12 research outputs found

    Video Saliency Detection by 3D Convolutional Neural Networks

    Full text link
    Different from salient object detection methods for still images, a key challenging for video saliency detection is how to extract and combine spatial and temporal features. In this paper, we present a novel and effective approach for salient object detection for video sequences based on 3D convolutional neural networks. First, we design a 3D convolutional network (Conv3DNet) with the input as three video frame to learn the spatiotemporal features for video sequences. Then, we design a 3D deconvolutional network (Deconv3DNet) to combine the spatiotemporal features to predict the final saliency map for video sequences. Experimental results show that the proposed saliency detection model performs better in video saliency prediction compared with the state-of-the-art video saliency detection methods

    Spatiotemporal Saliency Detection: State of Art

    Get PDF
    Saliency detection has become a very prominent subject for research in recent time. Many techniques has been defined for the saliency detection.In this paper number of techniques has been explained that include the saliency detection from the year 2000 to 2015, almost every technique has been included.all the methods are explained briefly including their advantages and disadvantages. Comparison between various techniques has been done. With the help of table which includes authors name,paper name,year,techniques,algorithms and challenges. A comparison between levels of acceptance rates and accuracy levels are made

    Salience Models: A Computational Cognitive Neuroscience Review

    Get PDF
    The seminal model by Laurent Itti and Cristoph Koch demonstrated that we can compute the entire flow of visual processing from input to resulting fixations. Despite many replications and follow-ups, few have matched the impact of the original model—so what made this model so groundbreaking? We have selected five key contributions that distinguish the original salience model by Itti and Koch; namely, its contribution to our theoretical, neural, and computational understanding of visual processing, as well as the spatial and temporal predictions for fixation distributions. During the last 20 years, advances in the field have brought up various techniques and approaches to salience modelling, many of which tried to improve or add to the initial Itti and Koch model. One of the most recent trends has been to adopt the computational power of deep learning neural networks; however, this has also shifted their primary focus to spatial classification. We present a review of recent approaches to modelling salience, starting from direct variations of the Itti and Koch salience model to sophisticated deep-learning architectures, and discuss the models from the point of view of their contribution to computational cognitive neuroscience

    VISUAL SALIENCY ANALYSIS, PREDICTION, AND VISUALIZATION: A DEEP LEARNING PERSPECTIVE

    Get PDF
    In the recent years, a huge success has been accomplished in prediction of human eye fixations. Several studies employed deep learning to achieve high accuracy of prediction of human eye fixations. These studies rely on pre-trained deep learning for object classification. They exploit deep learning either as a transfer-learning problem, or the weights of the pre-trained network as the initialization to learn a saliency model. The utilization of such pre-trained neural networks is due to the relatively small datasets of human fixations available to train a deep learning model. Another relatively less prioritized problem is amount of computation of such deep learning models requires expensive hardware. In this dissertation, two approaches are proposed to tackle abovementioned problems. The first approach, codenamed DeepFeat, incorporates the deep features of convolutional neural networks pre-trained for object and scene classifications. This approach is the first approach that uses deep features without further learning. Performance of the DeepFeat model is extensively evaluated over a variety of datasets using a variety of implementations. The second approach is a deep learning saliency model, codenamed ClassNet. Two main differences separate the ClassNet from other deep learning saliency models. The ClassNet model is the only deep learning saliency model that learns its weights from scratch. In addition, the ClassNet saliency model treats prediction of human fixation as a classification problem, while other deep learning saliency models treat the human fixation prediction as a regression problem or as a classification of a regression problem
    corecore