14,519 research outputs found

    Acoustic mechanisms of a species-based discrimination of the chick-a-dee call in sympatric black-capped (Poecile atricapillus) and mountain chickadees (P. gambeli)

    Get PDF
    Previous perceptual research with black-capped and mountain chickadees has demonstrated that these species treat each other’s namesake chick-a-dee calls as belonging to separate, open-ended categories. Further, the terminal dee portion of the call has been implicated as the most prominent species marker. However, statistical classification using acoustic summary features suggests that all note-types contained within the chick-a-dee call should be sufficient for species classification. The current study seeks to better understand the note-type based mechanisms underlying species-based classification of the chick-a-dee call by black-capped and mountain chickadees. In two, complementary, operant discrimination experiments, both species were trained to discriminate the species of the signaler using either entire chick-a-dee calls, or individual note-types from chick-a-dee calls. In agreement with previous perceptual work we find that the D note had significant stimulus control over species-based discrimination. However, in line with statistical classifications, we find that all note-types carry species information. We discuss reasons why the most easily discriminated note-types are likely candidates to carry species-based cues.Publisher PDFPeer reviewe

    Acoustic behavior of melon-headed whales varies on a diel cycle.

    Get PDF
    Many terrestrial and marine species have a diel activity pattern, and their acoustic signaling follows their current behavioral state. Whistles and echolocation clicks on long-term recordings produced by melon-headed whales (Peponocephala electra) at Palmyra Atoll indicated that these signals were used selectively during different phases of the day, strengthening the idea of nighttime foraging and daytime resting with afternoon socializing for this species. Spectral features of their echolocation clicks changed from day to night, shifting the median center frequency up. Additionally, click received levels increased with increasing ambient noise during both day and night. Ambient noise over a wide frequency band was on average higher at night. The diel adjustment of click features might be a reaction to acoustic masking caused by these nighttime sounds. Similar adaptations have been documented for numerous taxa in response to noise. Or it could be, unrelated, an increase in biosonar source levels and with it a shift in center frequency to enhance detection distances during foraging at night. Call modifications in intensity, directionality, frequency, and duration according to echolocation task are well established for bats. This finding indicates that melon-headed whales have flexibility in their acoustic behavior, and they collectively and repeatedly adapt their signals from day- to nighttime circumstances

    The Feasibility of Counting Songbirds Using Unmanned Aerial Vehicles

    Full text link
    Obtaining unbiased survey data for vocal bird species is inherently challenging due to observer biases, habitat coverage biases, and logistical constraints. We propose that combining bioacoustic monitoring with unmanned aerial vehicle (UAV) technology could reduce some of these biases and allow bird surveys to be conducted in less accessible areas. We tested the feasibility of the UAV approach to songbird surveys using a low-cost quadcopter with a simple, lightweight recorder suspended 8 m below the vehicle. In a field experiment using playback of bird recordings, we found that small variations in UAV altitude (it hovered at 28, 48, and 68 m) didn\u27t have a significant effect on detections by the recorder attached to the UAV, and we found that the detection radius of our equipment was comparable with detection radii of standard point counts. We then field tested our equipment, comparing songbird detections from our UAV-mounted recorder with standard point-count data from 51 count stations. We found that the number of birds per point on UAV counts was comparable with standard counts for most species, but there were significant underestimates for some—specifically, issues of song masking for a species with a low-frequency song, the Mourning Dove (Zenaida macroura); and underestimation of the abundance of a species that was found in very high densities, the Gray Catbird (Dumetella carolinensis). Species richness was lower on UAV counts (mean = 5.6 species point−1) than on standard counts (8.3 species point−1), but only slightly lower than on standard counts if nonaudible detections are omitted (6.5 species point−1). Excessive UAV noise is a major hurdle to using UAVs for bioacoustic monitoring, but we are optimistic that technological innovations to reduce motor and rotor noise will significantly reduce this issue. We conclude that UAV-based bioacoustic monitoring holds great promise, and we urge other researchers to consider further experimentation to refine techniques
    • …
    corecore