56,851 research outputs found

    Visual analytics of location-based social networks for decision support

    Get PDF
    Recent advances in technology have enabled people to add location information to social networks called Location-Based Social Networks (LBSNs) where people share their communication and whereabouts not only in their daily lives, but also during abnormal situations, such as crisis events. However, since the volume of the data exceeds the boundaries of human analytical capabilities, it is almost impossible to perform a straightforward qualitative analysis of the data. The emerging field of visual analytics has been introduced to tackle such challenges by integrating the approaches from statistical data analysis and human computer interaction into highly interactive visual environments. Based on the idea of visual analytics, this research contributes the techniques of knowledge discovery in social media data for providing comprehensive situational awareness. We extract valuable hidden information from the huge volume of unstructured social media data and model the extracted information for visualizing meaningful information along with user-centered interactive interfaces. We develop visual analytics techniques and systems for spatial decision support through coupling modeling of spatiotemporal social media data, with scalable and interactive visual environments. These systems allow analysts to detect and examine abnormal events within social media data by integrating automated analytical techniques and visual methods. We provide comprehensive analysis of public behavior response in disaster events through exploring and examining the spatial and temporal distribution of LBSNs. We also propose a trajectory-based visual analytics of LBSNs for anomalous human movement analysis during crises by incorporating a novel classification technique. Finally, we introduce a visual analytics approach for forecasting the overall flow of human crowds

    An Affordance-Based Framework for Human Computation and Human-Computer Collaboration

    Get PDF
    Visual Analytics is “the science of analytical reasoning facilitated by visual interactive interfaces” [70]. The goal of this field is to develop tools and methodologies for approaching problems whose size and complexity render them intractable without the close coupling of both human and machine analysis. Researchers have explored this coupling in many venues: VAST, Vis, InfoVis, CHI, KDD, IUI, and more. While there have been myriad promising examples of human-computer collaboration, there exists no common language for comparing systems or describing the benefits afforded by designing for such collaboration. We argue that this area would benefit significantly from consensus about the design attributes that define and distinguish existing techniques. In this work, we have reviewed 1,271 papers from many of the top-ranking conferences in visual analytics, human-computer interaction, and visualization. From these, we have identified 49 papers that are representative of the study of human-computer collaborative problem-solving, and provide a thorough overview of the current state-of-the-art. Our analysis has uncovered key patterns of design hinging on human- and machine-intelligence affordances, and also indicates unexplored avenues in the study of this area. The results of this analysis provide a common framework for understanding these seemingly disparate branches of inquiry, which we hope will motivate future work in the field

    Improving Big Data Visual Analytics with Interactive Virtual Reality

    Full text link
    For decades, the growth and volume of digital data collection has made it challenging to digest large volumes of information and extract underlying structure. Coined 'Big Data', massive amounts of information has quite often been gathered inconsistently (e.g from many sources, of various forms, at different rates, etc.). These factors impede the practices of not only processing data, but also analyzing and displaying it in an efficient manner to the user. Many efforts have been completed in the data mining and visual analytics community to create effective ways to further improve analysis and achieve the knowledge desired for better understanding. Our approach for improved big data visual analytics is two-fold, focusing on both visualization and interaction. Given geo-tagged information, we are exploring the benefits of visualizing datasets in the original geospatial domain by utilizing a virtual reality platform. After running proven analytics on the data, we intend to represent the information in a more realistic 3D setting, where analysts can achieve an enhanced situational awareness and rely on familiar perceptions to draw in-depth conclusions on the dataset. In addition, developing a human-computer interface that responds to natural user actions and inputs creates a more intuitive environment. Tasks can be performed to manipulate the dataset and allow users to dive deeper upon request, adhering to desired demands and intentions. Due to the volume and popularity of social media, we developed a 3D tool visualizing Twitter on MIT's campus for analysis. Utilizing emerging technologies of today to create a fully immersive tool that promotes visualization and interaction can help ease the process of understanding and representing big data.Comment: 6 pages, 8 figures, 2015 IEEE High Performance Extreme Computing Conference (HPEC '15); corrected typo

    Designing Situated Dashboards: Challenges and Opportunities

    Full text link
    Situated Visualization is an emerging field that unites several areas - visualization, augmented reality, human-computer interaction, and internet-of-things, to support human data activities within the ubiquitous world. Likewise, dashboards are broadly used to simplify complex data through multiple views. However, dashboards are only adapted for desktop settings, and requires visual strategies to support situatedness. We propose the concept of AR-based situated dashboards and present design considerations and challenges developed over interviews with experts. These challenges aim to propose directions and opportunities for facilitating the effective designing and authoring of situated dashboards.Comment: To be presented at ISA: 2nd Workshop on Immersive and Situated Analytics @ ISMAR 202

    What is Interaction for Data Visualization?

    Get PDF
    International audienceInteraction is fundamental to data visualization, but what "interaction" means in the context of visualization is ambiguous and confusing. We argue that this confusion is due to a lack of consensual definition. To tackle this problem, we start by synthesizing an inclusive view of interaction in the visualization community-including insights from information visualization, visual analytics and scientific visualization, as well as the input of both senior and junior visualization researchers. Once this view takes shape, we look at how interaction is defined in the field of human-computer interaction (HCI). By extracting commonalities and differences between the views of interaction in visualization and in HCI, we synthesize a definition of interaction for visualization. Our definition is meant to be a thinking tool and inspire novel and bolder interaction design practices. We hope that by better understanding what interaction in visualization is and what it can be, we will enrich the quality of interaction in visualization systems and empower those who use them
    corecore