Hz). A time-resolved analysis of the neural generators underlying perceptual closure revealed a network of distributed sources in occipito-temporal, parietal and frontal regions, which were differentially activated during specific time intervals. In chronic schizophrenia patients, we found a pronounced reduction of high-frequency gamma-band oscillatory activity that was accompanied by an impairment in perceptual organization and involved reduced source power in various brain regions associated with perceptual closure. First-episode patients were also characterized by a deficit in high-frequency gamma-band activity and reductions of source power in multiple areas; these impairments, however, were less pronounced than in chronic patients. Regarding behavioral performance, first-episode patients were not impaired in their ability to detect Mooney faces, but exhibited a loss in specificity of face detection. In conclusion, our results suggest that schizophrenia is associated with a widespread reduction in high-frequency oscillations that indicate local network abnormalities. These dysfunctions are independent of medication status and already present at illness onset, suggesting a possible progressive deficit during the course of the disorder.Aktuelle Theorien gehen davon aus, dass die Pathophysiologie der Schizophrenie auf eine Störung in der Koordination neuronaler Prozesse zurückzuführen ist, welche zu einer Beeinträchtigung in der Integration von Informationen führt und sich in Defiziten bei frühen Wahrnehmungsprozessen und höheren kognitiven Funktionen widerspiegelt. Diese Hypothese wird durch eine Reihe von Studien gestützt, die eine Reduktion oszillatorischer Aktivität im Beta- und Gamma-Frequenzband im Elektroenzephalogramm während visueller Wahrnehmungsprozesse bei Patienten mit Schizophrenie nachweisen konnten. Die Bedeutung von hochfrequenten Gamma-Band Oszillationen (> 60 Hz) für das Verständnis von perzeptuellen Dysfunktionen bei Patienten mit Schizophrenie ist jedoch bislang wenig erforscht. Zudem ist unklar, ob und in welchem Umfang eine Veränderung oszillatorischer Aktivität bereits zu Beginn der Erkrankung und ohne den Einfluss von antipsychotischen Medikamenten vorhanden ist. Des Weiteren gibt es bislang keine Befunde zu den neuronalen Quellen, die den Defiziten oszillatorischer Aktivität bei Schizophrenie-Patienten zugrunde liegen. Um diese Fragen zu untersuchen, wurden im Rahmen der vorliegenden Dissertation drei Studien durchgeführt, in denen die Hirnaktivität während einer visuellen Gestaltaufgabe (Mooney faces-Aufgabe) bei chronischen medizierten Schizophrenie-Patienten, ersterkrankten nicht-medizierten Schizophrenie-Patienten sowie bei gesunden Kontrollprobanden mittels Magnetoenzephalographie (MEG) gemessen wurde. Die Auswertung der MEG-Daten beinhaltete auf der Sensoren-Ebene eine Auswertung der spektralen Power zwischen 25 und 150 Hz und auf der Quellen-Ebene eine Rekonstruktion der Generatoren oszillatorischer Aktivität mit Hilfe von Beamforming-Techniken. Die Hauptbefunde lassen sich wie folgt zusammenfassen: Das neuronale Netzwerk perzeptueller Organisation bei Mooney faces zeigte eine ausgeprägte oszillatorische Aktivität im hochfrequenten Gamma-Band (> 60 Hz) in gesunden Kontrollprobanden und umfasste okzipito-temporale, parietale und frontale Areale, die zu verschiedenen Zeitpunkten der Informationsverarbeitung aktiviert wurden. Unsere Ergebnisse lassen vermuten, dass perzeptuelle Organisationsprozesse bei Mooney faces auf einer frühen Interaktion zwischen Arealen beruhen, die mit der Verarbeitung von Schattierungsreizen zusammenhängen, gesichtsspezifischen Arealen, und Arealen, die mit dem Abruf von Informationen aus dem Langzeitgedächtnis in Verbindung stehen. Im Vergleich zu den Kontrollprobanden zeigten chronische Schizophrenie-Patienten ein deutliches Defizit in der hochfrequenten (60 – 120 Hz) Gamma-Band Power, welches mit reduzierten Detektionsraten bei der Mooney faces-Aufgabe und mit verringerten Aktivierungen in den für perzeptuelle Organisationsprozesse relevanten Arealen einherging. Ersterkrankte nicht-medizierte Schizophrenie-Patienten zeigten ebenfalls eine Reduktion hochfrequenter Gamma-Band Power in verschiedenen Hirnarealen. Dieses Defizit war jedoch weniger stark ausgeprägt als in den chronischen Schizophrenie-Patienten. Im Gegensatz zu den chronischen Patienten zeigten die ersterkrankten Patienten keine Beeinträchtigung bei der Detektion von Gesichtern in aufrecht präsentierten Mooney face Stimuli; jedoch wiesen sie ein Defizit in der Diskrimination zwischen Gesichtern und Nicht-Gesichtern auf. Unsere Befunde deuten darauf hin, dass bei Patienten mit Schizophrenie ausgeprägte Defizite in lokalen Synchronisationsprozessen vorliegen, welche mit perzeptuellen Dysfunktionen einhergehen. Die beeinträchtigte Koordination neuronaler Aktivität könnte auf Veränderungen in GABAergen und glutamatergen Neurotransmittersystemen bei Schizophrenie-Patienten zurückzuführen sein. Unsere Ergebnisse zeigen weiterhin, dass Beeinträchtigungen neuronaler Synchronisation bereits zu Beginn der Erkrankung und ohne den Einfluss von antipsychotischer Medikation vorhanden sind. Die stärkere Beeinträchtigung in den chronischen im Vergleich zu den ersterkrankten Patienten deutet auf einen progressiven Verlauf der Beeinträchtigung oszillatorischer Aktivität bei Schizophrenie-Patienten hin

    Neural correlates of the use of prior knowledge in predictive coding

    Get PDF
    Every day, we use our sensory organs to perceive the environment around us. However, our perception not only depends on sensory information, but also on information already present in our brains, i.e. prior knowledge acquired by previous experience. The idea that prior knowledge is required for efficient perception goes back to Hermann von Helmholtz (1867). He raised the hypothesis that perception is a knowledge-driven inference process, in which prior knowledge allows to infer the (uncertain) causes of our sensory inputs. According to the currently very prominent “predictive coding theory” (e. g. Rao and Ballard, 1999; Friston, 2005, 2010; Hawkins and Blakeslee, 2005; Clark, 2012; Hohwy, 2013) this inference process is realized in our brains by using prior knowledge to build internal predictions for incoming information. Despite the increasing popularity of predictive coding theory in the last decade (see Clark, 2012 and comments to his article), previous research in the field has left out several important aspects: 1. The neural correlates of the use of prior knowledge are still widely unexplored; 2. Neurophysiological evidence for the neural implementation of predictive coding is limited and 3. Assumption-free approaches to study predictive coding mechanism are missing. In the present work, I try to fill these gaps using three studies with magnetoencephalographic (MEG) recordings in human participants: Study 1 (n = 48) investigates how prior knowledge from life-long experience influences perception. The results demonstrate that prediction errors induced by the violation of predictions based on life-long experience with faces are reflected in increased high-frequency gamma band activity (> 68 Hz). For studies 2 and 3, neurophysiological analysis is combined with information-theoretic analysis methods. These allow investigating the neural correlates of predictive coding with only few prior assumptions. In particular, the information-theoretic measure active information storage (AIS; Lizier et al., 2012; Wibral et al., 2014) can quantify how much information is maintained in neural activity (predictable information). I use AIS in order to study the neural correlates of activated prior knowledge in study 2 and 3. Study 2 (n = 52) assesses how prior knowledge is pre-activated in task relevant states to become usable for predictions. I find that pre-activation of prior knowledge for predictions about faces increases alpha and beta band related predictable information as measured by AIS in content specific brain areas. Study 3 (n patients = 19; n controls = 19) explores whether predictive coding related mechanism are impaired in autism spectrum disorder (ASD). The results show that alpha and beta band related predictable information is reduced in the brain of ASD patients, in particular in the posterior part of the default mode network. These findings indicate reduced use or precision of prior knowledge in ASD. In summary, the results presented in the present work illustrate the neural correlates of the use of prior knowledge in the predictive coding framework. They provide neurophysiological evidence for the link of prediction errors and fast neural activity (study 1, gamma band) as well as predictions and slower neural activity (study 2 and 3, alpha and beta band). These findings are in line with a theoretical proposal for the neural implementation of predictive coding theory (Bastos et al., 2012). Further, by application of AIS analysis (study 2 and 3) the present work introduces the largely assumption-free usage of information-theoretic measures to study the neural correlates of predictive coding in the human brain. In future, analysis of predictable information as measured by AIS may be applied to a broad variety of experiments studying predictive coding and also for research on neuropsychiatric disorders as has been demonstrated for ASD
    corecore