41,138 research outputs found

    What does semantic tiling of the cortex tell us about semantics?

    Get PDF
    Recent use of voxel-wise modeling in cognitive neuroscience suggests that semantic maps tile the cortex. Although this impressive research establishes distributed cortical areas active during the conceptual processing that underlies semantics, it tells us little about the nature of this processing. While mapping concepts between Marr's computational and implementation levels to support neural encoding and decoding, this approach ignores Marr's algorithmic level, central for understanding the mechanisms that implement cognition, in general, and conceptual processing, in particular. Following decades of research in cognitive science and neuroscience, what do we know so far about the representation and processing mechanisms that implement conceptual abilities? Most basically, much is known about the mechanisms associated with: (1) features and frame representations, (2) grounded, abstract, and linguistic representations, (3) knowledge-based inference, (4) concept composition, and (5) conceptual flexibility. Rather than explaining these fundamental representation and processing mechanisms, semantic tiles simply provide a trace of their activity over a relatively short time period within a specific learning context. Establishing the mechanisms that implement conceptual processing in the brain will require more than mapping it to cortical (and sub-cortical) activity, with process models from cognitive science likely to play central roles in specifying the intervening mechanisms. More generally, neuroscience will not achieve its basic goals until it establishes algorithmic-level mechanisms that contribute essential explanations to how the brain works, going beyond simply establishing the brain areas that respond to various task conditions

    The contribution of fMRI in the study of visual categorization and expertise

    Get PDF
    No description supplie

    Enlightened Romanticism: Mary Gartside’s colour theory in the age of Moses Harris, Goethe and George Field

    Get PDF
    The aim of this paper is to evaluate the work of Mary Gartside, a British female colour theorist, active in London between 1781 and 1808. She published three books between 1805 and 1808. In chronological and intellectual terms Gartside can cautiously be regarded an exemplary link between Moses Harris, who published a short but important theory of colour in the second half of the eighteenth century, and J.W. von Goethe’s highly influential Zur Farbenlehre, published in Germany in 1810. Gartside’s colour theory was published privately under the disguise of a traditional water colouring manual, illustrated with stunning abstract colour blots (see example above). Until well into the twentieth century, she remained the only woman known to have published a theory of colour. In contrast to Goethe and other colour theorists in the late 18th and early 19th century Gartside was less inclined to follow the anti-Newtonian attitudes of the Romantic movement

    Reciprocal anatomical relationship between primary sensory and prefrontal cortices in the human brain

    Get PDF
    The human brain exhibits remarkable interindividual variability in cortical architecture. Despite extensive evidence for the behavioral consequences of such anatomical variability in individual cortical regions, it is unclear whether and how different cortical regions covary in morphology. Using a novel approach that combined noninvasive cortical functional mapping with whole-brain voxel-based morphometric analyses, we investigated the anatomical relationship between the functionally mapped visual cortices and other cortical structures in healthy humans. We found a striking anticorrelation between the gray matter volume of primary visual cortex and that of anterior prefrontal cortex, independent from individual differences in overall brain volume. Notably, this negative correlation formed along anatomically separate pathways, as the dorsal and ventral parts of primary visual cortex showed focal anticorrelation with the dorsolateral and ventromedial parts of anterior prefrontal cortex, respectively. Moreover, a similar inverse correlation was found between primary auditory cortex and anterior prefrontal cortex, but no anatomical relationship was observed between other visual cortices and anterior prefrontal cortex. Together, these findings indicate that an anatomical trade-off exists between primary sensory cortices and anterior prefrontal cortex as a possible general principle of human cortical organization. This new discovery challenges the traditional view that the sizes of different brain areas simply scale with overall brain size and suggests the existence of shared genetic or developmental factors that contributes to the formation of anatomically and functionally distant cortical regions

    Guide to the Networked Minds Social Presence Inventory v. 1.2

    Get PDF
    This document introduces the Networked\ud Minds Social Presence Inventory. The\ud inventory is a self-report measure of social\ud presence, which is commonly defined as the\ud sense of being together with another in a\ud mediated environment. The guidelines\ud provide background on the use of the social\ud presence scales in studies of users’ social\ud communication and interaction with other\ud humans or with artificially intelligent agents\ud in virtual environments

    Hierarchical Event Descriptors (HED): Semi-Structured Tagging for Real-World Events in Large-Scale EEG.

    Get PDF
    Real-world brain imaging by EEG requires accurate annotation of complex subject-environment interactions in event-rich tasks and paradigms. This paper describes the evolution of the Hierarchical Event Descriptor (HED) system for systematically describing both laboratory and real-world events. HED version 2, first described here, provides the semantic capability of describing a variety of subject and environmental states. HED descriptions can include stimulus presentation events on screen or in virtual worlds, experimental or spontaneous events occurring in the real world environment, and events experienced via one or multiple sensory modalities. Furthermore, HED 2 can distinguish between the mere presence of an object and its actual (or putative) perception by a subject. Although the HED framework has implicit ontological and linked data representations, the user-interface for HED annotation is more intuitive than traditional ontological annotation. We believe that hiding the formal representations allows for a more user-friendly interface, making consistent, detailed tagging of experimental, and real-world events possible for research users. HED is extensible while retaining the advantages of having an enforced common core vocabulary. We have developed a collection of tools to support HED tag assignment and validation; these are available at hedtags.org. A plug-in for EEGLAB (sccn.ucsd.edu/eeglab), CTAGGER, is also available to speed the process of tagging existing studies
    corecore