21,743 research outputs found

    Keeping Continuous Deliveries Safe

    Full text link
    Allowing swift release cycles, Continuous Delivery has become popular in application software development and is starting to be applied in safety-critical domains such as the automotive industry. These domains require thorough analysis regarding safety constraints, which can be achieved by formal verification and the execution of safety tests resulting from a safety analysis on the product. With continuous delivery in place, such tests need to be executed with every build to ensure the latest software still fulfills all safety requirements. Even more though, the safety analysis has to be updated with every change to ensure the safety test suite is still up-to-date. We thus propose that a safety analysis should be treated no differently from other deliverables such as source-code and dependencies, formulate guidelines on how to achieve this and advert areas where future research is needed.Comment: 4 pages, 3 figure

    Automatic generation of human machine interface screens from component-based reconfigurable virtual manufacturing cell

    Get PDF
    Increasing complexity and decreasing time-tomarket require changes in the traditional way of building automation systems. The paper describes a novel approach to automatically generate the Human Machine Interface (HMI) screens for component-based manufacturing cells based on their corresponding virtual models. Manufacturing cells are first prototyped and commissioned within a virtual engineering environment to validate and optimise the control behaviour. A framework for reusing the embedded control information in the virtual models to automatically generate the HMI screens is proposed. Finally, for proof of concept, the proposed solution is implemented and tested on a test rig

    A high speed Tri-Vision system for automotive applications

    Get PDF
    Purpose: Cameras are excellent ways of non-invasively monitoring the interior and exterior of vehicles. In particular, high speed stereovision and multivision systems are important for transport applications such as driver eye tracking or collision avoidance. This paper addresses the synchronisation problem which arises when multivision camera systems are used to capture the high speed motion common in such applications. Methods: An experimental, high-speed tri-vision camera system intended for real-time driver eye-blink and saccade measurement was designed, developed, implemented and tested using prototype, ultra-high dynamic range, automotive-grade image sensors specifically developed by E2V (formerly Atmel) Grenoble SA as part of the European FP6 project – sensation (advanced sensor development for attention stress, vigilance and sleep/wakefulness monitoring). Results : The developed system can sustain frame rates of 59.8 Hz at the full stereovision resolution of 1280 × 480 but this can reach 750 Hz when a 10 k pixel Region of Interest (ROI) is used, with a maximum global shutter speed of 1/48000 s and a shutter efficiency of 99.7%. The data can be reliably transmitted uncompressed over standard copper Camera-Link® cables over 5 metres. The synchronisation error between the left and right stereo images is less than 100 ps and this has been verified both electrically and optically. Synchronisation is automatically established at boot-up and maintained during resolution changes. A third camera in the set can be configured independently. The dynamic range of the 10bit sensors exceeds 123 dB with a spectral sensitivity extending well into the infra-red range. Conclusion: The system was subjected to a comprehensive testing protocol, which confirms that the salient requirements for the driver monitoring application are adequately met and in some respects, exceeded. The synchronisation technique presented may also benefit several other automotive stereovision applications including near and far-field obstacle detection and collision avoidance, road condition monitoring and others.Partially funded by the EU FP6 through the IST-507231 SENSATION project.peer-reviewe

    Product Line Management with Graphical MBSE Views

    Full text link
    Reducing the cost and delay and improving quality are major issues for product and software development, especially in the automotive domain. Product line engineering is a wellknown approach to engineer systems with the aim to reduce costs and development time as well as to improve the product quality. Feature models enable to make logical selection of features and obtain a filtered set of assets that compose the product. We propose to use a color code in feature models to make possible decisions visual in the feature tree. The color code is explained and its use is illustrated. The completeness of the approach is discussed.Comment: In Proceedings TiCSA 2023, arXiv:2310.1872

    Clafer: Lightweight Modeling of Structure, Behaviour, and Variability

    Get PDF
    Embedded software is growing fast in size and complexity, leading to intimate mixture of complex architectures and complex control. Consequently, software specification requires modeling both structures and behaviour of systems. Unfortunately, existing languages do not integrate these aspects well, usually prioritizing one of them. It is common to develop a separate language for each of these facets. In this paper, we contribute Clafer: a small language that attempts to tackle this challenge. It combines rich structural modeling with state of the art behavioural formalisms. We are not aware of any other modeling language that seamlessly combines these facets common to system and software modeling. We show how Clafer, in a single unified syntax and semantics, allows capturing feature models (variability), component models, discrete control models (automata) and variability encompassing all these aspects. The language is built on top of first order logic with quantifiers over basic entities (for modeling structures) combined with linear temporal logic (for modeling behaviour). On top of this semantic foundation we build a simple but expressive syntax, enriched with carefully selected syntactic expansions that cover hierarchical modeling, associations, automata, scenarios, and Dwyer's property patterns. We evaluate Clafer using a power window case study, and comparing it against other notations that substantially overlap with its scope (SysML, AADL, Temporal OCL and Live Sequence Charts), discussing benefits and perils of using a single notation for the purpose

    A framework for flexible and reconfigurable vision inspection systems

    Get PDF
    Reconfiguration activities remain a significant challenge for automated Vision Inspection Systems (VIS), which are characterized by hardware rigidity and time-consuming software programming tasks. This work contributes to overcoming the current gap in VIS reconfigurability by proposing a novel framework based on the design of Flexible Vision Inspection Systems (FVIS), enabling a Reconfiguration Support System (RSS). FVIS is achieved using reprogrammable hardware components that allow for easy setup based on software commands. The RSS facilitates offline software programming by extracting parameters from real images, Computer-Aided Design (CAD) data, and rendered images using Automatic Feature Recognition (AFR). The RSS offers a user-friendly interface that guides non-expert users through the reconfiguration process for new part types, eliminating the need for low-level coding. The proposed framework has been practically validated during a 4-year collaboration with a global leading automotive half shaft manufacturer. A fully automated FVIS and the related RSS have been designed following the proposed framework and are currently implemented in 7 plants of GKN global automotive supplier, checking 60 defect types on thousands of parts per day, covering more than 200 individual part types and 12 part families

    SERVICE-PROCESS CONFIGURATIONS IN ELECTRONIC RETAILING: A TAXONOMIC ANALYSIS OF ELECTRONIC FOOD RETAILERS

    Get PDF
    Service-processes of electronic retailers are founded on electronic technologies that provide flexibility to sense and respond online to the dynamic and complex needs of customers. In this paper, we develop a taxonomy of service-processes in electronic retailing and demonstrate their linkage to customer satisfaction and customer loyalty. The taxonomy is grounded in a conceptual classification scheme that differentiates service-process stages on a continuum of flexibility. Using data on electronic service-processes collected from 255 electronic food retailers, we identified eight configurations for the taxonomy. We also collected and analyzed publicly reported customer satisfaction survey data that were available for 52 electronic food retailers in the study sample. The results of this analysis indicate positive and significant correlation of the ordering of the taxonomy configurations with (i) customer satisfaction with product information, product selection, web site aesthetics, web site navigation, customer support, and ease of return, and (ii) customer loyalty. Taken together, the results of our empirical analyses demonstrate that the taxonomy captures information and variety within and across the electronic service-process configurations in ways that can be related to customer satisfaction and customer loyalty.Marketing, Research and Development/Tech Change/Emerging Technologies,
    corecore