3 research outputs found

    Using machine learning to support better and intelligent visualisation for genomic data

    Get PDF
    Massive amounts of genomic data are created for the advent of Next Generation Sequencing technologies. Great technological advances in methods of characterising the human diseases, including genetic and environmental factors, make it a great opportunity to understand the diseases and to find new diagnoses and treatments. Translating medical data becomes more and more rich and challenging. Visualisation can greatly aid the processing and integration of complex data. Genomic data visual analytics is rapidly evolving alongside with advances in high-throughput technologies such as Artificial Intelligence (AI), and Virtual Reality (VR). Personalised medicine requires new genomic visualisation tools, which can efficiently extract knowledge from the genomic data effectively and speed up expert decisions about the best treatment of an individual patient’s needs. However, meaningful visual analysis of such large genomic data remains a serious challenge. Visualising these complex genomic data requires not only simply plotting of data but should also lead to better decisions. Machine learning has the ability to make prediction and aid in decision-making. Machine learning and visualisation are both effective ways to deal with big data, but they focus on different purposes. Machine learning applies statistical learning techniques to automatically identify patterns in data to make highly accurate prediction, while visualisation can leverage the human perceptual system to interpret and uncover hidden patterns in big data. Clinicians, experts and researchers intend to use both visualisation and machine learning to analyse their complex genomic data, but it is a serious challenge for them to understand and trust machine learning models in the serious medical industry. The main goal of this thesis is to study the feasibility of intelligent and interactive visualisation which combined with machine learning algorithms for medical data analysis. A prototype has also been developed to illustrate the concept that visualising genomics data from childhood cancers in meaningful and dynamic ways could lead to better decisions. Machine learning algorithms are used and illustrated during visualising the cancer genomic data in order to provide highly accurate predictions. This research could open a new and exciting path to discovery for disease diagnostics and therapies

    Immersive analytics for oncology patient cohorts

    Get PDF
    This thesis proposes a novel interactive immersive analytics tool and methods to interrogate the cancer patient cohort in an immersive virtual environment, namely Virtual Reality to Observe Oncology data Models (VROOM). The overall objective is to develop an immersive analytics platform, which includes a data analytics pipeline from raw gene expression data to immersive visualisation on virtual and augmented reality platforms utilising a game engine. Unity3D has been used to implement the visualisation. Work in this thesis could provide oncologists and clinicians with an interactive visualisation and visual analytics platform that helps them to drive their analysis in treatment efficacy and achieve the goal of evidence-based personalised medicine. The thesis integrates the latest discovery and development in cancer patients’ prognoses, immersive technologies, machine learning, decision support system and interactive visualisation to form an immersive analytics platform of complex genomic data. For this thesis, the experimental paradigm that will be followed is in understanding transcriptomics in cancer samples. This thesis specifically investigates gene expression data to determine the biological similarity revealed by the patient's tumour samples' transcriptomic profiles revealing the active genes in different patients. In summary, the thesis contributes to i) a novel immersive analytics platform for patient cohort data interrogation in similarity space where the similarity space is based on the patient's biological and genomic similarity; ii) an effective immersive environment optimisation design based on the usability study of exocentric and egocentric visualisation, audio and sound design optimisation; iii) an integration of trusted and familiar 2D biomedical visual analytics methods into the immersive environment; iv) novel use of the game theory as the decision-making system engine to help the analytics process, and application of the optimal transport theory in missing data imputation to ensure the preservation of data distribution; and v) case studies to showcase the real-world application of the visualisation and its effectiveness

    Visual analytics of clinical and genetic datasets of acute lymphoblastic leukaemia

    Full text link
    This paper presents a novel visual analytics method that incorporates knowledge from the analysis domain so that it can extract knowledge from complex genetic and clinical data and then visualizing them in a meaningful and interpretable way. The domain experts that are both contributors to formulating the requirements for the design of the system and the actual user of the system include microbiologists, biostatisticians, clinicians and computational biologists. A comprehensive prototype has been developed to support the visual analytics process. The system consists of multiple components enabling the complete analysis process, including data mining, interactive visualization, analytical views, gene comparison. A visual highlighting method is also implemented to support the decision making process. The paper demonstrates its effectiveness on a case study of childhood cancer patients. © 2011 Springer-Verlag
    corecore