1,117 research outputs found

    Visual signature verification using affine arc-length

    Get PDF
    Signatures can be acquired with a camera-based system with enough resolution to perform verification. This paper presents the performance of a visual-acquisition signature verification system, emphasizing on the importance of the parameterisation of the signature in order to achieve good classification results. A technique to overcome the lack of examples in order to estimate the generalization error of the algorithm is also described

    Visual identification by signature tracking

    Get PDF
    We propose a new camera-based biometric: visual signature identification. We discuss the importance of the parameterization of the signatures in order to achieve good classification results, independently of variations in the position of the camera with respect to the writing surface. We show that affine arc-length parameterization performs better than conventional time and Euclidean arc-length ones. We find that the system verification performance is better than 4 percent error on skilled forgeries and 1 percent error on random forgeries, and that its recognition performance is better than 1 percent error rate, comparable to the best camera-based biometrics

    Continuous dynamic time warping for translation-invariant curve alignment with applications to signature verification

    Get PDF
    The problem of establishing correspondence and measuring the similarity of a pair of planar curves arises in many applications in computer vision and pattern recognition. This paper presents a new method for comparing planar curves and for performing matching at sub-sampling resolution. The analysis of the algorithm as well as its structural properties are described. The performance of the new technique applied to the problem of signature verification is shown and compared with the performance of the well-known Dynamic Time Warping algorithm

    Automatic visual recognition using parallel machines

    Get PDF
    Invariant features and quick matching algorithms are two major concerns in the area of automatic visual recognition. The former reduces the size of an established model database, and the latter shortens the computation time. This dissertation, will discussed both line invariants under perspective projection and parallel implementation of a dynamic programming technique for shape recognition. The feasibility of using parallel machines can be demonstrated through the dramatically reduced time complexity. In this dissertation, our algorithms are implemented on the AP1000 MIMD parallel machines. For processing an object with a features, the time complexity of the proposed parallel algorithm is O(n), while that of a uniprocessor is O(n2). The two applications, one for shape matching and the other for chain-code extraction, are used in order to demonstrate the usefulness of our methods. Invariants from four general lines under perspective projection are also discussed in here. In contrast to the approach which uses the epipolar geometry, we investigate the invariants under isotropy subgroups. Theoretically speaking, two independent invariants can be found for four general lines in 3D space. In practice, we show how to obtain these two invariants from the projective images of four general lines without the need of camera calibration. A projective invariant recognition system based on a hypothesis-generation-testing scheme is run on the hypercube parallel architecture. Object recognition is achieved by matching the scene projective invariants to the model projective invariants, called transfer. Then a hypothesis-generation-testing scheme is implemented on the hypercube parallel architecture

    Advances in Manipulation and Recognition of Digital Ink

    Get PDF
    Handwriting is one of the most natural ways for a human to record knowledge. Recently, this type of human-computer interaction has received increasing attention due to the rapid evolution of touch-based hardware and software. While hardware support for digital ink reached its maturity, algorithms for recognition of handwriting in certain domains, including mathematics, are lacking robustness. Simultaneously, users may possess several pen-based devices and sharing of training data in adaptive recognition setting can be challenging. In addition, resolution of pen-based devices keeps improving making the ink cumbersome to process and store. This thesis develops several advances for efficient processing, storage and recognition of handwriting, which are applicable to the classification methods based on functional approximation. In particular, we propose improvements to classification of isolated characters and groups of rotated characters, as well as symbols of substantially different size. We then develop an algorithm for adaptive classification of handwritten mathematical characters of a user. The adaptive algorithm can be especially useful in the cloud-based recognition framework, which is described further in the thesis. We investigate whether the training data available in the cloud can be useful to a new writer during the training phase by extracting styles of individuals with similar handwriting and recommending styles to the writer. We also perform factorial analysis of the algorithm for recognition of n-grams of rotated characters. Finally, we show a fast method for compression of linear pieces of handwritten strokes and compare it with an enhanced version of the algorithm based on functional approximation of strokes. Experimental results demonstrate validity of the theoretical contributions, which form a solid foundation for the next generation handwriting recognition systems

    Geometric and photometric affine invariant image registration

    Get PDF
    This thesis aims to present a solution to the correspondence problem for the registration of wide-baseline images taken from uncalibrated cameras. We propose an affine invariant descriptor that combines the geometry and photometry of the scene to find correspondences between both views. The geometric affine invariant component of the descriptor is based on the affine arc-length metric, whereas the photometry is analysed by invariant colour moments. A graph structure represents the spatial distribution of the primitive features; i.e. nodes correspond to detected high-curvature points, whereas arcs represent connectivities by extracted contours. After matching, we refine the search for correspondences by using a maximum likelihood robust algorithm. We have evaluated the system over synthetic and real data. The method is endemic to propagation of errors introduced by approximations in the system.BAE SystemsSelex Sensors and Airborne System
    corecore