4,111 research outputs found

    Evaluation of the usefulness of various simulation technology options for TERPS enhancement

    Get PDF
    Current approved terminal instrument procedures (TERPS) do not permit the full exploitation of the helicopter's unique flying characteristics. Enhanced TERPS need to be developed for a host of non-standard landing sites and navigation aids. Precision navigation systems such as microwave landing systems (MLS) and the Global Positioning System (GPS) open the possibility of curved paths, steep glide slopes, and decelerating helicopter approaches. This study evaluated the feasibility, benefits, and liabilities of using helicopter cockpit simulators in place of flight testing to develop enhanced TERPS criteria for non-standard flight profiles and navigation equipment. Near-term (2 to 5 year) requirements for conducting simulator studies to verify that they produce suitable data comparable to that obtained from previous flight tests are discussed. The long-term (5 to 10 year) research and development requirements to provide necessary modeling for continued simulator-based testing to develop enhanced TERPS criteria are also outlined

    Development of ADOCS controllers and control laws. Volume 2: Literature review and preliminary analysis

    Get PDF
    The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstrator aircraft which will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase as a function of ACAS characteristics; display mode switching logic. Findings from the literature review and the analysis and synthesis of desired control laws are reported in Volume 2. Conclusions drawn from pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft

    An assessment of various side-stick controller/stability and control augmentation systems for night nap-of-Earth flight using piloted simulation

    Get PDF
    Several night nap-of-the-earth mission tasks were evaluated using a helmet-mounted display which provided a limited field-of-view image with superimposed flight control symbology. A wide range of stability and control augmentation designs was investigated. Variations in controller force-deflection characteristics and the number of axes controlled through an integrated side-stick controller were studied. In general, a small displacement controller is preferred over a stiffstick controller particularly for maneuvering flight. Higher levels of stability augmentation were required for IMC tasks to provide handling qualities comparable to those achieved for the same tasks conducted under simulated visual flight conditions

    Development of ADOCS controllers and control laws. Volume 3: Simulation results and recommendations

    Get PDF
    The Advanced Cockpit Controls/Advanced Flight Control System (ACC/AFCS) study was conducted by the Boeing Vertol Company as part of the Army's Advanced Digital/Optical Control System (ADOCS) program. Specifically, the ACC/AFCS investigation was aimed at developing the flight control laws for the ADOCS demonstator aircraft which will provide satisfactory handling qualities for an attack helicopter mission. The three major elements of design considered are as follows: Pilot's integrated Side-Stick Controller (SSC) -- Number of axes controlled; force/displacement characteristics; ergonomic design. Stability and Control Augmentation System (SCAS)--Digital flight control laws for the various mission phases; SCAS mode switching logic. Pilot's Displays--For night/adverse weather conditions, the dynamics of the superimposed symbology presented to the pilot in a format similar to the Advanced Attack Helicopter (AAH) Pilot Night Vision System (PNVS) for each mission phase is a function of SCAS characteristics; display mode switching logic. Results of the five piloted simulations conducted at the Boeing Vertol and NASA-Ames simulation facilities are presented in Volume 3. Conclusions drawn from analysis of pilot rating data and commentary were used to formulate recommendations for the ADOCS demonstrator flight control system design. The ACC/AFCS simulation data also provide an extensive data base to aid the development of advanced flight control system design for future V/STOL aircraft

    Mission-oriented requirements for updating MIL-H-8501. Volume 1: STI proposed structure

    Get PDF
    The structure of a new flying and ground handling qualities specification for military rotorcraft is presented. This preliminary specification structure is intended to evolve into a replacement for specification MIL-H-8501A. The new structure is designed to accommodate a variety of rotorcraft types, mission flight phases, flight envelopes, and flight environmental characteristics and to provide criteria for three levels of flying qualities, a systematic treatment of failures and reliability, both conventional and multiaxis controllers, and external vision aids which may also incorporate synthetic display content. Existing and new criteria were incorporated into the new structure wherever they could be substantiated

    Space Shuttle flying qualities criteria assessment. Phase 5: Data acquistion and analysis

    Get PDF
    The development of flying qualities experiments (OFQ) as a part of the Orbiter Experiments Program (OEX) was continued. The data base was extended to use the ground based cinetheodolite measurements of orbiter approach and landing. Onboard the cinetheodolite data were analyzed from flights STS 2 through 7 to identify the effective augmented vehicle dynamics, the control strategy employed by the pilot during preflare, shallow glide, and final flare segments of the landing, and the key approach and touchdown performance measures. A plan for an OFQ flying qualities data archive and processing is presented

    A Flight Evaluation of a VTOL Jet Transport Under Visual and Simulated Instrument Conditions

    Get PDF
    Transition, approach, and vertical landing tests for VTOL transport in terminal are

    Aerospace Medicine and Biology. A continuing bibliography with indexes

    Get PDF
    This bibliography lists 244 reports, articles, and other documents introduced into the NASA scientific and technical information system in February 1981. Aerospace medicine and aerobiology topics are included. Listings for physiological factors, astronaut performance, control theory, artificial intelligence, and cybernetics are included

    Camouflage during movement in the European cuttlefish (Sepia officinalis)

    Get PDF
    A moving object is considered conspicuous because of the movement itself. When moving from one background to another, even dynamic camouflage experts such as cephalopods should sacrifice their extraordinary camouflage. Therefore, minimizing detection at this stage is crucial and highly beneficial. In this study, we describe a background-matching mechanism during movement, which aids the cuttlefish to downplay its presence throughout movement. In situ behavioural experiments using video and image analysis, revealed a delayed, sigmoidal, colour-changing mechanism during movement of Sepia officinalis across uniform black and grey backgrounds. This is a first important step in understanding dynamic camouflage during movement, and this new behavioural mechanism may be incorporated and applied to any dynamic camouflaging animal or man-made system on the move.info:eu-repo/semantics/publishedVersio

    Applications of the electric potential sensor for healthcare and assistive technologies

    Get PDF
    The work discussed in this thesis explores the possibility of employing the Electric Potential Sensor for use in healthcare and assistive technology applications with the same and in some cases better degrees of accuracy than those of conventional technologies. The Electric Potential Sensor is a generic and versatile sensing technology capable of working in both contact and non-contact (remote) modes. New versions of the active sensor were developed for specific surface electrophysiological signal measurements. The requirements in terms of frequency range, electrode size and gain varied with the type of signal measured for each application. Real-time applications based on electrooculography, electroretinography and electromyography are discussed, as well as an application based on human movement. A three sensor electrooculography eye tracking system was developed which is of interest to eye controlled assistive technologies. The system described achieved an accuracy at least as good as conventional wet gel electrodes for both horizontal and vertical eye movements. Surface recording of the electroretinogram, used to monitor eye health and diagnose degenerative diseases of the retina, was achieved and correlated with both corneal fibre and wet gel surface electrodes. The main signal components of electromyography lie in a higher bandwidth and surface signals of the deltoid muscle were recorded over the course of rehabilitation of a subject with an injured arm. Surface electromyography signals of the bicep were also recorded and correlated with the joint dynamics of the elbow. A related non-contact application of interest to assistive technologies was also developed. Hand movement within a defined area was mapped and used to control a mouse cursor and a predictive text interface
    • …
    corecore