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Abstract 

Massive amounts of genomic data are created for the advent of Next Generation 

Sequencing technologies. Great technological advances in methods of characterising 

the human diseases, including genetic and environmental factors, make it a great 

opportunity to understand the diseases and to find new diagnoses and treatments. 

Translating medical data becomes more and more rich and challenging. Visualisation 

can greatly aid the processing and integration of complex data. Genomic data visual 

analytics is rapidly evolving alongside with advances in high-throughput technologies 

such as Artificial Intelligence (AI), and Virtual Reality (VR). Personalised medicine 

requires new genomic visualisation tools, which can efficiently extract knowledge 

from the genomic data effectively and speed up expert decisions about the best 

treatment of an individual patient’s needs. However, meaningful visual analysis of 

such large genomic data remains a serious challenge.  

Visualising these complex genomic data requires not only simply plotting of data 

but should also lead to better decisions. Machine learning has the ability to make 

prediction and aid in decision-making. Machine learning and visualisation are both 

effective ways to deal with big data, but they focus on different purposes. Machine 

learning applies statistical learning techniques to automatically identify patterns in data 

to make highly accurate prediction, while visualisation can leverage the human 

perceptual system to interpret and uncover hidden patterns in big data. Clinicians, 

experts and researchers intend to use both visualisation and machine learning to 

analyse their complex genomic data, but it is a serious challenge for them to understand 

and trust machine learning models in the serious medical industry.  

The main goal of this thesis is to study the feasibility of intelligent and interactive 

visualisation which combined with machine learning algorithms for medical data 

analysis. A prototype has also been developed to illustrate the concept that visualising 

genomics data from childhood cancers in meaningful and dynamic ways could lead to 

better decisions. Machine learning algorithms are used and illustrated during 

visualising the cancer genomic data in order to provide highly accurate predictions.  

This research could open a new and exciting path to discovery for disease diagnostics 

and therapies. 
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Chapter 1: Introduction 

In recent years, Artificial Intelligence (AI) has started to be used for big data 

visualisation including multivariate genomic data for the development of new 

technologies. Machine learning, as one branch of the AI field, is a way of solving 

problems without explicitly codifying the solution and a way of building systems that 

improve themselves over time. AI or machine learning in specific has been applied in 

genomics for analysing genome sequencing, gene editing, clinical workflow and 

direct-to-consumer genomics. Future applications of machine learning in the field of 

genomics are diverse and may potentially contribute to the development of patient or 

population-specific pharmaceutical drugs. Although machine learning has 

extraordinary predictive abilities, the machine learning models and the algorithms are 

hard to understand and maybe even harder to trust, especially in serious industries such 

as the medical industry. Visualising machine learning models and predictive results in 

a meaningful way can interpret the complex algorithms and help clinicians, researchers 

and experts understand and trust the predictive results. 

This thesis proposes a novel visualisation prototype that can illustrate the 

machine learning model and real-time predictive results along with conventional 

visualisation methods. The visualisation integrates a machine learning model and gives 

real-time predictions to assist researchers or clinicians’ decisions. The process of 

machine learning prediction is illustrated in the visualisation as well. The new 

visualisation tool can interpret the machine learning model for the domain experts who 

may not be familiar in predictive mathematics algorithms, and it can make the genomic 

data visualisation and decision-making procedure more reliable for them. 

 This chapter outlines the genomic data background (Section 1.1), the context of 

visualisation (Section 1.2), visualisation for genomic data (Section 1.3), Artificial 

Intelligence (AI) and machine learning for genomic data (Section 1.4). Section 1.5 

describes the research aim and research questions. Finally, Section 1.6 includes an 

outline of the remaining chapters of the thesis. 
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1.1 GENOMIC DATA BACKGROUND 

After computers and the Internet entered almost every arena of human society, 

large amounts of digital data are generated and collected in the different format, 

including medical and genomic data, which is also advancing at a dramatic pace. We 

are entering an era of big data – datasets that are characterised by high volume, 

velocity, variety, resolution and indexicality, relationality and flexibility (Khushboo 

Wadhwani, 2017). Large datasets have become very important sources for discovering 

insights and ultimately helps to make more precise decisions. However, big data brings 

in some challenges such as volume, variety, combining multiple data sets, velocity, 

veracity, data quality, data availability, data discovery, data quality, data 

extensiveness, personally recognisable information, data assertiveness, quantifiability, 

data processing, and data management (Khushboo Wadhwani, 2017). 

Genomic is a recent convergence of multiple science disciplines including 

genetics, molecular biology, biochemistry, statistics and computer sciences. Since 

Gregor Mendel, known as the “father of modern genetics”, discovered the basic 

principles of heredity which became the foundation of modern genetics and leading to 

the study of heredity (Biography, 2017), huge amounts of genomic data have been 

collected around the world by different organisations. For example, one of the world’s 

largest pharmaceutical companies AstraZeneca has launched a massive effort to 

compile genome sequences and health records from two million people (Ledford, 

2016). The company and its collaborators hoped to unearth rare genetic sequences that 

are associated with disease and with responses to treatment (Ledford, 2016). 

Meanwhile, Human Genome Project had successfully completed the ambitious goal of 

collecting sequence code covering three billion base pairs in the human genome, two 

years ahead of the previous projects (Francis S. Collins, 2012). From Figure 1, we can 

see the exponential pace of genomic data growth.  
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Figure 1 Worldwide human genome sequencing progress 

 (measured as base pairs of finished sequence deposited with GenBank) (Francis S. 

Collins, 2012). 

With the development of new technologies, genomic data can be collected and 

stored in a short period of time and the cost has been dramatically reduced as well. 

Importantly, the technologies also lead to the age of individual genome sequencing 

which supports an era of personalised medicine (McClean, 2011). Personalised cancer 

medicine based on the molecular characteristics of a tumour from an individual patient 

has great potential in the therapy of many types of cancer (Wistuba, Gelovani, Jacoby, 

Davis, & Herbst, 2011). 

In Figure 2, we can find that DNA sequencing capacities have grown rapidly 

since 2015 and this trend will likely continue in the future. If the growth continues at 

the current rate by doubling every seven months, then we should reach more than one 

Exabytes (1018) of sequence per year in the next five years and the approach one 

Zettabytes (1021) of sequence per year by 2025 (Stephens et al., 2015).  In human 

health, the major needs driven by the big data are how to interpret genomic sequences 

and how to find patterns over very large collections in very high dimensions. 
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Figure 2 Growth of DNA sequencing.  

The plot shows the growth of DNA sequencing both in the total number of human 

genomes sequenced (left axis) as well as the worldwide annual sequencing capacity 

(right axis: Tera-basepairs (Tbp), Peta-basepairs (Pbp), Exa-basepa (Stephens et al., 

2015). 

1.2 VISUALISATION  

“A picture is worth a thousand words.” This is an adage especially for life 

science which is one of the biggest generators of enormous datasets as a result of recent 

and rapid technological advances. Visualisation is a quick, easy way to convey large 

amounts of complex data in a universal manner to help humans finding the potential 

values in their big data. Visualisation is becoming an increasingly important part of 

cognitive systems which can provide the highest bandwidth channel from the computer 

to the human. The term visualisation, in the past, meant constructing a visual image in 

the mind and now comes to mean something more like a graphical representation of 

data or concepts. The visualising way can be functioned as a cognitive tool which has 

the following advantages: providing an ability to comprehend huge amounts of data; 

allowing the perception of emergent properties that were not anticipated; enabling 

problems with the data to become immediately apparent; facilitating understanding of 

both large-scale and small-scale features of the data; and facilitating hypothesis 

formation (Green, Ribarsky, & Fisher, 2008; Keahey, 2013; Ware, 2013). Some 

intuitive visualisation tools are used to visualise multidimensional cancer genomics 
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data which integrate different types of alterations with clinical data for extraction of 

useful knowledge from the vast amount of data generated by high-throughput 

technologies (Q. V. Nguyen, Qian, Huang, & Zhang, 2013; Schroeder, Gonzalez-

Perez, & Lopez-Bigas, 2013).  

There are hundreds of visualisation methods in the research community. 

Different visualisation techniques may suit with different applications and datasets 

with different sizes and properties. As shown in Figure 3, Pie chart, bar chart, line 

chart, and bubble plot are classic visualisation techniques. Pie charts can show 3-10 

data items, bar charts can show fewer than 50 data items, line charts can show fewer 

than 500 data items, bubble plots can show fewer than 500 data items and scatterplots 

can show fewer than 10,000 data items.  

 

 

Figure 3 Different visualisation techniques suit with different size of datasets. 
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New visualisation techniques are used for big data such as hierarchies, which are 

very popular in data analytics and are powerful data abstractions for aggregating 

information into broader categories. Hierarchies are often referred as “tree” and some 

of them change to tree map. Many tree visualisation methods finely tuned for specific 

types of data such as genome sequencing, large social graphs and tournament matches, 

which can show hundreds or thousands or even millions of entities, are arranged in a 

hierarchical structure (Keahey, 2013). For example, Figure 4 shows a treemap 

visualisation of a collection of choices for streaming music and video tracks by a social 

network community, that a media service could find useful when designing 

personalised offers of music and videos for download.  

 

 

Figure 4 Treemap view of a social network’s track selections from a streaming media 

service network. 

Colour represents the genres of the selected tracks, with each genre subdivided into 

rectangles for each artist. Size of rectangle for both genre and artist represents the 

number of track plays in that category (Keahey, 2013). 
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1.3 VISUALISATION FOR GENOMIC DATA 

The complexity of the genomic data makes these datasets incomprehensible 

without effective visualisation methods. Genomic data visualisation is a rapidly 

evolving field that has achieved in many areas such as hardware acceleration, 

standardised exchangeable file formats, dimensionality reduction, visual feature 

selection, multivariate data analyses, interoperability, 3D rendering and visualisation 

of complex data at different resolutions, especially in image processing combined with 

artificial intelligence-based pattern recognition (Pavlopoulos et al., 2015).  

Figure 5 shows the trends of multivariate data analyses and visualisation 

including A) Timeline of the emergence of relevant technologies and concepts,  and 

B) Visualisation of k-means partitional clustering algorithm, C) 3D visualisation of a 

principal component analysis, D) Visualisation of gene-expression measures across 

time using parallel coordinates, E) Visualisation of gene-expression clustering across 

time, F) 2D hierarchical clustering to visualise gene expressions against several time 

points or conditions, G) Hypothetical integration of analyses and expression heatmaps 

and the control of objects by VR devices (Pavlopoulos et al., 2015).  

 

Figure 5 Trends of multivariate data analyses. 

 Visualisation corresponding to the timeline of relevant technologies and methods 

(Pavlopoulos et al., 2015). 
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1.4 AI FOR GENOMIC DATA VISUALISATION 

Artificial Intelligence (AI) is already part of our everyday lives and has been 

heralded as the key to our civilization’s brightest future (Mills, 2016). Machine 

learning, as an approach to achieve artificial intelligence, is the practice of using 

algorithms to parse data, learn from it, and then make a determination or prediction 

about something in the world (Copeland, 2016). AI and machine learning boost the 

next generation of visualisation -- intelligent visualisation. Intelligent visualisation 

could remove the need for a human user to handle tedious or repetitive tasks by 

learning from previous sessions and input data. Intelligent visualisation combines 

machine learning algorithms to make high-level, goal-oriented decisions, which makes 

data visualisation technology directly accessible to a wide range of application 

scientists (Fuchs, Waser, & Groller, 2009; Ma, 2007). 

Some modern data visualisation tools use AI technology, modern 3D plot(s), 

mobile device(s) and VR technique(s) to tell the full story of genomic data. 3D and 

VR techniques immerse the user in a digitally created space and simulate movement 

in three dimensions to greatly increase the bandwidth of data available to our brains 

(Leung, Delong, Alipanahi, & Frey, 2016; Q. V. Nguyen et al., 2016; Shilling, 2017). 

Most of the visualisation tools allow users to interact with the data in a way that is far 

more natural such as reaching out to manipulate objects with our hands, moving around 

them to view them from a clearer perspective and highlighting objects of interest with 

a point of the finger. 

Machine learning combined with data visualisation should have three stages: 

developing an algorithm, applying genomic data to the algorithm, and predicting new 

unlabelled data (Libbrecht & Noble, 2015). Figure 6 shows a canonical example of a 

machine learning application with these three stages. A training set of DNA sequences 

is provided as input to a learning procedure, along with binary labels indicating 

whether each sequence is centred on a transcription start site (TSS) or not. The learning 

algorithm then produces a model that can then be subsequently used, in conjunction 

with a prediction algorithm, to assign predicted labels (such as ‘TSS’ or ‘not TSS’) to 

unlabelled test sequences. In the figure, the red-blue gradient might represent, for 

example, the scores of various motif models (one per column) against the DNA 

sequence.  
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Figure 6 A canonical example of a machine learning application with these three 

stages for DNA sequences. 

(Libbrecht & Noble, 2015). 

1.5 RESEARCH AND QUESTIONS AND AIM  

Machine learning methods have become more important to genomic data. 

Gnomic visualisation tools combined with machine learning algorithms would be a 

new trend in the genomic visualisation evolution in the future. Machine learning is 

able to address important problems in genomic medicine, for example, creating a 

predictive model to determine how variations in the DNA of individuals can affect the 

risk of different disease and to find causal explanations, so that targeted therapies can 

be designed (Leung et al., 2016). Intelligent data visualisation can provide support to 

find the relationship between genomic data and diseases and then cure the disease with 

targeting personalised therapy (Quang Vinh Nguyen et al., 2011). In the analysis of 

genomic data, the current statistical analysis methods are not enough for achieving 

data insight, meanwhile, the application of machine learning and data visualisation has 

become more attractive. Although machine learning has extraordinary predictive 

abilities, the machine learning models and the algorithms are hard to understand and 

maybe even harder to trust, especially in serious industries such as the medical 

industry. Visualising machine learning models and predictive results in a meaningful 
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way can help interpret the complex algorithms and help clinicians, researchers and 

experts understand and trust the predictive results.  

The aim of this thesis is to develop a meaningful intelligent visualisation 

phototype to show large and complex genomic data processed by machine learning 

models in order to find clues amongst childhood genomic cancer data.  Decision tree, 

which is a machine learning algorithm, will be used in this intelligent visualisation 

phototype to provide predictive choices for clinicians to assist their decisions. The 

visualisation prototype not only visualises the patients’ data with the traditional 

techniques, but also illustrates the machine learning model and prediction process. The 

success of this research will aid the clinicians to tailor the treatment to the most 

efficacious for each individual and access to complex genomics data in meaningful 

and predictive ways.  

The following is my research questions: 

1. How to use the decision tree model to support effective and intelligent 

visualisation for genomic data? 

The research aims to choose and apply a suitable machine learning algorithm to 

process genomic data and then visualise intelligently the structured data in the cohort. 

In this stage, we will use the decision tree model do predictions and help clinicians and 

medical researchers make better decisions. The model will create effective and 

intelligent scatterplot visualisations where the axis and attribute mappings and visual 

properties can be selected intelligently based on the user preference and the nature of 

the data.  

2. How to develop a prototype to illustrate the effectiveness of the model to 

support better and intelligent visualisations by using scatterplots? 

The thesis will develop an application and visualisation methods to present 

genomic data interactively and intelligently. The visualisation methods should be 

suitable for visualising big data and suitable for interpreting the machine learning 

model to the users as well. 

Before we developed our prototype, we carried out a usability study to get users’ 

requirements and includes i) a systematically review about popular genomic data 

visualisation tools, and ii) a preliminary study for the qualitative review. In the 

systematically review, we provide a comprehensive comparison of the tools in both 
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aspects i) the visualisation methods in genomic and cancer data fields and ii) the trends 

of visualisation in genomic analytics fields from year 2000s. We reviewed the situation 

of current genomic and cancer data, the potential application to personalised medicine, 

and methods for genomic data visualisation. Here we assess the units of traditional 

approaches such as scatter plots, heatmaps, coordinates, networks and clustering, as 

well as emerging technologies involving AI and VR. We also review the evolution of 

genomic data visualisation tools from the speed of technology development, effective 

interactions, current tool status, tool integrations and new features. In the qualitative 

review, we interviewed five domain experts to collect feedback of three visualisation 

tools in order to gain a better understanding of the domain users’ preferences and 

expectations for the new genomic data visualisation tools. 

The research starts with a literature review which presents the related work. Then 

it follows with three steps as following: i) a usability study to get users’ requirements 

which are stated in Chapter 3:  Structured and Qualitative Studies on Genomic Visual 

Analytics. ii) a prototype implementation of my research which stated in Chapter 4: 

Research Design, and iii) case studies on the two datasets which stated in Chapter 5: 

Case Studies.  

1.6 THESIS OUTLINE 

The thesis includes Chapter 2: Literature Review; Chapter 3: Structured and 

Qualitative Studies on Genomic Visual Analytics ; Chapter 4: Research Design; 

Chapter 5: Case Studies; and Chapter 6: Discussion, Conclusions and Future Work. 

Chapter 2: Literature Review describes the related work in the genomic data 

visualisation field and the existing research that relevant to this thesis. It focuses on 

the genomic visualisation, intelligent visualisation, artificial intelligence, visualisation 

methods and trends for genomic data, and the research implications. 

 Chapter 3: Structured and Qualitative Studies on Genomic Visual Analytics 

describes a structured review and a preliminary study from the usability study which 

is designed for the feedback analysis. The purpose of this chapter is to collect the 

requirements from both the existed tools and the end users who are clinicians or 

researchers. 

 Chapter 4: Research Design describes the design process from methodology, 

how to choose algorithms and selected tools for developing demos and applications. 
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The research design process is based on the lessons obtained through the study in 

Chapter 3. 

 Chapter 5:  Results describes two case studies based on two datasets which are 

RMS and ALL patients’ genomic data. The two case studies use the prototype system 

to execute the requirements that are collected in the usability study in Chapter 3. The 

design methodology and models in Chapter 4 are also applied in the two case studies. 

 Chapter 6: Discussion, Conclusions and Future Work describes the discussion, 

research analysis and the future work arising from these studies. It also includes the 

publication that this thesis contributed. 
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Chapter 2: Literature Review 

This chapter begins with the Conception of Visualisation (Section 2.1); The 

Conception of Machine Learning (Section 2.2)  and reviews literature on the following 

topics: [topic 1] (Section 2.3) [Intelligent Visualisation]; [topic 2] (Section 2.4) 

[Methods of Genomic Data Analytics and Visualisation]; and [topic 3] (Section 2.5 ) 

[Trends of Genomic Data Analytics and Visualisation]. Section 2.6 highlights the 

summary and implications from the literature and develops the conceptual framework 

for the study. 

2.1 VISUALISATION 

Visualisation is an essential tool for the human to understand information and 

uncover insights hidden in their data. The human short-term memory is capable of 

holding 3 – 7 items in place simultaneously, which means that people can only juggle 

a few items in their head before they start to lose track of them. Visual process 

interprets data into visual channels which externalizes the data and enables people to 

think about and manipulate the data at a higher level. The human visual system is by 

far the richest, most immediate, highest bandwidth pipeline into the human mind, 

which is estimated to process about nine megabits of information per second, that 

corresponds to close to one million letters of text per second (Keahey, 2013). 

Visualisation is designed to maximise the complementary cognitive strengths of both 

humans and computers. Humans have perceptual abilities, earliest reasoning skills 

such as adaptation and accommodation while the computer has superior working 

memory and can process information without cognitive biases. Human cognition 

model is used in visual analytics to create and analyse hypotheses which are initiated 

by the human, but the computer plays a significant role in shortening the process and 

neutralising biases, as contributing to a more solid conclusion through use of its 

strengths (Green et al., 2008). 

Visual analytics usually use interactive visual interfaces to engage the fast-visual 

circuitry of the human brain to quickly find relations in complex data, trigger creative 

thoughts, and use these elements to steer the underlying computational analysis 

process which can extract new information for further insight (Garg, Nam, 
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Ramakrishnan, & Mueller, 2008).  For example, the visual representation of 

quantitative data makes possible to obtain a fast understanding of the displayed reality. 

It may help to the patterns systematisation of complex relationship among various data 

types (Ortega & Aguillo, 2013). Figure 7 shows the Life Expectancy and Income of 

182 nations in the year 2015 (Gapminder, 2015). Each bubble indicates a country. Size 

indicates the population. Colour indicates region or continents. It’s clear in this chart 

that India and China as Asia countries have more population and medium health level, 

most of the countries in Africa have less population and lower level health, and most 

countries in Europe and North America have less population but very high health level.   

 

Figure 7  the Life Expectancy and Income of 182 nations in the year 2015. 

(Gapminder, 2015).  

2.1.1 Usability and Interactive Dynamics 

Universal usability for visualisation remains a formidable challenge as we need 

to address the needs of the different user who might have different network speed, 

different screen size, or different general knowledge. Designers need to choose rapid 

and high-resolution colour displays to present and manipulate big data in compact and 

user-controlled ways. Visualisation is used to provide compact graphical presentations 

and user interfaces for interactively manipulating a large number of data items, which 
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usually are extracted from far larger datasets. It also uses the enormous visual 

bandwidth and the remarkable human visual system to drive users to find potential 

information, make decisions, or propose explanations for patterns, groups of items, or 

individual items. Perceptual psychologists, statisticians, and graphic designers provide 

valuable advice about presenting data information, but user-interface designers still 

have challenges in processor speed, graphics devices and dynamic displays (Catherine 

Plaisant, 2005). Usability has three important criticisms: focus on well-defined tasks 

and goals, emphasis on efficient and effective, and satisfaction. Dimensions of 

usability in defining the conversation and driving the process are defined include 

learnability, efficiency, memorability, error tolerant and satisfaction (Quesenbery, 

2003). Figure 8 shows a design process with consideration of usability from the very 

beginning of a project. 

 

Figure 8 User-centred design (UCD).  

This process is often called user-centred design (UCD) and comes with its own 

research tradition and international standards (Larry Goldberg, Trisha O’Connell, & 

Ben Shneiderman, 2011). 

Interactive dynamics is also very important for visual analysis because a single 

image is not enough to provide a powerful means of making sense of data. Effective 

visual analytics tools must support the fluent and flexible use of visualisations at rates 

resonant with the pace of human thought and with basic interactive actions: filter, sort, 

derive and view manipulation (Jeffrey Heer, 2012). For example, Figure 9 shows a 

map which can be zoomed, filtered and scrolled. Real-time interactivity is very 

essential for showing meaningful dataset in a visualisation method. 
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Figure 9 Zoomable map from crimeSpotting.org. 

(Jeffrey Heer, 2012). 

2.1.2 Multidimensional Data Visualisation 

High dimensionality is one of the major challenges for data visualisation because 

parameter optimisation problems require an understanding of the behaviour of the 

objective function in the n-dimensional space around the optimum and it is not an easy 

process to convert the high-dimensional data to low-dimensional geometry for display. 

Understanding the relationship between attributes in the large datasets is essential to 

extract information subject to constraints on their position or value of dimensional 

choice for display (Selan dos Santos, 2004).  

 The challenge of mapping high-dimensional data to lower-dimensional visual 

representations for large complex information is to find an insightful mapping method. 

The methods focus on the goals of generating representations that best show 

phenomena contained in the high-dimensional data like clusters and global or local 

correlations. Scatterplots and Parallel Coordinates are both commonly used 

visualisation technique to deal with multivariate datasets (Tatu et al., 2009). 

 Figure 10 is an example of scatterplots which used to visually inspect the 

clustering of individuals breeds to their assigned breeds. The first two eigenvectors of 

the genomic relationship matrix of all individuals in the dataset were used to visually 

inspect the clustering of individuals according to their assigned breeds. The 

eigenvector clustering shows significant overlap between breeds (e.g. Hanoverians and 

Trakehner), while sub-clusters within breeds were apparent (Claas Heuer, 2016).   
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Figure 10 Scatterplot.  

Scatterplot of  the first two eigenvectors of the genomic relationship matrix (a) and 

cumulative proportion of explained variance by eigenvalues in decreasing order (b) 

(Claas Heuer, 2016).  

Figure 11 is an example of Parallel Coordinates which shows the coordinate 

view of all cells and nine selected genes. It extrudes the coordinate axes into the third 

dimension and order the data lines which represents one cell-back-to-front according 

to their position along the AP- or DV axis of the embryo. Spatial and gene expression 

information are clearly separated while the basic character of spatial gene expression 

patterns is preserved in one dimension (Viswebmaster, 2009). 

  

Figure 11 3D parallel coordinate. 

It is used to view of all cells and nine selected genes (Viswebmaster, 2009) 
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Another method to visualise high dimensional data is to visualise the data in a 

3-D space by dividing the high dimension data into several groups of lower 

dimensional data first. Then using different icons to represent the different sets of data 

in the form, such as line, point, polygon, etc. (R. Jayabrabu, 2012).  

3-D visualisation creatively uses colour, size, the combination of space and time, 

and advanced computer graphics to show multidimensional data.  For instance, 

neuroscientists Emmanuelle Tognoli and Scott Kelso developed a five-dimensional 

model known as the 5-D colourimetric technique, that provides a dynamic and 

comprehensive view of brain activity the through spatiotemporal display and colour 

coding. Another example is Microsoft’s Holograph, an interactive 3-D platform 

(Figure 12) that can render static and dynamic images above or below a plane for more 

natural exploration and manipulation of complex data. And commentary from team 

members Curtis Wong and David Brown posted on Microsoft News suggests that 

Holograph may one day allow users to actually reach inside a visual and interact with 

it (Towler, 2015).  

 

Figure 12 Microsoft’s Holograph, an interactive 3-D platform. 

(Towler, 2015) 

2.2 ARTIFICIAL INTELLIGENCE 

2.2.1 AI and Machine Learning 

Artificial Intelligence (AI) is a term of cognitive technologies and a big forest of 

academic and commercial work around the science and engineering intelligent 

machines. AI has many branches with many significant connections and 

commonalities among them. Figure 13 shows the most active AI branches (Mills, 

2016). AI has been used in many industries and got more and more achievements. The 
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most dramatic outcome of Artificial Intelligence research is Google’s AlphaGo 

program which won the world’s best Go player Ke Jie three-match series (Russel, 

2017).   

 

Figure 13 Hierarchies in AI research. 

(Mills, 2016) 

Machine learning has broad potential across industries and uses cases as shown 

in Figure 14. McKinsey identified 120 potential use cases of machine learning in 12 

industries and surveyed more than 600 industry experts on their potential impact. They 

found an extraordinary breadth of potential applications for machine learning. Each of 

the use cases was identified as being one of the top three in an industry by at least one 

expert in that industry. McKinsey plotted the top 120 use cases below, with the y-axis 

shows the volume of available data (encompassing its breadth and frequency), while 

the x-axis shows the potential impact, based on surveys of more than 600 industry 

experts. Size of the bubble indicates the variety of data (number of data types), and the 

colour of the bubble indicates different industries (Columbus, 2017). For the 

Healthcare industry, predicting personalised health outcome and diagnosing diseases 

are both in the higher potential areas. 
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Figure 14 Machine Learning potential industries. 

The y-axis shows the volume of available data (encompassing its breadth and 

frequency), while the x-axis shows the potential impact, based on surveys of more 

than 600 industry experts. Size of the bubble indicates variety of data (number of data 

types), and the colour of the bubble indicates different industries (James Manyika, 

2017). 

2.2.2 AI Use in Medical Clinical Practice 

AI started to be used in medical clinical practice from the 1980s and in March 

2000, a monthly magazine titled Medical Device & Diagnostic Industry published an 

article claiming that “the medical device industry is seeing an emergence of computer-

based intelligent decision support system (DSSs) and expert system, the current 

system, the current success of which reflects a maturation of artificial intelligence (AI) 

technology.”  Which mentioned several AI-infused devices such as Agilent Acute 

Cardiac Ischemia Time-Insensitive Predictive Instrument, Intelligent electro-

cardiagram (ECG) device that predicts the probability of acute cardiac ischemia (ACI) 

and General Electric MAC 5000 Resting Test System. Dr. Paul Kligfield, Division of 

Cardiology at Cornell University stated: “Digital electrocardiographs of all major 

manufacturers now are capable of providing automated diagnostic statements that can 

help the physician.” (Nilsson, 2009). 
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As shown in Figure 13, machine learning is one branch of the field of artificial 

intelligence, a way of solving problems without explicitly codifying the solution and 

a way of building systems that improve themselves over time. The machine learning 

goal is typically to build predictive or descriptive models from characteristic features 

of a dataset and then use those features to draw conclusions from other similar datasets. 

For example, in cancer detection, diagnosis, and management, machine learning helps 

identify significant factors in high-dimensional datasets of genomic, proteomic, 

chemical or clinical data that can be used to understand of predicate underlying 

diseases, in addition to providing possible insights into effective disease management 

strategies. Machine learning classifiers do best when the number of dimensions is 

small (less than 100) and the number of data points is larger (greater than 1000). A 

most significant challenge in the application of machine learning to biological data is 

the problem of validation, or the task of determining the expected error rate from 

classifier when applied to a new dataset. 10-folder cross-validation and 10- folder 

validation idea is used as validation techniques (McCarthy et al., 2004). 

Machine learning algorithms tend to create the non-linear, non-monotonic, non-

polynomial, and even non-continuous functions that approximate the relationship 

between independent and dependent variables in a dataset.  Some industries, such as 

serious legal mandate in the regulated verticals of banking, insurance, and medicine, 

need trusting machine learning models. Many organisations and individuals start to 

embrace machine learning algorithms for predictive modelling task, but it is still a 

challenge to the widespread practical use of data interpretation. A unique conundrum 

of banking, insurance, and other similar industries is to find ways to make more and 

more accurate predictions, but keep their models and modelling process transparent 

and interpretable (Patrick Hall, 2017). 

2.2.3 Traditional Machine Learning and Modern Machine Learning Process 

Traditional analytical lifecycle process can be augmented with machine learning 

techniques leading to potentially more accurate predictions from regulator-approved 

linear, monotonic models (Patrick Hall, 2017). Figure 15 outlines three possible 

scenarios in which analytical processes can be augmented with machine learning: 

introduce complex predictors into traditional, linear models; use multiple gated linear 

models, and predict linear model degradation. 
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Figure 15 Diagrams of several potential uses for machine learning in traditional 

analytical process. 

(Patrick Hall, 2017) 

Figure 16 is an illustration of cross-validated predictions from two decision trees 

and a linear regression being combined by another decision tree in a stacked ensemble. 

It is a more rigorous way to combine model predictions. This model incorporates 

machine learning models into traditional analytical processes in order to use linear, 

understandable models more efficiently and accurately (Patrick Hall, 2017). 

 

Figure 16 A diagram of a small, stacked ensemble.  

(Patrick Hall, 2017). 
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2.2.4 Predicting Genetic Diseases with Decision Tree Model 

Decision tree is a predictive model that uses a set of binary rules to calculate a 

targeted value which can be used for classification, and simple hierarchical structure 

to identify the class that belong objects from some descriptive traits.  Decision tree can 

be utilised in a wide range of human activities and particularly in automated decision 

making (Badr Hssina, 2014). In the medical field, there are many applications of 

decision tree models which can aid in the diagnosis and identification of treatment 

protocols such as CART, random forest models. In molecular biology, decision trees 

are used to analyse amino acid sequences in the human genome project because it is 

simple to understand and interpret, and can help determine worst, best and expected 

values for different scenarios as well (kane, 2015). Figure 17 is an example of a 

decision tree model for a map. Training data is used to build the model. The tree 

generator needs to determine which variable to split at a node and the value of the split, 

make a terminal note, and assign terminal nodes to a class. 

 

Figure 17 Example of decision tree.  

(Horning, 2015) 

Random forest is one of the decision tree models which uses many decision tree 

models to classify or regress data. At Mendelics in Brazil, random forests have been 

used for almost three years in the field of genetics (Mario, 2016). The human genome 

is over 3 billion nucleotides long and every person has thousands of mutations. 

Unfortunately, some of these mutations, instead of changing the colour of your eyes, 

cause diseases. It is not straightforward to determine which mutations cause diseases 
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in the middle of this sea of mutations. Researchers in genetics have used machine 

learning models built with random forests to solve this problem (Mario, 2016). 

2.3 INTELLIGENT VISUALISATION  

2.3.1 What is Intelligent Visualisation and Why It Matters? 

The objective of intelligent visualisation can be explained as “give everybody 

the right information at the right time and in the right way” which includes two aspects: 

the first refers to the problem of selecting the relevant information, depending on the 

situation and the needs, goals, and characteristics of the user; another aspect is that the 

information should be presented in a way promoting its rapid perception, proper 

understanding, and effective use which means effective preparation, organisation, and 

representation of the information (Natalia Andrienko, 2007). 

The digital universe is doubling in size every two years (Oracle, 2015), and the 

amount of data that crosses the Internet every second is greater than all the data stored 

in the Internet just 20 years ago, which amounts to exabytes of data being created on 

a daily basis (Polsky, 2017). It is impossible for the human brain to process more than 

one value at a time let alone hundreds, thousands, millions or billions. Visualisations 

is the single easiest way for our brains to receive and interpret a large amount of 

information. Data visualisation represents data in a pictorial or graphical format which 

can simplify data values, promote the understanding of them, and communicate 

important concepts and ideas (Polsky, 2017). Advanced data visualisations not only 

support more in-deep and complex analytics to get insight into what is happened, but 

also can forecast what might happen with machine learning algorithms. 

Figure 18 shows a traditional electronic spreadsheet which limits what you can 

see, but data visualisation can easily interpret, saving time and energy. As we can see 

from the left-side image, the spreadsheet cannot display a lot of data in the table and it 

extremely perceives a large number of numerical numbers. The right image uses charts 

and heatmaps illustrates the number of units that correspond to each age (represented 

by the colour gradient) as well as the reliability as the age of a unite increase. In a 

matter of seconds, we can see the units approaching 20 years of age are approximately 

40 percent reliable. This visual simplifies the totality of the data, instantly clarifying 

what is happening with the reliability of the cell phone motors values, trends and the 

property of the information in a much better and clear way. 
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Figure 18 Traditional spreadsheet and visualisation. 

A traditional spreadsheet limits what you can see, meanwhile, the right visualisation 

simplified the totality of the data and easy to get information instantly (Polsky, 2017) 

2.3.2 Background on Intelligent Visualisation  

The history of statistical graphics and data visualisation started from the earliest 

map-making and visual depiction, and then thematic cartography, statistics and 

statistical graphics, with applications and innovations in many fields of medicine and 

science that are often intertwined with each other (Friendly, 2006). Using pictures to 

understand data has been around for centuries. Maps and graphs started in the 17th 

century, then the pie chart was invented in the early 1800s, and then several decades 

later, one of the most cited examples of statistical graphics happened when Charles 

Minard mapped Napoleon’s invasion of Russia. The statistical graphics depicted the 

size of the army as well as the path of Napoleon’s retreat from Moscow, and tied that 

information to temperature and timescales for a more in-depth understanding of the 

event (SAS, 2017). 
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Technology speeds up data visualisation and lets it become a rapidly evolving 

blend of science and art as computers made it possible to process a large amount of 

data at lightning-fast speeds. There is no “one-size-fits-all” technique to visual data 

because every task and dataset has its own unique properties. Visualisation systems 

can integrate a large number of intelligent algorithms to automatically compose or 

recommend effective visualisation given a user’s task context. There are three 

categories in existing systems: task-based systems which use formal task descriptions 

as input to construct appropriate visual presentation; data property-based systems 

which focus on the dataset being visualised and using features of the data itself as input 

to the visualisation recommendation or composition algorithm; and hybrid systems 

which use a combination of both data properties and explicit representation of user 

intent to determine a proper visualisation. Behaviour-driven visualisation consists of 

two distinct phases: i) pattern detection which analyses user behaviour dynamically to 

find semantically meaningful interaction patterns by using a library of pattern 

definitions developed through observation of real-world visual analytic activity; and 

ii) visualisation recommendation which uses intelligent algorithms to detected patterns 

to infer a user’s intended visual task, and then automatically suggests alternative 

visualisations that support the inferred visual task more directly than the user’s current 

visualisation (Gotz & Wen, 2009). 

Harvest is a behaviour-driven visualisation intelligent visual analytics system 

which builds a graph-based representation of interconnected trails to represent the 

user’s visual exploration behaviour. When users save their work via the bookmark, 

Harvest preserves both the state of the visualisation as well as the automatically 

recorded analytic trail. When a bookmark is later restored, the trail is restored as well. 

This allows a user to review the exploration recommendation, and it quickly led users 

to proper visualisation for their tasks (Gotz et al., 2010). Figure 19 shows key Harvest 

technologies: smart visual analytic widgets, dynamic visualisation recommendation, 

and semantics-based capture of insight provenance. 

 



Using Machine Learning to Support Better and Intelligent Visualisation for Genomic Data 27 

 

 

Figure 19 Behaviour-driven visualisation.  

The left shows the history panel displays the unfolding analytics trail; the middle 

shows users can restore saved trails to re-use past analyses; the right shows mean 

and 95% confidence interval of task completion time and task error (Gotz et al., 2010) 

2.3.3 Machine Learning and Intelligent Visualisation 

Machine learning methods use statistical learning and computers to make 

predictions by finding patterns and unearthing boundaries in data (Stephanie, 2015). 

Machine learning algorithms have been used to assist in the exploration process in the 

past and now are used to depict various attributes using multiple views and to allow 

the engineer to interactively select a subset of the data in these views. The interactive 

visual analysis combined with machine learning algorithms can find hidden relations 

between multi attributes in the tedious multidimensional dataset (Fuchs et al., 2009). 

The future of big data visual exploration will involve the tight integration of 

visualisation tools with traditional techniques from such disciplines as statistics, 

machine learning, operations research, and simulation. Visual exploration also needs 

to combine fast automatic data mining algorithms with the intuitive power of the 

human mind which can improve the quality and speed of the data exploration process 

(Keim, 2001). 

The fields of visualisation and machine learning have been addressing big data 

analysis from different perspectives and advances in both communities and need to be 

leveraged and in order to make progress. Machine learning has proposed algorithms 

and techniques that can process large volumes of data, enabling visualisation to scale, 

while information visualisation can leverage the human perceptual system to interpret 

and uncover hidden patterns in these datasets. Visualisation benefits from machine 

learning in exploratory procedures such as feature selection, dimensionality reduction 

and clustering (Daniel A. Keim, 2015). 

Figure 20 interplays between machine learning and data visualisation. The core 

dataset (top) stores the information from the data stream which is pre-processed for 
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binary hashing and core sets discovery. Pre-processing enables index-based data 

retrieval, selection of representative data instances, and fast distance computation. 

Multi-view visualisation initially displays data. The core set also supports the user in 

digging deeper and retrieving data from neighbourhood, time, location or concept-

specific spaces. Data-related semantic concepts are retrieved from related databases 

and organized in ontology or network. Visualisations are interlinked: any change in 

selection in one view updates the information in all other views. Machine learning 

algorithms for clustering, assessment of concept enrichment, outlier detection and 

classification of uncharacterised data instances are triggered on the fly. User’s 

interactions are recorded and modelled and provide means of predicting them and 

executing the most likely data-intensive operations that the user can trigger in the 

future before they are actually needed. The user can change the attributes or position 

of data instances in any visualisation, thus visually changing the objective function 

that is optimized in the visualisations. Change of objective function is followed by 

repositioning of data elements in the visualisations.  

 

Figure 20 interplay between machine learning and data visualisation. 

 (Daniel A. Keim, 2015). 
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Combining visualisation and machine learning is a challenge for big data 

analysis. Machine learning should not only be used for mining data but also be used to 

data visualisation to address the variety and span of data sources to improve human 

perception. 

2.4 METHODS OF GENOMIC DATA ANALYTICS AND 

VISUALISATION 

2.4.1 Genome Data Collected and Stored 

Entire genome sequences are getting completion which drives biology goes to 

the midst of an intellectual and experimental sea change. Huge data have been 

collected from the fortuitous confluence of technological advances in protein and DNA 

analysis as well as imaging advances in cell biology. In the late 1980s, the international 

Human Genome Project started to collect human genome sequence which stimulated 

developments both in high-throughput DNA sequencing, which were essential for the 

success of the project, and in powerful computational tools for sequence analysis. 

Figure 21 shows the components of studies in Saccharomyces cerevisiae where more 

and more genes had been studied from 1996 to 2000. In 1996, it was estimated that 

30% known genes and 30% were unrecognizable. The situation is even more striking 

in multicellular organisms. In 1998, it was reported that only 7% had been studied 

previously, although 42% of the genes had some match to proteins and sequences of 

random complementary DNAs (expressed sequence tags). These matches can often be 

clues to the function of previously unstudied genes. By 2000, the number of 

completely novel genes with no match to anything previously encountered in DNA 

sequence was reduced to 17% of the 13,600 Drosophila genes in the fly genome 

(Vukmirovic & Tilghman, 2000). 
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Figure 21 The distribution of genes in eukaryotic genomes. 

Shown for three organisms are the relative number of genes that were previously 

identified, to be known, and that had no match in any sequence database at the time 

of completion of the genome sequence (Vukmirovic & Tilghman, 2000) 

Huge genome data has been collected in the past years and started to be shared 

by different groups such as scientist, bioinformaticians, clinicians and related 

researchers with various channels, for example, genome browser. Genome browser, 

which can make data openly accessible to support and progress scientific research 

across the globe, is an online graphical interface used to display genomic data. The 

genomic data is from Ensemble based in European, UCSC based at the University of 

California Santa Crus, and National Centre for Biotechnology Information base in 
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Maryland in the USA(Genome, 2016). Figure 22 shows the basic structure of the 

display on many genome browsers which present the genome sequence horizontally 

across the screen. Elements in the sequence are presented in specific colours and 

shapes according to a key. 

 

Figure 22 Screenshot taken from the Ensembl genome browser. 

It is showing the visualisation of the genes and other features of interest on human 

chromosome 16 (Genome, 2016) 

2.4.2 Visualisation Tools for Analysing Genomic Data 

 Massive genomic datasets are generated by different projects which are stored 

and shared by different groups of professionals. Some basic analysis tools are 

developed such as Genome Analysis Toolkit and X:Map. Genome Analysis Toolkit 

(GATK) is a structured programming framework designed to ease the development of 

efficient and robust analysis tools for next-generation DNA sequencers using the 

functional programming philosophy of MapReduce (McKenna et al., 2010). X:Map is 

a tool which designed specifically for high-density microarrays that are required to  

show for each gene, transcript and exon the probe sets that match it, their specificity 

and for each probe, their locations of potential hybridization and for each individual 

exon, its sequence (Yates, Okoniewski, & Miller, 2008). It is essential to use 

visualisation of multidimensional oncogenomics data to extract useful knowledge 

from the vast amount of data generated by high-throughput technologies. 

By using computational and statistical methodologies, effective visualisation is 

crucial to successful extraction of knowledge from oncogenomics data for domain 

experts. High-throughput technologies allow the comparison of the genomic 
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sequences, epigenomics profiles, and transcriptomes of tumour cells with those of 

normal cells. Visualisation techniques and tools can integrate different type of 

alterations with clinical experience to show the vast amount of multidimensional 

oncogenomics data in different types of plots such as heatmaps, genomic coordinates, 

and networks (Bhojwani et al., 2008; Rebeiz & Posakony, 2004; Schroeder et al., 

2013). Figure 23 shows examples of three visualisation methods: matrix heatmaps, 

genomic coordinates and networks that are frequently used in cancer genomics 

research. Each of the three visualisation methods - matrix heatmaps (from Gitools), 

genomic coordinates (from UCSC/Cancer Genetics Browser, IGV and Savant) and 

networks (from CircleMap, Regulome explorer, Caleydo/StratomeX, and Cytoscape) 

- is associated with a vertex in the triangle. Tools that are placed at a vertex indicate 

the main visualisation method; those placed in between the vertices use a mixed-model 

visualisation method (Albuquerque et al., 2017; Schroeder et al., 2013).  

 

Figure 23 Three visualisation methods.  

Matrix heat maps, genomic coordinates and networks. (Schroeder et al., 2013) 
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With such big accumulated genomic data, the current analysis tools may not be 

sufficient for genomic data generation, distribution, and visualisation. Personalised 

medicine presents a unique challenge for new tools which can efficiently extract 

knowledge from the data, explore the multiple relationships between the data, and 

speed up expert’s decisions. Along with personalised cancer medicine’s development, 

cancer genomics data visualisation in the clinical setting is likely to become a key topic 

in the near future. Efficient tools, that support the visual stratification of the tumour 

genomic profiles and that highlight their relationships to know drugs or treatments, 

will be more useful than the existing research-oriented tools (Schroeder et al., 2013).  

In order to help downstream analysts to access and manipulate the massive sequencing 

datasets in a programmatic way, new feature-rich, efficient, and robust analysis tools 

are developed to process data and answer specific scientific questions (Chittaro, 2006; 

McKenna et al., 2010). Further efforts are required to develop new tools to meet the 

new demands and challenges in the field. 

2.5 TRENDS OF GENOMIC DATA ANALYTICS AND VISUALISATION 

2.5.1 AI, Machine Learning and Big Data in Healthcare Industry 

New technology breaks the barriers such as cost, computing power to implement 

artificial intelligence and big data to the healthcare industry.  Nowadays, sequencing 

of individual genomes and then comparing them to a vast database allow doctors to 

predict the probability of a particular disease and choose the best ways to treat those 

diseases when they appear. Google, Apple, Samsung, and other companies are 

investing billions in developing new biometric sensors. Combined with big data, the 

information from these sensors could help to prevent disease and extend lifespans 

(Marr, 2016a). 

Computer scientists at Stanford created an artificial intelligent diagnosis 

algorithm for skin cancer and it performed with inspiring accuracy (Andre Esteva, 

2017). They made a database of 129,450 skin disease images and trained their 

algorithms to visually diagnose potential cancer. For skin cancer, early detection is 

critical and mobile devices can potentially extend the reach of dermatologists outside 

of the clinic.  It is projected that 6.3 billion smartphone subscriptions will exist by the 

year 2021 and can therefore potentially provide low-cost universal access to vital 

diagnostic care.  Neural network, as a deep learning algorithm, allow medical 
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practitioners and patients to proactively track skin lesions and detect cancer earlier. 

This fast, scalable method is deployable on mobile devices and holds the potential for 

substantial clinical impact, including broadening the scope of primary care practice 

and augmenting clinical decision-making for dermatology specialists and other cancer 

specialists (Andre Esteva, 2017). Figure 24 shows the skin cancer classification 

technique which shows data flow from left to right. The 757 training classes are 

defined using a novel taxonomy of skin disease and a partitioning algorithm that maps 

diseases into training classes (Andre Esteva, 2017).  

 

Figure 24 Skin cancer classification technique. 

(Andre Esteva, 2017) 

2.5.2 Personalised Medicine is Effective and Precise 

 Mark Zuckerberg said in his presentation in Harvard “How about curing all 

diseases and getting people involved by asking volunteers to share their health data – 

track their health data and share their genomes? You know, today our society spends 

more than 50 times as much treating people who are sick, as we invest in finding cures, 

so people don’t get sick in the first place.” (Zucerberg, 2017). Personalised medicine 

presents the unique challenge for new tools which can efficiently extract knowledge 

from the data, explore the multiple relationships between the data, and speed up 

expert’s decisions. Personalised medicine is the tailors of medical treatment to the 

individual characteristics, needs and preferences of each patient. Patients can be 

treated and monitored more precisely and effectively and in better ways to meet their 

individual needs. This benefits from the advancement in a wide range of fields from 

genomics to medical imaging to regenerative medicine, increasing of computational 

power, and the advent of mobile and wireless capability and other technologies 

(Cordeiro, 2014; Margaret A. Hamburg, 2013; Savoia et al., 2017; Vogenberg, 

Isaacson Barash, & Pursel, 2010).  



Using Machine Learning to Support Better and Intelligent Visualisation for Genomic Data 35 

 

Personal health data are exploding with the increasing number of mobile health 

applications. Mobile health has grown exponentially over the last decades and it is 

expected to reach $20.7 billion market worth by 2018, with nearly 96 million users 

(Juniper, 2018). Thousands of applications and more are being developed are used to 

collect personal health and lifestyle data, which make personalised health more 

approachable than ever imagined. Data analytical tools can be used to visualise data 

from the population level to a more personalised approach, and from a reactive method 

to proactive methods focus on prevention, wellness, and most importantly –the 

individual (Boudreaux et al., 2014; Krisa D. Tailor, 2014). 

In 2012, a new therapy with the drug Kalydeco for cystic fibrosis (CF), a serious 

inherited disease that impairs the lungs and digestive system, was approved for patients 

with a specific genetic mutation- in a gene that is important for regulating the transport 

of salt and water in the body (Margaret A. Hamburg, 2013). Kalydeco and more other 

cancer drugs have been approved for use in patients whose tumours have specific 

genetic characteristics that are identified by a companion diagnostic test which point 

to the emergence of a new era of personalised medicine (Margaret A. Hamburg, 2013).  

More and more knowledge about associations between genomic factors and 

disease has rapidly accumulated as shown in Figure 25. Genomic analyses have 

provided new biological insights into the pathogenesis and classification of diseases 

and determinants of success and failure of therapies.  This leads to the development of 

new analytical approaches that use multidimensional datasets and embrace the 

complexity of genomic data for personalised medicine (Procter et al., 2010; Sikic, 

Tibshirani, & Lacayo, 2008). 
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Figure 25 Knowledge about associations between genomic factors and disease has 

rapidly accumulated. 

(Raskin, 2011) 

2.5.3 Interactive Visualisation for Genome Comparison 

Interactive visualisation of complex genomic data is an effective way to bring 

the insight of information and discover the relationships, non-trivial structures, and 

irregularities that may pertain to the disease course of the patient. Basic statistics and 

visualisations without effective interaction and capabilities to control the visual data 

mining process are often insufficient for the analysis and exploration process. 

Intelligent visualisation can focus on patient-to-patient comparisons through the 

biological data and display the multi-dimensional data in cooperation with the 

automated analysis (Q. V. Nguyen, Nelmes, Huang, Simoff, & Catchpoole, 2014). 
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Intelligent genomic visualisation can support experts in the process of hypotheses 

generation concerning the roles of genes in diseases and find the complex 

interdependencies between genes by bringing gene expressions into context with 

pathways (Lex, Streit, Kruijff, & Schmalstieg, 2010).  

2.6 SUMMARY AND IMPLICATIONS 

Machine learning is a modern way to address important problems in genomic 

medicine, for example, creating a predictive model to determine how variations in the 

DNA of individuals can affect the risk of different disease and to find causal 

explanations so that targeted therapies can be designed (Leung et al., 2016). 

Intelligent visualisation is an effective way to analyse large multidimensional 

genomic data to extract knowledge and intelligently map the data to the most 

appropriate graphical representation to each community of participants. Combining 

machine learning algorithms with intelligent visualisation is a challenge to show 

complex genomic data in a meaningful way and give predictive choices.  

In this thesis, we focus on applying machine learning model to genomic data 

visualisation tool. We started the research with a usability study to collect requirements 

from the existed tools and from the end users who are researchers and clinicians. We 

then designed our visualisation tool based on the requirements we collect from the 

usability. This included choosing machine learning algorithms, designing visualisation 

techniques with different tools such as R, Unity3D. And last step, we developed a 

visualisation prototype with two case studies on two childhood genomic cancer 

datasets. The two case studies use the prototype system to execute the lessons that are 

collected in the usability study and the design methodology and models in research 

design. 
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Chapter 3: Structured and Qualitative 

Studies on Genomic Visual 

Analytics 

This chapter describes the usability study before the research design that 

systematically reviews popular genomic data visualisation tools and collects user’s 

preference for a new genomic data visualisation tool. The systematic review 

contributes to a review paper that has been accepted by the Sage journal Cancer 

Informatics. The structured review is stated in (Section 3.1). The small preliminary 

group study for the quallitative review is stated in (Section 3.2). The last part (Section 

3.3) discusses why new visualisation tools are needed. The purpose of this usability 

study is to collect requirements for the research design in Chapter 4 and case studies 

in Chapter 5. 

3.1 STRUCTURED REVIEW 

3.1.1 Genomic Data Visualisation Methods Review  

Nowadays, new visualisation tools and methods such as cluster analysis, AI, and 

VR are introduced by different groups of people including designers, software 

developers and scientists. They try to combine existing visualisation tools with new 

technological opportunities especially AI and VR to maximise human knowledge and 

intuition (García-Hernández, Anthes, Wiedemann, & Kranzlmüller, 2016; Golestan 

Hashemi et al., 2017; Olshannikova, Ometov, Koucheryavy, & Olsson, 2015). Figure 

26 shows genomic visualisation methods used in recent years, including scatter plots, 

cluster, matrix heatmaps, genomic coordinates, networks, AI and VR from screenshots 

of tools that are frequently used in cancer genomics research distributed according to 

their visualisation principles. Scatter plots, network, heatmap, and coordinates are four 

traditional methods for visualising genomic data which have been used in most popular 

visual analytics tools. Clustering methods are used to support all the above 

visualisation methods to enhance the classification. AI algorithms support 

visualisation by automatically identify patterns and making highly accurate prediction 

while visualisation methods can aid or interpret AI by framing predictive modelling 

problem and evaluating model. VR, AR, Immersive, and mobile devices are the new 
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environments for data visualisation to make the interactions with data in a more natural 

or easier way.  We list all the visualisation methods and their descriptions in Table 1. 

We now explain and evaluate each visualisation method with example tools in the 

following paragraphs. We also analyse the combinations between these methods and 

how to use them in research and clinical fields. 

 

Figure 26 Genomic Data Visualisation Methods: Scatter plots, Cluster, Heatmap, 

Network, Genomic Coordinates, AI and VR for visualisation. 
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Methods Description Example Visualisation 

Tools 

2D Scatter Plot The scatter diagram graphs pairs of numerical data, with one 

variable on each axis, to look for a relationship between them. If 

the variables are correlated, the points will fall along a line or 

curve. The better the correlation, the tighter the points will hug the 

line (ASQ, 2018). 

IGV (IGV, 2018), UCSC 

(Mary Goldman, 2017) 

3D Scatter Plot 3D scatter plots are used to plot data points on three axes in the 

attempt to show the relationship between three variables. Each row 

in the data table is represented by a marker whose position 

depends on its values in the columns set on the X, Y, and Z axes. 

A fourth variable can be set to correspond to the colour or size of 

the markers, thus adding yet another dimension to the plot (Tibco, 

2018). 

Medical Data 

Visualisation(Q. V. Nguyen 

et al., 2014). 

Heatmap A heatmap is a graphical representation of data that uses a system 

of colour-coding to represent different values. A common method 

of visualising gene expression data is to display it as a heatmap. In 

heatmaps, the data is displayed in a grid where each row 

represents a gene and each column represents a sample. The 

colour and intensity of the boxes are used to represent changes in 

gene expression (EMBL-EBI, 2018). 

Ngs.plot (Shen, Shao, Liu, & 

Nestler, 2014), Gitools 

(Perez-Llamas & Lopez-

Bigas, 2011), PARADIGM 

(Vaske et al., 2010). 

Clustering A cluster is a group of similar elements. Each cluster can be 

represented by a profile, either a summary measure such as a 

cluster means or one of the elements itself, which is called a 

medoid or centroid (K. S. Pollard 2003). 

Medical Data 

Visualisation(Q. V. Nguyen 

et al., 2014), UCSC (M. 

Goldman et al., 2015). 

Network A network graph uses information from both the link and node 

data sets to generate a graphical depiction of the network. The 

nodes and links in a network graph can be arranged in a variety of 

layout patterns(SAS, 2018). 

Cytoscape (Shannon et al., 

2003). 

Genomic 

Coordinate 

Genomic Coordinate can visualise single-nucleotide 

polymorphism(SNP) including their physical location relative to 

their host gene, and the structure of the relevant transcripts to 

provide intuitive supplements to the understanding of their 

functions (Zhang et al., 2015). 

UCSC (M. Goldman et al., 

2015), IGV (IGV, 2018), 

RNASeqBrowser (An et al., 

2015),GATK (McKenna et 

al., 2010), Savant Genome 

(M. Fiume, Williams, Brook, 

& Brudno, 2010). 

AI 

(Artificial 

Intelligence) 

Artificial Intelligence (AI) is a term of cognitive technologies and 

a big forest of academic and commercial work around the science 

and engineering intelligent machines. AI has many branches with 

many significant connections and commonalities among them, 

Machine Learning is one of the branches (Mills, 2016). 

DeepVariant (Google, 2017), 

GDC DAVE (NIH, 2017b). 
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Table 1 The list of visualisation methods, their descriptions and examples 

Combine Different Visualisation Methods 

Researchers and doctors usually combine different visualisation methods in a 

typical analysis procedure to assist their work. For example, they need first to 

normalise experimental and batch differences between samples and then to identify up 

and down regulated genes based on a fold-change level when comparing across 

samples, such as between a healthy and a non-healthy tissue. In this procedure, 

principal component analysis or partitioned clustering algorithms (Ciaramella et al., 

2008; Pollard & van der Laan, 2005) can be used to group together genes with similar 

behaviour patterns, scatter-plotting is the typical visualisation to represent such 

groupings. Then, categorising genes with similar behaviour patterns across time, 

hierarchical clustering based on expression correlation can be performed with 

clustering heatmaps which can allow data from distant genome loci to be grouped and 

visualised together for comparison (Eisen, Spellman, Brown, & Botstein, 1998; Huang 

da, Sherman, & Lempicki, 2009).  As shown in Figure 26, scatter plots, network, 

heatmaps, genomic coordinates are the four classic genomic and cancer data 

visualisation methods and the clustering method can be used to enhance the above four 

methods. AI is a new technology and has started supporting traditional visualisation 

methods recently. Genomic and cancer visualisations have increasingly supported VR, 

AR, Immersive big screen and mobile devices to enlarge human’s perception (Matte-

Tailliez, Toffano-Nioche, Ferey, Kepes, & Gherbi, 2006). 

Scatter Plots 

The scatter diagram graphs pairs of numerical data, with one variable on each 

axis, to look for a relationship between them. If the variables are correlated, the points 

will fall along a line or curve. The better the correlation, the tighter the points will hug 

the line (ASQ, 2018). A scatter plot is a simple way to visualise differentially 

expressed genes, for example, An IGV scatter plot, as shown in Figure 27, displays 

the relationship between two sets of sample tracks of continuous-valued data in a 

VR VR is by immersing the user in a digitally created space with a 

360-degree field of vision and simulated movement in three 

dimensions, it should be possible to greatly increase the bandwidth 

of data available to our brains (Marr, 2016b). 

UWS Microsoft HoloLens 

Visualisation (Lau, Nguyen, 

Qu, Simoff, & Catchpoole, 

2019) 



Using Machine Learning to Support Better and Intelligent Visualisation for Genomic Data 42 

 

genomic region. Supported data types include gene expression, copy number data, and 

methylation data (IGV, 2018).  

 

Figure 27 IGV scatter plot displays the relationship  

between two sets of sample tracks of continuous-value data in a genomic region (IGV, 

2018). 

UCSC Cancer Genomics Browser is a web-based application for hosting, 

visualising, and analysing cancer genomics datasets which include 575 public datasets 

from genome-wide analyses of over 227,000 samples. The browser can display 

genome-wide experimental measurements for multiple samples, which can originate 

from multiple datasets alongside their associated colour-coded clinical information. 

The browser provides interactive views of data from genomic regions to annotated 

biological pathways and user-contributed collections of genes. Integrated statistical 

tools provide quantitative analysis within all available datasets. Users can easily 

discover and share their research observations by exploring the relationship between 



Using Machine Learning to Support Better and Intelligent Visualisation for Genomic Data 43 

 

genomic alterations and phenotypes with multidimensional visualisations (M. 

Goldman et al., 2015). 

A UCSC scatter plots are used to quickly and easily see the relationship between 

any two variables or columns of data such as Glioblastoma Multiforme (GBM) and 

Lower Grade Glioma (LGG) samples in Figure 28 (Mary Goldman, 2017). The x-axis 

shows copy number variation in chromosome 19q and the y-axis shows copy number 

variation in chromosome 1p. Samples are coloured by primary disease. We can see 

here that there is a subset of samples in LGG that have a strong correlation between a 

deletion of chr19q and chr1p. GBM samples do not show this relationship (Mary 

Goldman, 2017). 

 

 

Figure 28 UCSC scatter plots.  

It is for Glioblastoma Multiforme (GBM) and Lower Grade Glioma (LGG) samples in 

TCGA (Mary Goldman, 2017) 

3D Scatter Plot is used to discover relationships between three variables at the 

same time and is boosted by the recent widespread use of virtual reality devices. Even 

though Virtual Reality (VR) has been in development for decades, only recently are 

industries dedication sizable resources, both money and time, into producing 

compelling experiences for VR. Virtual Reality reveals spatially complex structures 

behind 3D data in an easy visualisation way. 3D scatter plots can solve the problematic 

issues on common 2D scatter plots such as the overlapping of data and the absence of 

depth perception (Gray, 2016). Some genomic and cancer data visualisation tools such 

as Medical Data Visualisation (Lau et al., 2019; Q. V. Nguyen et al., 2014) start to use 

3D scatter plots and support mixed reality devices such as Microsoft HoloLens. 
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Heatmaps 

Heatmaps are 2D graphical false-colour image representations of data which 

makes use of a predefined colour scheme and different colours display different values 

and variations in a data matrix. Heatmap plot is a fundamental method in genomic data 

visualisation and is broadly used to unravel patterns hidden in genomic data, especially 

for gene expression analysis and methylation profiling (Gu, Eils, & Schlesner, 2016). 

Heatmaps may also be combined with clustering methods which group markers 

together based on the similarity of their patterns. Many genomic visualisation tools 

provide heatmap plots, such as Ngs.plot (Shen et al., 2014), Gitools (Perez-Llamas & 

Lopez-Bigas, 2011) and PARADIGM (Vaske et al., 2010).  Figure 29 shows an 

example of a heatmap visualisation that compares gene of interests between the 

selected patients ALL92, ALL129, ALL321 and ALL323. 

 

Figure 29 A heatmap for comparing genes between different patients. 

It is for comparing genes of interests between patients ALL92, ALL129, ALL321 and 

ALL323 which were chosen by users. (Q. V. Nguyen et al., 2014) 

Heatmaps are very handy for large, multi-dimensional datasets visualisation. 

High-throughput gene expression data are often displayed using heat maps which data 

are displayed in a grid where each row represents a gene and each column represents 

a sample. Colours and intensity of each box represent variations of gene 

expression. Scientists often use green-black-red heat maps to visualise gene expression 

data from microarrays (Genomics, 2017). 

Most heatmap representations are also combined with clustering methods to 

group genes or samples based on their expression patterns. Each gene is represented 

as a row and is colour-coded to represent the intensity of its variation, such as positive 

or negative, relative to a reference value, and biological samples are represented as 

columns in the grid (Levin, 2017).  
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Genomic coordinates 

Genomic coordinates plot is a common way to visualise oncogenomics data to 

show alterations tied to their genomic loci. UCSC, IGV, RNASeqBrowser, GATK, 

Savant Genome provide genomic coordinates. The different tools may have different 

focuses but most of them can display genomic topography of alterations in each 

tumour samples as genomic tracks to inspect particular genome loci.   

Integrative Genomics Viewer (IGV) is a lightweight visualisation tool for 

interactive exploration of integrated genomics datasets and it makes use of efficient, 

multi-resolution file formats to enable intuitive real-time exploration of diverse, large-

scale genomic datasets on standard desktop computers.  IGV can handle large 

heterogeneous data set to provide a smooth and intuitive user experience at all levels 

of genome resolution. It uses special data tiling technique which is a pyramidal data 

structure to support interactive exploration of large-scale genomic data sets on 

standard desktop computers (Thorvaldsdottir, Robinson, & Mesirov, 2013). In IGV, 

all tracks can be annotated with a coordinates application colour-coded sample and 

clinical information and genomic regions can be annotated with text labels (Robinson 

et al., 2011). Figure 30 shows an IGV attribute panel which displays a colour-coded 

matrix of phenotypic and clinical data. Just below the command bar is a header panel 

with an ideogram representation of the currently viewed chromosome, along with a 

genome coordinate ruler that indicates the size of the region in view. The remainder of 

the window is divided into one or more data panels and an attribute panel. Data are 

mapped to the genomic coordinates of the reference genome and are displayed in the 

data panels as horizontal rows called ‘tracks’. Each track typically represents one 

sample, experiment or genomic annotation. If any sample or track attributes have been 

loaded, they are displayed as a colour-coded matrix in the attribute panel. Each column 

in the matrix corresponds to an attribute, and a track’s attribute values are displayed as 

a row of coloured cells adjacent to the track (Thorvaldsdottir et al., 2013).  
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Figure 30 IGV genomic coordinates. 

It shows a colour-coded matrix of phenotypic and clinical data (Thorvaldsdottir et al., 

2013) 

Networks 

Networks can show functional relationships between different genomic entities 

to allow the researchers to visually explore clusters of nodes representing highly 

interconnected altered genes that can constitute driver pathways or subnetworks. An 

example is Cytoscape which provides network visualisation in genomic research. 

Cytoscape is an open source software for visualising complex networks and 

integrating these with any type of attribute Networks Desktop data such as genomics 

data and clinical patient information. Cytoscape is most powerful when used in 

conjunction with large databases of protein-protein, protein-DNA, and genetic 



Using Machine Learning to Support Better and Intelligent Visualisation for Genomic Data 47 

 

interactions that are increasingly available for humans and model organisms. The 

software is extensible through a straightforward plug-in architecture, allowing rapid 

development of additional computational analyses and features (Shannon et al., 2003). 

Figure 31 shows breast cancer genomic data visualisation with network method 

from Cytoscape v3.4.0. The upper network is the GO analysis based on the biological 

process of the 513 DEGs and the bottom network shows the KEGG pathway analysis 

of the 513 DEGs (Liu et al., 2018). 

 

Figure 31 Network visualisation from Cytoscape v3.4.0. 

The upper network is the GO analysis based on the biological process of the 513 

DEGs and the bottom network shows the KEGG pathway analysis of the 513 DEGs 

(Liu et al., 2018) 

Cluster 

The cluster is a strategy that used to combine other visualisation methods such 

as scatter plots, heatmaps, networks. For example, medical data visualisation uses 

scatter plot cluster while UCSC uses heat map cluster. A cluster is usually a group of 
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similar elements that can be represented by a profile, either a summary measure such 

as a cluster means or one of the elements itself.  

Clustering combined with heatmaps enable grouping of genes or samples which 

can be obtained through high-throughput sequencing methods such as RNAseq or 

DNA microarray studies together. Clustering is useful in visualising similarity of gene 

expression pattern (Genomics, 2017). Figure 32 shows using the UCSC Cancer 

Genomics Browser to explore relationships between somatic mutation profiles, 

genomic subtypes and survival. In the Figure 32 a) shows somatic mutations for the 

most-significantly mutated genes in TCGA Acute Myeloid Leukemia (AML) tumour 

samples3. Samples are arranged in rows and genes in columns. Red indicates that the 

tumour sample harbours non-synonymous coding mutations in the corresponding gene 

while white indicated that such mutations were not detected. (b) Column 1 represents 

the miRNA expression clusters3, Column 2 represents the DNA methylation clusters, 

and Column 3 represents cytogenetic risk category for the AML cohort (Peter Laird, 

Personal Communication). For each column, each cluster or category was assigned a 

distinct colour from the D3 colour map, with five clusters for miRNA expression 

(cluster 1–5) and nine for DNA methylation (cluster 1–9), and three for cytogenetic 

risk category (favourable, intermediate, poor). A strong concordance is observed 

between miRNA cluster 3 (orange), DNA methylation cluster 3 (also orange) and 

intermediate cytogenetic risk (light blue); and between miRNA cluster 5 (green), DNA 

methylation cluster 5 (also green) and favourable cytogenetic risk (dark blue) (Cline 

et al., 2013). 

 

 

Figure 32 UCSC shows clustering heatmaps. 

It is to explore relationships between somatic mutation profiles, genomic subtypes 

and survival (Cline et al., 2013). 
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Clustering method also supports scatter plots, network, genomic coordinates 

methods to show a group of similar elements. Clustering data can identify a subset of 

representative examples to process sensory signals and detect patterns in data. 

Clustering data based on a measure of similarity is a critical step in scientific data 

analysis and in engineering systems. A common approach is to use data to learn a set 

of centres such that the sum of squared error between data points and their nearest 

centres is small (Frey & Dueck, 2007). 

Artificial Intelligence 

In recent years, Artificial Intelligence (AI) starts to use big data visualisations 

including multivariate genomic data for the development of quick hardware (Nilsson, 

2009). DeepVariant (Knight, 2017) is a tool that uses the latest AI techniques to build 

a more accurate picture of a person’s genome from sequencing data. The tool is fed 

the data which is from millions of high-throughputs reads and fully sequenced 

genomes from the Genome in a Bottle (GIAB) project, a public-private effort to 

promote genomic sequencing tools and techniques, to a deep-learning system and 

painstakingly tweaked the parameters of the model until it learned to interpret 

sequenced data with a high level of accuracy (Knight, 2017). DeepVariant is a genomic 

variant caller which uses deep neural networks to call genetic variants in germline 

genomes. It is originally developed by Google Brain and Verily Life Science and it 

won the 2016 PrecisionFDA Truth Challenge award for Highest SNP Performance 

(Google, 2017). 

Emerging Platforms 

Virtual Reality (VR) enables the psychophysical immersive experience in an 

artificial computer-generated virtual environment (Simpson, LaViola, Laidlaw, 

Forsberg, & van Dam, 2000). Augmented Reality (AR), usually, is built upon VR in 

integrating and overlaying the virtual environment into the user’s real-world allowing 

the user to interact with the virtual objects in the context of his actual surroundings 

(Chang, Peng Xu, & Wang, 2013; Shan, Doyle, Samavi, & Al-Rei, 2017).  Special 

equipment such as a Head-Mounted Display (HMD) or Cave Automatic Virtual 

Environment (CAVE) system is required for the use of VR/AR technologies. The 

sensor and camera on the equipment will help the system to determine and track the 

user moment and move the point of view accordingly. 
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Shan et al. (2017) developed an AR visualisation which runs on the mobile 

platform to deliver real-time 3D brain tumour volume rendering.  It allows the clinician 

to visualise and communicate with the patients on their tumours size and location.  The 

visualisation uses the facial features of the patient as the tracking point to project the 

reconstructed brain tumour model onto the same location as the subject’s actual 

anatomy. 

Chang Y, Xu WP and Wang L (Chang et al., 2013; Shan et al., 2017)  have 

created a 3D AR visualisation for archaeological purposes.  It uses the ARToolKit in 

rendering the objects.  The purpose of the visualisation is to create a platform for 

underground cultural heritage protection and research. VR has been used in big data 

visualisations including multivariate genomic data for modern VR devices. A number 

of analysts even believe that the applications of AI to VR enables important 

possibilities such as AI-based continuous image recognition reporting results in a VR 

display (Dooley, 2017). One of the biggest challenges of big data is extracting 

information in a way that the human mind can comprehend and the human mind is just 

too feeble to comprehend such vast amounts of information. Immersive environments 

can measure people’s reactions of large data sets to understand the subconscious 

process of the human brain to determine the optimum amount of information to 

display. VR either simplifies the visualisations so as to reduce the cognitive load, thus 

keeping the user less stressed and more able to focus. Or it will guide the person to 

areas of the data representation that are not as heavy in information (Stolk et al., 2002; 

Verma, 2017). 

Interactive visualisation tools have also been used in childhood cancer research 

that can show the whole group of patients’ data with a 3D scatter plot as well as to 

individual patient’s details, zoom and rotate the visualisation plot, compare gene 

among several patients and interact with users and shows the comparison visualisation 

between selected patients (Q. V. Nguyen et al., 2016). The tool supports different 

operating systems including mixed reality devices. Figure 33 shows a 3D scatter plot 

from the tool run in Microsoft HoloLens, which is a pair of mixed reality smart glasses 

developed and manufactured by Microsoft. HoloLens gained popularity for being one 

of the first computers running the Windows Mixed Reality platform under the 

Windows 10 operating system and it can trace its lineage to Kinect, an add-on for 

Microsoft’s Xbox gaming console that was introduced in 2010 (Microsoft, 2018). 
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Figure 33 A Visualisation tool for childhood cancer research that runs in Microsoft 

HoloLens. 

 (Lau et al., 2019). 

3.1.2 Trends of Genomic Data Analytics  

Figure 34 shows tools for visual analytics of genomic and cancer data with the 

around years they started to be developed or the related paper to be written. We can 

see around 2000 to 2015, most genomic data visualisation tools only use some 

traditional methods such as scatter plots, heatmaps, genomic coordinates, networks 

and clustering. Since 2016, AI has been integrated with visualisation tools such as 

machine learning algorithms for predictions and personalised medicine. Some 

visualisation tools support new environments such as mobile devices, VR, AR, and 

large and high-resolution screens. Some tools were used on for a short time such as 

X:map and GenomeCom, while some tools were developed very early before 2010, 

but are kept maintenance and adding new features until now such as GATK and 

Cytoscape, which are still very popular genomic data visualisation tools now. 

Integration is also a way to keep a tool lasting for a longer time. For example, Epiviz 

can obtain annotation data from the UCSC, Gitools can get heatmaps from IGV, and 

RNASeqBrowser is compatible with UCSC as shown in Figure 34  with purple arrows. 
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                    tool timelines                              integration between tools (see session2.4.6) 

Figure 34 Tools timeline and integration, the blue arrows stand for the timeline and 

the green arrows stand for integration.  
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Current Status of Genomic and Cancer Data Visualisation Tools 

This thesis classifies the tools for visual analytics of genomic and cancer data in 

Table 2. Some tools have not been updated recently such as GenomeComp, X:map, 

PARAGIM, and NGS.plot while most tools are still getting maintenance, or upgraded 

with new technologies such as IGV and other tools (see Figure 34). Some non-updated 

tools are still used and can be downloaded. GenomeComp is a visualisation tool which 

is implemented as a stand-alone program that can compare, parse and visualise large 

genomic sequences, especially closely related genomes such as interspecies or 

interstrain (Jian Yanga, 2003). It was developed by Laboratory of Bioinformatics, 

Institute of Biophysics Beijing and use Perl/TK that can run in Linux, Unix, Mac OS 

X and Microsoft Windows operating systems. The final version was updated in 2004 

(Center, 2004).  

X:Map is a tool designed specifically for high-density microarrays that are 

required to show for each gene, transcript and exon the probe sets that match it, their 

specificity and for each probe, their locations of potential hybridisation and for each 

individual exon, its sequence (Yates et al., 2008). X:Map is a Genome annotation 

database browser developed by University of Manchester in the UK around 2008. 

PARAGIM is a tool which focuses on inferring patient-specific genetic activities 

incorporating curated pathway interactions among genes and can predict the degree to 

which a pathway’s activities are altered in the patient using probabilistic inference.  

CircleMap is one of the PARADIGM visualisation methods that produce 

heatmaps with a circular layout. Different data sets coming from the same samples can 

be plotted as different layered circles that form a node. The data layers are plotted 

application maintaining the sample order, which can be adjusted by the user. 

CircleMap visualisation can be used to display multiple datasets centred around each 

gene in a pathway (Vaske et al., 2010). The tool is a factor graph framework for 

pathway inference on high-throughput genomic data and was developed by Charles 

Vaske and Steve Benz from the Regents of the University of California, Santa Cruz in 

around 2010.  

Ngs.plot is a tool to help understand the relationship between the millions of 

functional DNA elements and their protein regulators and demonstrate how they work 

in conjunction to manifest diverse phenotypes, which is a key to know the mammalian 

genome. The tool visualises massive datasets and genomic information based on big 
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sequencing data and it can produce one billion sequencing reads in a few days. 

Ngs.plot uses two steps to quickly mine and visualise genome samples, the first step 

is to define a region of interest and the second step is to plot something meaningful 

(Shen et al., 2014). It is a quick mining and visualisation tool for NGS data, platform 

independent, and programming language is R and Python. It was developed by Peter 

Briggs from the University of Manchester in around 2014, supported by the Friedman 

Brain Institute and the National Institutes of Health. 

New Visualisation Methods are Applied to Tools. 

The active tools usually have a commercial website and keep being updated with 

new methods. For example, GATK can do deep learning with modern AI technology 

by using variants and annotations encoded as tensors, which carry the precise read and 

reference sequences, read flags, as well as base and mapping quality (Samwell, 2017). 

Genome Analysis Toolkit (GATK) is a structured programming framework designed 

to process exomes and whole genomes generated with illumine sequencing technology 

and also can be adapted to handle a variety of other technologies and experimental 

designs. This toolkit focuses on the variant discovery and also includes many utilities 

to perform related tasks such as processing and quality control of high-throughput 

sequencing data (GATK, 2017). The GATK provides a small but rich set of data access 

patterns that encompass the majority of analysis tool needs and it can separate specific 

analysis calculations from common data management infrastructure for correctness, 

stability and efficiency (McKenna et al., 2010).  

DeepVariant is also a visualisation tool that uses machine learning technique. It 

mainly uses AI to identify all the mutations that an individual inherits from their 

parents and modelled loosely on the networks of neurons in the human brain (Moleten, 

2017). DeepVariant also applies the latest AI techniques to build a more accurate 

picture of a person’s genome from sequencing data. The tool is fed with the data from 

millions of high-throughputs reads and fully sequenced genomes to a deep-learning 

system. The tool also tweaks the parameters of the model until it learned to interpret 

sequenced data with a high level of accuracy (Knight, 2017). 

Verdict tool (Lai et al., 2016) uses PCR technology to amplify genes before 

submitting them to sequencing. VarDict's abilities to detect PCR artefacts, such as 

amplicon bias and mispaired primers, together with the linear scalability to depth, 

make it desirable in reducing both false positives and false negatives. VarDict is 
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highlighted as a unique variant caller of high value in cancer translational research by 

the properties, and the value to detect otherwise missed variants in cancer samples 

demonstrated. The algorithm is open source and freely available for public 

use. VarDict is a novel and versatile variant caller for both DNA- and RNA-

sequencing data and it simultaneously calls SNA, MNV, InDels, complex and 

structural variants, expanding the detected genetic driver landscape of tumours. 

VarDict has more accurate allele frequency estimation by performing local 

realignments on the fly. VarDict has three main features including i) performing scales 

linearly to sequencing depth, enabling ultra-deep sequencing used to explore tumour 

evolution or detect tumour DNA circulating in blood; ii) preforming amplicon aware 

variant calling for polymerase chain reaction (PCR)-based targeted sequencing which 

is often used in diagnostic setting; and iii) detecting differences in somatic and loss of 

heterozygosity variants between paired samples. VarDict uses data from the Cancer 

Genome Atlas (TCGA) Lung Adenocarcinoma dataset to call known driver mutations 

in KRAS, EGFR, BRAF, PIK3CA, and MET in 16% more patients than previously 

published variant calls (Lai et al., 2016).  

Some visualisation tools start to support VR/AR/Immersive big screen and 

mobile devices such as Children Cancer Data Visualisation tools. It can show the 

whole group of patients’ data with a 3D scatter plot and check a single patient’s details, 

zoom and rotate the visualisation plot, compare Gene among several patients and 

interact with users and shows the Comparison Visualisation between selected patients 

(Q. V. Nguyen et al., 2016) 

Tools are Integrated with Each Other 

Some visualisation tools can be integrated to be used together for better analysis 

outputs. For example, Epiviz can obtain annotation data from the UCSC genome 

browser (Chelaru, Smith, Goldstein, & Bravo, 2014). Epiviz is a genomic information 

visualisation tool which can quickly and easily visualise and compare large amounts 

of genomic information resulting from high-throughput sequencing experiments. As 

the first system to provide tight integration between a state-of-the-art analytics 

platform and a modern, powerful, integrative visualisation system for functional 

genomics, Epiviz can interactively support a number of widely used, state-of-the-art 

methods for i) ChIPseq where iterative visualisation of data and results of peak-calling 

algorithms is necessary; ii) RNA-seq analyse where both location-based coverage and 
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feature-based expression levels are required; iii) methylation analyses using where 

location-based analysis at multiple genomic scales (Chelaru et al., 2014). 

 Gitools can get heatmaps from IGV through load command and then send locate 

commands for selected rows in the heatmaps to IGV via IGV logo in the Gitools 

toolbar, which makes it easy to spot and compare genes of interest within IGV 

(Gitools, 2018). Gitools is a desktop application for analysis and visualisation of 

matrices using interactive heatmaps which contain multiple dimensions. It has 

interactive capabilities to allow the user to filter, sort, move, and hide rows and 

columns in the heatmaps. Gitools is especially useful for cancer genomic analysis as 

it includes several methods for integrating data sources as well as the ability of 

importing data directly from some other tools and sources. Gitools can be used by 

researchers without advanced knowledge on bioinformatics as well as experienced 

users who usually perform complex operations and analyses using the command line 

interfaces (Perez-Llamas & Lopez-Bigas, 2011).  

Savant also allows users to automatically download annotation tracks from 

various public resources such as the UCSC Genome Browser (M. Fiume et al., 2010). 

Savant Genome Browser is a sequence annotation, desktop visualisation and analysis 

browser for genomics data. This tool was primarily developed for the effective 

visualisation of large sets of high-throughput sequencing data. Multiple visualisation 

modes enable the exploration of genome-based sequence, points, intervals, or 

continuous datasets. Plugins, such as WikiPathways plugin are available, which aids 

the navigation of the data by the integration of pathways (M. Fiume et al., 2010).  

RNASeqBrowser can be compatible with UCSC files and extend the 

functionality over IGV. RNASeqBrowser is a visualisation tool that adds several new 

types of tracks to show NGS data such as individual raw reads, SNPs and InDel. The 

tool can dynamically generate RNA secondary structure which is useful for identifying 

non-coding RNA such as miRNA, and it overlays NGS wiggle data to display 

differential expression. Paired reads are also connected in the browser to enable easier 

identification of novel exon/intron borders and chimaeric transcripts. Strand specific 

RNAseq data is also supported by RNASeqBrowser that displays reads above (positive 

strand transcript) or below (negative strand transcripts) a central line (An et al., 2015). 
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Interaction Tools 

The good tools usually allow users to interact intuitively with data and choose 

multi visualisation methods to support different research purpose. For example, GDC 

(Genomic Data Commons) DAVE (Data Analysis, Visualisation, and Exploration) 

Tools usually use scatter plots to visualise mutations and their frequency across cases 

that are mapped to a graphical visualisation of protein-coding regions. They use 

heatmaps to visualise the top mutated genes across projects and the number of cases 

affected. Web interface of GDC DAVE Tools can analyse cancer genomic data, in real 

time and online, without the need to download or process the data. Users can navigate 

from project cohorts to individual patients, to specific genes and mutations of interest. 

DAVE tools normally use specialised graphs to visualise genomic signatures of cancer 

and identify potential drivers of disease. They also visualise patient survival curves 

and identify the molecular consequence of a mutation on resultant protein (Staudt, 

2017). DAVE Tools allow users to interact intuitively with GDC (Genomic Data 

Commons) data and promote the development of a true cancer genomics knowledge 

base, which includes the following key features: i) view most frequently mutated 

genes, ii) plot high impact mutations using oncoGrid, iii) perform survival analysis, 

iv) visualise mutations for protein-coding regions, v) view cancer distribution, view 

top mutated genes across projects, vi) view genes annotated by COCMIC, vii) build 

and compare custom cohorts, and viii) perform set operations (NIH, 2017b). 

We summarise the visual analytics tools for genomic and cancer data as 

discussed above in Table 2. 
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Tool 

Name/Website 

Description Visualisation 

Methods 

Developer/Year Tool Type 

X:Map 

http://xmap.picr.ma

n.ac.uk . 

 

X:Map is a tool which designed specifically for high-

density microarrays that are required to show for each 

gene, transcript and exon the probe sets that match it, 

their specificity and for each probe, their locations of 

potential hybridization and for each individual exon, its 

sequence(Yates et al., 2008). 

Heatmap,  

Genomic 

coordinates 

University of 

Manchester in the UK 

2008 

Genome 

annotation 

database 

browser  

GenomeComp 

http://www.mgc.ac.

cn/GenomeComp/  

GenomeComp is a visualisation tool which is 

implemented as a stand-alone program that can compare, 

parse and visualise large genomic sequences, especially 

closely related genomes such as interspecies or interstrain 

(Jian Yanga, 2003). 

 

Genomic 

coordinates 

Laboratory of 

Bioinformatics, 

Institute of Biophysics 

Beijing 

2002--2004 

Use Perl/TK, 

run in Linux, 

Unix, Mac OS 

X and Microsoft 

Windows  

Epiviz 

http://epiviz.cbcb.u

md.edu/  

Epiviz is a genomic information visualisation tool which 

can quickly and easily visualise and compare large 

amounts of genomic information resulting from high-

throughput sequencing experiments. It is the first system 

to provide tight integration between a state-of-the-art 

analytics platform and a modern, powerful, integrative 

visualisation system for functional genomics (Chelaru et 

al., 2014).  

Heatmaps, 2D 

scatter plot,  

Genomic 

coordinates 

University of 

Maryland 

2014 --now 

Web-based 

genome 

browsing 

application 

Gitools 

http://www.gitools.

org/  

Gitools is a desktop application for analysis and 

visualisation of matrices using interactive heatmaps 

which contain multiple dimensions. It has interactive 

capabilities to allow the user to filter, sort, move, and 

hide rows and columns in the Heatmaps. Gitools is 

especially useful for cancer genomic analysis as it 

includes all the methods implemented for some 

Integrative sources, and can import data directly from 

some other tools(Perez-Llamas & Lopez-Bigas, 2011). 

Heatmaps Biomedical Genomics 

Group located in 

Barcelona at the 

Biomedical Research 

Park in Barcelona 

2011 - Current 

Desktop 

application 

UCSC 

https://genome-

cancer.ucsc.edu/  

UCSC Cancer Genomics Browser is a web-based 

application for hosting, visualising, and analysing cancer 

genomics datasets. The browser provides interactive 

views of data from genomic regions to annotated 

biological pathways and user-contributed collections of 

genes. (M. Goldman et al., 2015).  

Heatmap, 

Cluster 

UC Santa Cruz in the 

University of 

California system 

2015 - Current 

Web-based 

application  

Integrative 

Genomics Viewer 

(IGV) 

Integrative Genomics Viewer (IGV) is a lightweight 

visualisation tool for interactive exploration of integrated 

genomics datasets and it supports a wide range of 

genomic data including aligned sequence reads, 

mutations, copy number, RNAi screen, gene expression, 

Heatmap,  

Genomic 

coordinates,  

Broad Institute, the 

University of 

California 

2013 - Current 

Visualisation 

tool for 

integrated 

http://xmap.picr.man.ac.uk/
http://xmap.picr.man.ac.uk/
http://www.mgc.ac.cn/GenomeComp/
http://www.mgc.ac.cn/GenomeComp/
http://epiviz.cbcb.umd.edu/
http://epiviz.cbcb.umd.edu/
http://www.gitools.org/
http://www.gitools.org/
https://genome-cancer.ucsc.edu/
https://genome-cancer.ucsc.edu/
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http://software.broa

dinstitute.org/softwa

re/igv/  

methylation, and genomic annotations(Robinson et al., 

2011).  

Cluster,  

2D scatter plot 

genomics 

datasets 

Savant Genome 

Browser 

http://www.genome

savant.com/p/home/

index/     

Savant Genome Browser is a Sequence annotation, 

desktop visualisation and analysis browser for genomics 

data. This tool was primarily developed for the effective 

visualisation of large sets of high-throughput 

sequencing  data. Multiple visualisation modes enable 

the exploration of genome-based sequence, points, 

intervals, or continuous datasets. Plugins are available, 

amongst which is the WikiPathways plugin, which aids 

the navigation of the data by the integration of 

pathways(M. Fiume et al., 2010).  

Genomic 

coordinates, 

Heatmap, 

 Cluster 

The Computational 

Biology Lab at the 

University of Toronto 

(Marc Fiume, 2017). 

2010 - Current 

Desktop 

visualisation 

and analysis 

browser for 

genomics data 

PARADIGM 

http://sbenz.github.i

o/Paradigm/ 

PARADIGM is a tool which focuses on inferring patient-

specific genetic activities incorporating curated pathway 

interactions among genes and can predict the degree to 

which a pathway’s activities are altered in the patient 

using probabilistic inference. CircleMap is one of the 

PARADIGM visualisation methods that produce 

heatmaps with a circular layout (Vaske et al., 2010). 

Heatmap Charles Vaske, Steve 

Benz, University of 

California, Santa Cruz  

2010 

A factor graph 

framework for 

pathway 

inference on 

high-throughput 

genomic data 

Caleydo StratomeX 

http://caleydo.org/to

ols/stratomex/  

Caleydo StratomeX is a visual analytics framework 

prepared for the visualisation of interdependencies 

between multiple datasets. It allows exploration of 

relationships between multiple groupings and different 

datasets. It can cluster genomics data of different 

alterations and represents them as matrix heatmaps. The 

different groupings are connected by ribbons whose 

width corresponds to the number of samples shared by 

the connected clusters. Clinical data and pathway maps 

can be integrated to characterise the clusters (Lex et al., 

2012).  

Heatmap, 

 Cluster, 

 

Marc Streit, Linz, 

Alexander Lex, Nils 

Gehlenborg, Christian 

Partl, Samuel Gratzl, 

Hanspeter pfister, 

Dieter Schmalstieg, 

and Peter J. Park 

(Caleydo, 2017). 

2012 - Current 

StratomeX is a 

visual analytics 

framework for 

the analysis of 

multiple 

stratified 

datasets. 

 

Regulome Explorer 

http://explorer.cance

rregulome.org  

Regulome Explorer is a tool for the visualisation options 

include circular and linear genomic coordinates and 

networks(TCGA, 2012). TCGA takes an integrated 

approach toward a systems level understanding of 

regulatory disruptions in cancer which are intertwined 

within complex dynamical networks through a multitude 

of interactions among different types of 

molecules(GDAC, 2016). 

Heatmap, 

Genomic 

coordinates 

Institute for Systems 

Biology and MD 

Anderson Cancer 

Centre  

2016 - Current 

A tool for the 

integrative 

exploration of 

associations 

between clinical 

and molecular 

features of 

data  

Cytoscape Cytoscape is an open source software for visualising 

complex networks and integrating these with any type of 

Networks U.S. National Institute 

of General Medical 

Sciences (NIGMS) 

An open source 

software 

platform for 

http://software.broadinstitute.org/software/igv/
http://software.broadinstitute.org/software/igv/
http://software.broadinstitute.org/software/igv/
http://www.genomesavant.com/p/home/index/
http://www.genomesavant.com/p/home/index/
http://www.genomesavant.com/p/home/index/
http://sbenz.github.io/Paradigm/
http://sbenz.github.io/Paradigm/
http://caleydo.org/tools/stratomex/
http://caleydo.org/tools/stratomex/
http://explorer.cancerregulome.org/
http://explorer.cancerregulome.org/
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http://www.cytosca

pe.org  

attribute Networks Desktop data such as genomics data 

and clinical patient information. (Shannon et al., 2003).  

and National 

Resource for Network 

Biology (NRNB). 

2003 - Current 

visualising 

complex 

networks  

Ngs.plot 

 https://code.google.

com/p/ngsplot  

Ngs.plot is a tool to help understand the relationship 

between the millions of functional DNA elements and 

their protein regulators and demonstrate how they work 

in conjunction to manifest diverse phenotypes. Ngs.plot 

uses two steps to quickly mine and visualise genome 

samples, the first step is to define a region of interest and 

the second step is to plot something meaningful(Shen et 

al., 2014).  

Heatmap Peter Briggs from the 

University of 

Manchester  

supported by the 

Friedman 

Brain Institute; and 

the National Institutes 

of Health 

2014 

a quick mining 

and 

visualisation 

tool for NGS 

data 

Programming 

language is R 

and Python 

 

GDC DAVE 

(Genomic Data 

Commons Data 

Analysis, 

Visualisation, and 

Exploration) 

https://gdc.cancer.g

ov/analyze-

data/gdc-dave-tools  

GDC DAVE Tools allow users to interact intuitively with 

GDC (Genomic Data Commons) data and promote the 

development of a true cancer genomics knowledge base, 

which including the following key features: view most 

frequently mutated genes, plot high impact mutations 

using oncoGrid, perform survival analysis, visualise 

mutations for protein-coding regions, view cancer 

distribution, view top mutated genes across projects, 

view genes annotated by COCMIC, build and compare 

custom cohorts, and perform set operations (NIH, 

2017b). 

Heatmap, 

2D Scatter Plot, 

Cluster 

the National Cancer 

Institute (NCI) Centre 

for Cancer Genomics 

(CCG) from 

Maryland, United 

States. 

 

2016 - Current 

GDC Data 

Portal 

VarDict 

https://github.com/

AstraZeneca-

NGS/VarDict 

VarDict is a novel and versatile variant caller for both 

DNA- and RNA-sequencing data and it simultaneously 

calls SNA, MNV, InDels, complex and structural 

variants, expanding the detected genetic driver landscape 

of tumours (Lai et al., 2016). 

Heatmap, 

Genomic 

coordinates 

AstraZeneca which is 

in United States. 

2016 - Current 

VarDict is 

implemented in 

Perl  

DeepVariant 

https://github.com/g

oogle/deepvariant  

DeepVariant is a tool that uses the latest AI techniques to 

build a more accurate picture of a person’s genome from 

sequencing data. The tool is fed the data which is from 

millions of high-throughputs reads and fully sequenced 

genomes to a deep-learning system and painstakingly 

tweaked the parameters of the model until it learned to 

interpret sequenced data with a high level of accuracy 

(Knight, 2017). 

AI, Genomic 

coordinates,  

Heatmap 

Google Brain and 

Verily Life Science. 

2016 - Current 

Deep neural 

networks to call 

genetic variants 

in germline 

genomes. 

RNASeqBrowser RNASeqBrowser is a visualisation tool that incorporates 

and extend the function of the UCSC genome browser 

and NGS visualisation tools such as IGV (An et al., 

2015). 

Genomic 

coordinates, 

Cluster 

JA, Australian 

Government 

Department of Health;  

A visualisation 

tool that 

incorporates and 

extend the 

http://www.cytoscape.org/
http://www.cytoscape.org/
https://code.google.com/p/ngsplot
https://code.google.com/p/ngsplot
https://gdc.cancer.gov/analyze-data/gdc-dave-tools
https://gdc.cancer.gov/analyze-data/gdc-dave-tools
https://gdc.cancer.gov/analyze-data/gdc-dave-tools
https://github.com/AstraZeneca-NGS/VarDict
https://github.com/AstraZeneca-NGS/VarDict
https://github.com/AstraZeneca-NGS/VarDict
https://github.com/google/deepvariant
https://github.com/google/deepvariant
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Table 2 Tools for Visual Analytics of Genomic and Cancer Data 

3.2 QUALITATIVE STUDY ON DOMAIN EXPERTS 

To gain a better understanding of the domain user’s preferences and expectation, 

we carried out a pilot study on genomic visualisation tools with the end users who 

were cancer researchers and medical doctors. As the participants were the end user of 

the genomic data visualisation tools, they could give feedback on the effectiveness and 

usefulness of the tools. Most of the participants were very familiar with disease 

datasets and they really needed such visualisation tools in their work. This is a 

qualitative analysis where all the feedback, comments and discovery are collected and 

analysed through one-to-one interviews. Particularly, the usefulness of the software 

and how the tools assist with genomic analysis are evaluated. 

3.2.1 Prepared Tool Introduction 

The three medical visualisation tools, developed at Western Sydney University, 

can visualise cohorts of patients with childhood Acute Lymphoblastic Leukaemia 

(ALL) and individual patient’s details. The genomic data is extracted from bone 

marrow or peripheral blood specimens ethically obtained from ALL patients. Using 

various data mining strategies such as random forest deep learning algorithm, the 

combined genomic features, that best characterises the cohort of patients into chosen 

classes, are captured.  

The three tools run in the different platform but use the same dataset, which was 

the expression and genomic SNP profiles of 100 paediatric B-cell ALL patients that 

were generated using Affymetrix expression microarrays (U133A, U133A 2.0 and 

U133 Plus 2.0) and Illumina NS12 SNP microarrays, respectively. Affymetrix 

expression microarrays generate 22,277 attributes, while each Illumina SNP 

2015 - Current function UCSC 

and IGV 

Children Cancer 

Data Visualisation 

tool 

Children Cancer Data Visualisation tool can show the 

whole group of patients’ data with a 3D scatter plot and 

check a single patient’s details, zoom and rotate the 

visualisation plot, compare Gene among several patients 

and interact with users and shows the Comparison 

Visualisation between selected patients (Q. V. Nguyen et 

al., 2016) 

3D Scatter Plot,  

Heatmap, 

Cluster, 

VR 

Western Sydney 

University 

2016 - Current 

Developed by 

Java, Unity 3D 
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microarray 13,917 attributes for each patient sample. Each attribute was mapped to a 

probe of DNA (or a gene), and the value for each attribute corresponded to the 

expression levels or genotype for the gene.  

For complex problems, often many 100s of genomic features are required to 

build models that distinguish the ALL patients across possibilities. Visualising these 

results often requires 2D or 3D graphical representations of the cohort which presents 

as a ‘cloud of spots,’ each spot representing an individual patient in ‘similarity space,’ 

its location to other spots (patients) being a measure of overall similarity between the 

set of genomic features used to build the model as shown in Figure 35.  

 

Figure 35 Genomic Data Visualisation Models. 

The three novel tools allow investigators to interrogate this graphical cloud and 

identify a single individual or cluster of individuals. Further, the location of the 

selected patient(s) in the cloud will inform how the genomic features differentiate them 

from others in the cloud. The visualisation tools allow for selection of the individual 

patient genomic features and to perform the patient-to-patient comparison. Depending 

on the model criteria, patients with similar genomics as defined by a closer location 

within similarity space but who have variant clinical characteristics (e.g. pathology, 
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treatment outcome, adverse reactions etc) may be identified, providing the analyst with 

insights for how patient with similar genomics may be best treated in the future. 

The investigation scenario is that the analysts need to choose a better treatment 

method for a new patient.  

First, the analysts visualise the entire patient population in the similarity space 

to see an overview of the genetic similarity of the patient cohort where the closer 

patients are hypothetically genetically similar. The analysts might move rapidly to any 

location in the space, indicate the position of new patients in the genetic similarity 

space, customise visualisation via interaction, controllable attributes and filtering, and 

extract and picture specific features and patients within the similarity space. Then it is 

time to do patient-to-patient comparison. The tool displays concurrently the total gene 

expression and SNP data generated for each patient. Each probe set in the gene is 

represented as a dot point on the horizontal axis while the vertical position shows the 

order of the gene sorted by chromosomal order. The table includes all of the biological 

data associated with the patient. 

 From the overview of the entire genetic and biomedical information, the 

analysts can identify patterns and abnormality before exploring further. We also 

provide semantic zooming to enlarge the area of focus. The level of detail is updated 

automatically upon the information and available space. We believe understanding the 

biological differences within individual patients may influence clinical management 

decisions for those patients. 

Medical visualisation tool developed by Nguyen et al from Western Sydney 

University can run on regular personal computers, including the main features: 

 Show the whole group of patients’ data with a 3D scatter plot. The main 

view shows patients in cohort with patient’s labels on in a 3D scatterplot 

See Figure 36 A. The distances between patients in this space were 

indicative of genetic similarity.  

 The patient separation found did not agree with clinical markers (e.g., 

white blood cell count cytogenetics) that were used for prognostication 

and risk stratification.  

 In contrast, similarity spaces constructed with either the expression data 

or SNP data alone did not recover such a clear distinction. 
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 Patient-to-patient comparison view and comparison of the genes of 

interest (Think about the way you use this if you want to see how a new 

patient who was treated on a recent treatment protocol compared to a 

genomically similar patient who was treated on an older protocol) 

 Check a patient’s detail (double click on one of the patient bubble). Click 

to open a patient detail shows a patient’s Affymetrix Gene Expression 

and Illumina SNPs detail.   

 Set Microarray or SNP difference for one patient (Open a patient detail 

and find the menu under Action)   

 Zoom and rotate the visualisation plot (Alt + left mouse to zoom, Ctrl + 

left mouse to move, left mouse to rotate) 

 Turn the label on/off (the menu is under Draw Property). Rich graphical 

attributes, such as labels, axes, colours, size, shapes and visual bars, were 

also used to present clinical and background properties. The presentation 

can be adjusted by the users 

 Genes of interest’s visualisation to compare gene among several patients 

and interact with users (choose each patient you want to compare and add 

to Gene Comparison Visualisation, and then find Analysis->Show colour 

Map). This window shows the Comparison Visualisation between 

selected patients 

 Modify visualisation by changing colours, size, icons for important 

attributes 
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Figure 36 The seamless visual analysis. 

From the overview of the entire patient population in the similarity space (A); focused 

patients at a navigational stage (B); to patient-to-patient comparison view of raw data 

outputs from a data collection step, (left) Affymetrix gene expression and (right) 

Illumina SNP, both ordered to chromosomal location (C) and, finally, to the genes of 

interest view (D) (Q. V. Nguyen et al., 2014).    

3D ScatterPlot Data Visualisation (Lau et al., 2019; Q. Vinh Nguyen et al., 2018) 

on mobile devices was developed in Unity3D by Lau et al. that can run in tablets such 
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as IPAD or Android System such as Samsung tablet (Figure 37), including main 

Features: 

 Show and compare selected patients’ genomic data with heatmap plot 

 Select a group of patients whose data are similar and compare them. 

 Zoom the visualisation plots to check the patterns of a big group of 

patients or a small group of patients. 

 Show all the group of patients in a 3D scatter plot with the different 

colour based on the attribute that the user chooses.  Figure 37 shows a 

scatter plot with a different colour based on the patient’s gender. 

 The users can choose different patients one by one or a small group of 

patients at a time to compare their genomic information. Figure 3 shows 

how to choose a small group of patients 

 After users choose some patients, then they can choose gene to compare 

genomic information as shown in Figure 37b 

 The users can interact with the visualisation by zooming, rotating, 

finding a patient, choosing patients, updating gene list, and hiding or 

showing patients’ label. 

 The users can also change the attribute to show visualisation based on 

the different attribute. The default attribute is Gender. 
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Figure 37 Visualisation tool that run on mobile devices.  

An example showing the patients in the similarity space. The left figure shows a group 

of patients (circled in yellow) that are mostly relapsed (shown with glowing border).  

The user can conduct the detailed gene study of selected a non-relapsed patients 

ALL132 and other relapsed ones (ALL 57, ALL386, ALL60, ALL97, ALL28), and then 

select all the genes of interest. (b) The 2D Heatmaps illustrates the differences in 

gene expression value of ALL132 in comparison of others. 

VR Visualisation Tool that runs on Microsoft Hololens developed by Lau et al. 

is very similar to the one that runs in tablet tool (Lau et al., 2019). 

Microsoft HoloLens as shown in Figure 38 is used in this tool, which is a pair of 

mixed reality smart glasses developed by manufactured by Microsoft. HoloLens 

gained popularity for being one of the first computers running the Windows Mixed 

Reality platform under the Windows 10 operation system and it can trace its lineage 

to Kinect, and add-on for Microsoft’s Xbox gaming console that was introduced in 

2010. Main Features: 

 Zoom – Hand movement to move the hologram 

 Normal – To rotate the hologram 

 Showing ID – Display all the patient ID  

 Hiding ID – Hide all the patient ID 

 Patient On – Details information screen for patient visible 

 Patient Off – Details information screen for patient invisible 
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 Big Data – Big data set (1000 nodes) 

 Medium Data – Medium size data set (500 nodes) 

 Small Data – Original data of 100 nodes. 

 Goodbye – To exit the program. 

 

 

Figure 38 A Visualisation on mixed reality Microsoft HoloLens.  

3.2.2 Interview Feedback 

This section summarises the qualitative feedback from the five domain experts. All 

identity information of the participants has been removed excluding their genders. The 

interview form is shown in the Appendix section.  

Participant 1:  

Participant 1 tried our three tools and he thought that our visualisation tools were 

useful in capturing similarities and individual difference among patient genetics.  

Participant 1’s favourite tool is the 3D Scatter Plot Data Visualisation tool that runs on 

mobile devices because it can check information from distance. He said that the 

Medical Visualisation tool on Windows is very useful and the VR Data Visualisation 

tool on Microsoft HoloLens is potentially useful and worth to do it. 

Participant 1 also gave some comments about how to make our tools better, 

which are: i) the UI in windows version is too complex and text need to be bigger; ii) 
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in the windows version and mobile device version of tools, similarity window should 

also show all the data of each patient; iii) the VR version of the tool relies on the 

environment but has a potential future. 

Participant 2   

Participant 2 works on personalised medicine. She needs to compare one gene 

among different patients to see how a targeted drug designed for the specific gene 

affects the gene or not in her work. They do not have a much big cohort, that is why 

they need to compare their RNA data with the database from the Saint Jude hospital in 

America. And she is not familiar with disease dataset because her work does not focus 

on genomic data. 

Participant 2 tried our three tools and she thought that our visualisation tools 

were useful in capturing similarities and individual difference among patient genetics. 

She would like to use the tool to compare genes with our Heatmap graphs that are very 

popular in the medical industry in her work. She tried her favourite gene named ROS1 

and tried to compare the gene among several patients whose positions are far or close 

with each other to see the colourful Heatmaps she is familiar with. She hoped to see 

the patients’ label information in the 3D scatter plot to recognise a specific patient, and 

we do have this feature to satisfy her.  

Participant 2 also gave some comments about how to make our tools more 

friendly, which are: i) the gene should be ordered by alphabet order for finding a 

specific gene easily; ii) after choosing a gene, she hoped that the gene’s location should 

be memorized when she went back to the scroll menu again, in a way that she could 

continue to choose from the same location; iii) she is curious about the location of the 

patients and hopes to have such information or explanation in the tool. 

Participant 3  

Participant 3 is a 1st-year PhD student with a biological background and works 

on medical datasets. His research focused on medical data mining and statistics, and 

he will also do some machine learning algorithms such as random forest and SVM. He 

is very familiar with disease dataset.  

Participant 3 tried our three tools and he thought our visualisation tools were 

useful in capturing similarities and individual difference among patient genetics. But 

he would not use the tools in his work because his research topic is different. He 
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mentioned that besides general overview of the cohort, the user might be interested in 

other features since there are a lot of attributes for each patient, and the tools do show 

to the user each patient details by clicking a patient bubble. He is satisfied with this 

feature. He agreed that our visualisation tools would be useful to enable personalised 

medicine in the way to compare and identify patient among a cohort.  

Participant 3 also gave a comment about how to make our tools better, which is: 

The specific patient group, that the users might be interested in, should be highlighted 

to be found easily, for example, the closest patient, the furthest patient. 

Participant 4  

Participant 4 is a clinician and on training to be a paediatric oncologist and he is 

very familiar with disease datasets. He needs to investigate one treatment method 

affects some genes or not, if not, another treatment applies and the related genes are 

investigated again. 

Participant 4 tried our three tools and he thought our visualisation tools were 

useful in capturing similarities and individual difference among patient genetics. He 

thought our tools would be useful to compare pre-treatment to post-treatment genomic 

data for the same patient to document molecular remission. He said our tools are 

definitely potential in the future and he would like to consider using the tools when 

they are more mature. For the personalised medicine, he thought grouping patients 

based on genomic data and finding a suitable treatment accordingly in the right 

strategy would help in treatment, and also help to move to other regimens to spare 

futile therapy of toxicity. It is always a better idea to understand abstract genetic 

information in visual format. 

Participant 4 also gave some comments about how to make our tools more user-

friendly, which are: i) put all the visualisation graphs on one screen to make the tool 

more user-friendly; ii) he hopes he can compare one patient’s genomic data in different 

stages to see different effects from different treatment methods. But our current tools 

can only compare one result for one patient. 

Participant 5  

Participant 5 is a data scientist and bioinformatician. And he is involved in 

projects that attempt to solve biological questions in the cancer biology field. He deals 

with a variety of research data such as genomics, epi-genomics, transcriptomics, 
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proteomics, pharmacoomics, and cell imaging. He is very familiar with the disease 

data.  

Participant 5 tried our three tools and he thought our visualisation tools were 

useful in capturing similarities and individual difference among patient genetics. He 

thought that the tools abstracted important variables that could predict the outcome of 

treatment. Visualising the similarities is valuable for giving more deeper insight as to 

the reasons. By zooming in and out, users can visualise the distances between clusters. 

For the potential using the tools in the future, he thought our tools take out the 

complexity in the data and simplify the patterns, which is very useful. He also thought 

our tools enable clinical information to ask fundamental questions related to a patient’s 

treatment options. As an informatician to delivery and make a decision in a group, he 

mentioned our mobile device tool might be useful to carry information during travel 

and VR tool might be very useful to present information in a group.  

Participant 5 also gave some comments about how to make our tools more user-

friendly, which are: i) VR device—HoloLens is too heavy to make arms get tired from 

over-exploring the 3D space; ii) Ipad version needs to work on improving depth 

perception (the cube concept is a good idea to choose in 3D space); iii) the Ipad screen 

is slightly too small for him. 

3.3 DISCUSSION 

We analysed the feedback from the small pilot group study on genomic 

visualisation tools as described in the above section. One of them mentioned that 

genomic visualisation tools take out the complexity of the data and simplify the 

patterns, which is very useful for the current work. For the targeted medicine and 

personalised treatment research, genomic and cancer data visualisation tools have 

advantages of being able to see and explore the patients’ data in the cohort and to assist 

better decision making accordingly. 

The participants also indicated the further features they preferred to have in the 

genomic and cancer data visualisation tools. First, they would like to have all 

information on only a single window when necessary instead of jumping among 

different windows because they would like to see all the information in one screen. 

Second, more interactions are needed because users would like to add new data easily 

and see more detailed information in a few interactions. Third, AI is very attractive for 
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the prediction feature. Analysis based on AI algorithms is a trend. Fourth, VR is very 

useful to present information in a group to assist with team decision. Fifth, 

visualisation tools running in mobile devices are useful but limited on the small screen. 

And last, the different role in the medical industry uses tools in the different way, some 

like scatter plots while others like heatmaps; some like to compare only one gene 

among different patient while others like to compare several genes for only one patient 

in different treatment stage. 

In summary, genomic and cancer data visualisation tools are essential to 

facilitate decision-making for treatment methods or targeted medicine. New 

technologies have been used in recent years to create visualisation tools that can 

explore complex genomic data. Further efforts are needed to develop new tools to meet 

the changing needs of the field. 
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Chapter 4: Research Design 

Based on the knowledge and insights obtained from the structured review and 

the qualitative study that is stated in Chapter 3, we design the intelligent visualisation 

model, including choosing the suitable machine learning algorithm and the 

development tools to execute the design. This chapter describes the design adopted by 

this research to achieve the aims and objectives stated in Section 4.1 of Chapter 4. 

Section 4.2 discusses the methodology used in the study, the stages by which the 

methodology was implemented, and the research design. Section 4.3 describes the 

development process. 

4.1 AIMS AND OBJECTIVES 

For the multidimensional genomic cancer data, it is a challenge to explore them 

in an effective and meaningful way, especially combined them with machine learning 

algorithms to find the insight knowledge and get a reasonable prediction. Although 

machine learning has extraordinary predictive abilities, the machine learning models 

and the algorithms are hard to be understood and maybe even harder to be trusted, 

especially in serious industries such as the medical industry (Patrick Hall, 2017). 

Visualising machine learning models and predictive results in a meaningful way can 

interpret the complex algorithms and help clinicians, researchers and experts 

understand and trust the predictive results. This research will focus on using machine 

learning to support intelligent visualisation for the current genomic data. Machine 

learning can help to visualise data in a cohort to assist doctor’s decision, and then 

improve the lives of people facing similar genetic problems. 

The overall research aim is derived from the specific research question about 

how to utilise machine learning algorithms for improving data visualisation to present 

genomic data intelligently.  The ultimate research goal is to develop an intelligent 

visualisation prototype to utilise machine learning algorithms for presenting genomic 

data and assisting decision making effectively as well as improve the human trust on 

machine learning outputs. The visualisation will illustrate data interactively, 

insightfully and predictively. The research will choose data to train the machine 
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learning model and get reasonable predictions for selected attributes, and then visualise 

them in a cohort to assist doctors’ decision.  

4.2 METHODOLOGY 

This research is to analyse and visualise the childhood cancer genomic data with 

machine learning methods to guide personalised treatment decisions and illustrate the 

visualisations.  

To achieve the proposed goals, a task-by-task, three tasks are implemented. The 

first task is to create a model to bridge intelligent visualisation and the machine 

learning algorithms. The second task is to create a machine learning model to apply 

decision tree algorithm to genomic data. The last task is to develop multi-view 

scatterplot visualisation combined with a machine learning algorithm to illustrate 

information effectively and predictively. 

4.2.1 Bridging Data Visualisation with Machine Learning Framework 

A framework is developed in the first stage to bridge genomic data visualisation 

and machine learning algorithms. Machine learning can assist the process of data 

visualisation, meanwhile, visualisation can drive machine learning processes. 3D 

scatter plot is used for the visualisation. Scatterplot graph has quite a lot of benefits to 

present data because it allows visualising the multi-attributes with different visual 

features. 

Machine learning combined with data visualisation should have three stages: 

developing an algorithm, applying genomic data to the algorithm, and predicting new 

unlabelled data (Libbrecht & Noble, 2015). Figure 39 shows the framework of an 

intelligent visualisation and machine learning combined model. It has four parts:  data, 

machine learning model, visualisations and users. In this thesis, the users are usually 

researchers or clinicians. A training genomic dataset is used to train a machine learning 

model, the machine learning model uses Iterative Dichotomiser 3 (ID3) decision tree 

algorithm (Wilson, 2008). A statistic 3D scatterplot (Tibco, 2018) is also developed 

based on the dataset, the scatter plot can interact with both users and the machine 

learning model.  
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Figure 39 Intelligent visualisation and machine learning framework.  

The training data is used to train a machine learning model and is visualised in a 3D 

scatter plot. The users can input new patient data to machine learning model and get 

a real-time visualised prediction to assist their decisions. 

The data part phase includes two different types of data: training data and new 

patient data. Training data is used for training machine learning model with the ID3 

algorithm and drawing 3D scatter plot, while the new data is inputted to trained 

machine learning model and the model will give real-time predictions. The users 

interact with the data by inputting new patient data for prediction and add the new 

patient data to the training dataset for the future training process. 

The machine learning model uses decision tree ID3 as an algorithm and can be 

interacted with the visualisation part and users. Users can choose, expand, and fold the 

trained tree model.  The trained tree model can be visualised by a tree plot and a 3D 

scatter plot, and the prediction process and results are also visualised as a tree plot. 

The machine learning model will be introduced in more detail in the machine learning 

model section. 

The visualisation part illustrates all the patients’ data in a 3D scatter plot, the 

machine learning model in a tree plot and the real-time prediction results in another 

tree plot. The tree visualisations are used to interpret the prediction process and 

illustrate the possible choices after implementing machine learning solution. The 

machine learning model can be interacted with the 3D scatter plot by choosing 
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different branches and highlighting the related group in the 3D scatter plot. The 

statistic scatter plot shows all the patients’ data in the cohort by default, and if you 

choose a branch of the tree model, the related group of patients will start to spin.  The 

user, for example, a clinician, can input new patient data to the machine learning model 

to get prediction results in real time. The trained model and predicted results are both 

illustrated by tree plots based on the selected attributes.   

4.2.2 Machine Learning Algorithm Model 

A predictive machine learning model for the genomic data has been developed 

in the second stage. Decision tree algorithms are used to create the machine learning 

model. The model could be trained with existed data and predict the likely future 

possibilities. The decision tree models are written in C# programming language. 

Figure 40 shows a machine learning model for genomic data. The machine 

learning model for genomic data includes two parts: a batch training part and a real-

time prediction part. In the batch training part, the existing data are chosen to train the 

machine learning model. In the first stage, the ID3 (Jearanaitanakij, 2005) decision 

tree algorithm is used because it is suitable for the current genomic data prediction and 

easy to interpret (Badr Hssina, 2014). Other models will be used in the future if new 

structured data is used or new predictions are needed. The historical data is used to 

trained decision tree model. After the model is trained and a new patient data has 

arrived, real-time predictions occur and become illustrated. The prediction results are 

shown in a tree view which is part of the decision tree model to show the decision 

process. The new patient data can be added to the trained data to make the trained 

model more accurate in the future. 
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Figure 40 Machine learning model.   

Decision tree algorithm transforms raw data into rule-based decision-making 

trees. It is a tree structure in which each branch node represents a choice between a 

number of alternatives, and each leaf node represents a decision. Decision tree is 

commonly used for gaining information for the purpose of decision-making. It starts 

with a root node, which is for users to take actions. From this node, users split each 

node recursively according to the decision tree learning algorithm. The final result is 

a decision tree structure in which each branch represents a possible scenario of the 

decision and its outcome (Song & Lu, 2015). 

Decision tree learning algorithm has been successfully used in the expert systems 

in capturing knowledge. The main task performing in these systems is using inductive 

methods to the given values of attributes of an unknown object to determine 

appropriate classification according to decision tree rules. ID3 is a simple decision tree 

learning algorithm developed by Ross Quinlan(1983)  (J. R. Quinlan, 1986; R. 

Quinlan, 2018). The basic idea of the ID3 algorithm is to construct the decision tree 

by employing a top-down, greedy search through the given sets to test each attribute 

at every tree node. In order to select the attribute that is most useful for classifying the 

given sets, ID3 use a metric—information gain (Li, Lei, Zhao, Zhang, & Han, 2013). 

The ID3 algorithm begins with the original set S as the root node. On each 

iteration of the algorithm, it iterates through every unused attribute of the set S and 

calculates the entropy H(S) (or information gain IG(S) of that attribute. It then selects 
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the attribute which has the smallest entropy (or largest information gain) value. The 

set S is then split by the selected attribute to produce subsets of the data. The algorithm 

continues to recur on each subset, considering only the attributes never selected before. 

Throughout the algorithm, the decision tree is constructed with each non-terminal node 

representing the selected attribute on which the data was split, and terminal nodes 

representing the class label of the final subset of this branch. 

Entropy H(S) is a measure of the amount of uncertainty in the (data) set S (i.e. 

entropy characterises the dataset S). 
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where S is the current (data) set for which entropy is being calculated (changes every 

iteration of the ID3 algorithm). X is the set of classes in S. p(x) is the proportion of the 

number of elements in class x to the number of elements in S. When H(S)=0, the set S 

is perfectly classified (i.e. all elements in S are of the same class). In ID3, entropy is 

calculated for each remaining attribute. The attribute with the smallest entropy is used 

to split the set S on this iteration. The higher the entropy, the higher the potential to 

improve the classification here. 

Information gain IG(A) is the measure of the difference in entropy from before 

to after the set S is split on an attribute A. In other words, how much uncertainty in S 

was reduced after the splitting set S on attribute A. 
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where H(S) is the Entropy of set S, T is the subsets created from the splitting set S by 

attribute A such that 
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where p(t) is the proportion of the number of elements in t to the number of elements 

in set S, H(t) is the entropy of subset. In ID3, information gain can be calculated 

(instead of entropy) for each remaining attribute. The attribute with the largest 

information gain is used to split the set S on this iteration 
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4.2.3 Visualisation Prototype 

Interactive visualisation prototype is developed in the third stage to link the 

machine learning with visual analytics. Scatter plots are used in this stage to illustrate 

the data in this implementation. Visualising genomic data exploration process is 

incorporated into machine learning techniques to enable users to steer and drive the 

computational algorithms. User interactions with the system are designed and 

implemented as mechanisms by which users can augment the visualisation parameters, 

filter data, and other direct changes to the application. 

Unity3D is used to implement the prototype in this stage, and C# is chosen in 

the Unity3D to develop machine learning algorithms. Unity3D is a tool to create games 

originally, and now are widely used to visualise big datasets for its ability to effectively 

visualise more than two or three dimensions and virtual reality technologies. At the 

moment, Unity 3D appears to be the most used integrated development environment 

(IDE) in hyper-dimensional data exploration, the nature of virtual reality data 

visualisation, and the ability to export application to mobile devices. C# is one of the 

unity 3D scripting languages which also includes basic AI libraries. 

The development process should include the following steps. First, the 

visualisation incorporates a usability study to evaluate the effectiveness and feasibility 

of the proposed framework, within a real-world application. Second, the visualisation 

prototype uses machine learning methods to enhance data visualisation that can 

intelligently display the genomic information predictively and on screens effectively. 

Third, the visualisation prototype also includes the interaction to allow transitioning 

between various views on the data. By looking at the information in various 

perspectives, we can gain better understand the relationships within the patients and to 

help improve the understanding and information conveyed.  The details of the 

development process are described in Section 4.3. 

4.3 DEVELOPMENT PROCESS 

4.3.1 Design Evolution 

Before Unity3D is used to develop our prototype, R is used to develop our demo 

to analyse the feasibility. R is a free software environment for statistical computing 

and graphics. It compiles and runs on a wide variety of UNIX platforms, Windows and 
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MacOS. A structured set of 101 patient data Rhabdomyosarcoma (RMS) dataset is 

used as input to our demo.  

Step 1 - Use R to show basic 3D scatter plot: 

The library “plotly” in R (https://plot.ly/r/) is used to draw a 3D scatter plot as 

shown in Figure 41. The left scatter plot used colour to show different “Histology” 

which are “ARMS” and “ERMS”. The right scatter plot used colour to show patient 

“status” which are “alive” and “dead from disease”.  From the scatter plot, we can see 

that the attribute “Histology” divided patients in very clear two groups.   As a result, 

“Histology” is chosen as one of our decision tree attributes. 

 

Figure 41 Scatter Plot with R. 

The left scatter plot used colour to show different “Histology” which are “ARMS” and 

“ERMS”. The right scatter plot used colour to show patient “status” which are “alive” 

and “dead from disease” 

Step 2 - Draw decision tree in R and by manual: 

The library “rpart” in R to draw our decision tree. “Status” is chosen as the 

prediction attribute and “Histology”, “Sex”, “AgeStatus” are chosen as input attrubutes 

to draw a decision tree as shown in Figure 42. And then another decision tree is 

manually drawn as shown in Figure 43. The two decision trees are then compared and 

the numbers on each node  are same. 
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Figure 42 Decision tree drawn in R 

 

 

Figure 43 Decision tree drawn by manual 
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The users can choose different attributes to draw the tree, the Figure 44 is another 

tree that uses Age as the node to split the dataset. 

 

Figure 44 Tree used Age as node 

Step 3 - Draw an animated 3D scatter plot in R: 

The library “plot_ly” is used to draw another animated 3D scatter plot as shown 

in Figure 45. The colour red and blue is used to stand for “Histology” which are 

“ARMS” and “ERMS”. The shapes square and circle are used to stand for “Sex” which 

are “male” and “female”.    

 

Figure 45 animated 3D scatter plot drawn by R 



Using Machine Learning to Support Better and Intelligent Visualisation for Genomic Data 83 

 

Step 4 - Draw 3D scatter plot in Unity 3D: 

At last, Unity3D is tried to draw the 3D scatter plot as shown in Figure 46. Unity 

3D is a cross-platform game engine developed by Unity Technologies, and it is the 

creator of the world’s most widely-used real-time 3D (RT3D) development platform, 

giving content creators around the world the tools to create rich, interactive 2D, 3D, 

VR and AR experiences. In our prototype, the colour red and blue is used to stand for 

“Histology” which are “ARMS” and “ERMS”. The shape cube and sphere are used to 

stand for “Sex” which are “male” and “female”.    

 

Figure 46 3D scatter plot drawn by Unity3D 

Step 5 - Design User Interface (UI) 

From step 1 to 4, it can be found that there are clear patterns in the data, but the 

boundaries for delineating them are not obvious. Finding patterns in data is where 

machine learning comes in, machine learning methods use statistical learning to 

identify boundaries.  A User Interface (UI) is drawn by manual as shown in Figure 47. 

The visualisation prototype is able to change their views at any given point to display 

the information in a more relevant approach for the application as needed. Scatter plots 
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will be used in the visualisation prototype. User interactions are designed and 

implemented in this visualisation prototype to augment the visualisation parameters, 

and filter data and other direct changes to the application. In addition, user interactions 

for machine learning are also designed to adapt the predictive machine learning model. 

 

Figure 47 An example of manual UI design 

For the visualisation, users can choose a decision tree node to show the specific 

group of data in highlighted. And also choose a visualisation feature to show them 

such as colour, size, shape, etc. The visualisation prototype process is shown in Figure 

48, and the final version is Figure 39. 

 

Figure 48 A visualisation process, the final version is shown in Figure 39 
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4.3.2 ID3 - A Decision Tree Algorithm 

The machine learning model will use the decision tree as the algorithm in the 

first stage because the decision tree as tree-based algorithm empowers the predictive 

model with high accuracy, stability and ease of interpretation. The machine learning 

model is trained by the existed genomic data independently of all assumption and finds 

out patterns hidden in data, and then, when new data comes, the model will give 

predictive results. Predictive power is the key of the machine learning model which is 

different to traditional statistical models. 

For inductive learning, decision tree learning is attractive for three reasons: i) 

good generalisation for unobserved instance, ii) efficient in computation, and iii) 

rendering the classification process self-evident. The training data may contain errors. 

This can be dealt with pruning techniques that this thesis does not cover. This is 

because the used datasets are accurate in our implementation. 

The three widely used decision tree learning algorithms are ID3 (J. R. Quinlan, 

1986; R. Quinlan, 2018), CART (a Classification And Regression Tree) (Breiman, 

Friedman, Olshen, & Stone, 1984) and C4.5 (J. R. Quinlan, 1986; R. Quinlan, 2018). 

They have slight differences as shown in Table 3 (Sonia Singh, 2014). ID3 is chosen 

as our decision tree model because pruning is not needed as all the data is accurate and 

no missing values are in our datasets.  

 
 Splitting Criteria Attribute type Missing Values Pruning Strategy Outlier Detection 

ID3 Information Gain Handles only 

Categorical 

value 

Do not handle 

missing values 

No pruning is 

done 

Susceptible to 

outliers 

CART Towing Criteria Handles both 

Categorical & 

Numeric value 

Handle missing 

values 

Cost-Complexity 

pruning is used 

Can handle Outliers 

C4.5 Gain Ratio Handles both 

Categorical & 

Numeric vale 

Handle missing 

vales 

Error Based 

pruning is used 

Susceptible to 

outliers 

Table 3 Differences of decision tree model  

(Sonia Singh, 2014). 
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Chapter 5: Case Studies 

We developed our intelligent visualisation prototype based on the structured and 

qualitative studies stated in Chapter 3, especially the domain users’ feedback on the 

genomic data visualisation tool preliminary study. This chapter also illustrates the 

models and the intelligent visualisations in Chapter 4 through the two case studies. In 

this prototype, we focused on visualising, framing and evaluating machine learning 

model and the prediction process. Intelligent data visualisation tools are needed to find 

the relationship between genomic data and diseases and aid in the process of targeted 

and personalised therapy. The current statistical analysis methods are not enough for 

achieving better data insights.  Application of machine learning and data visualisation 

has become more attractive in genomic data analytics. Intelligent visualisation 

combined with machine learning algorithms for genomic data is a big challenge and is 

becoming a new trend in the genomic visualisation evolution. Our prototype illustrates 

not only traditional genomic data visualisation but also the machine learning model 

and the prediction process. We put all the visualisations on only one screen and added 

interactions among different visualisations.   

We applied two genomic cancer datasets to our prototype and stated in the 

following two case studies: RMS dataset visualisation in (section 5.1) and ALL dataset 

visualisation in (Section 5.2).  

5.1 CASE STUDY 1—RMS DATASET 

We used a structured set of 101 patients’ data Rhabdomyosarcoma (RMS) 

dataset from the Westmead Children Hospital. RMS is the most common soft tissue 

childhood sarcoma with an incidence rate of 17 new cases per year in Australia 

(Wachtel et al., 2006). The two major histological subtypes of RMS are alveolar 

(ARMS) and embryonal (ERMS). ERMS patients have a more positive prognosis. This 

difference in prognosis has led researchers to use molecular markers with the aim of 

developing more accurate classifiers of RMS subtypes. The prototype is developed 

with Unity3D (Technologies, 2018) and C# programming language is chosen in 

Unity3D to develop machine learning algorithms. We use SQLite (SQLite, 2018) to 

manage the training data. As we only have 101 patient data and they are certain to be 
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accurate, we used all of them to train our decision tree model and then show all of 

them in a 3D scatter plot. For example, when a new patient genomic data comes, we 

wanted to predict the patient status as either alive or dead based on three attributes: 

Histology, Sex, and AgeStatus. In  

Figure 49，we visualised the trained machine learning model in a tree-plot on 

the left panel, a 3D scatter plot for all RMS patients in the middle, and the real-time 

prediction results on the top right in another tree structure. The users (e.g. clinicians or 

researchers) can interact between the tree model and scatter plot, input new patient 

data on the bottom fields and get the prediction results in another tree plot on the top 

right. We have not included an operation of adding new patient data to re-train the 

machine learning model in this prototype yet. 

In the 3D scatter plot, the red colour patients are ARMS patients while the blue 

ones are ERMS patients. The capsules stand for female patients while the cube shape 

ones stand for male patients. The patients with the yellow halo are dead while the 

patients without halo are alive. This 3D scatter plot is connected with the machine 

learning model tree on the left. When the user chooses a branch of the machine learning 

tree model, the related group of patients’ shapes spin. For example, if the user wants 

to highlight the group of patients with Histology as “ERMS”, Sex as “male”, and 

AgeStatus as “Favouriable”, then the user clicks the related branch in the tree plot (in 

part A), a group of blue cubes are spinning in the 3D scatter plot. If the user chooses a 

branch in the tree plot with Histology as “ARMS”, Sex as “female”, and AgeStatus as 

“Unfavouriable”, then a group of red capsules will spin in the 3D scatter plot. The user 

can also choose the father branch ERMS to spin all the blue colour patients. 
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Figure 49 Visualisation Illustrates the machine learning model, 3D scatter plot, input 

fields and the real-time prediction result for RMS patient dataset.  

A → Machine learning model tree. When a branch is selected, the related group of 

patients in B will spin. B → 3D scatter plot for 101 RMS patients. The Red colour 

patients are ARMS patients while the blue ones are ERMS patients. The capsule 

shapes stand for female patients while the cube shape ones stand for male patients. 

The patients with a yellow halo are dead while the one without halo are survived. C→ 

New patient data input fields. We choose three attributes which are Histology, Sex, 

and AgeStatus. Choose the values as the new patient data such as “ARMS”, “Male”, 

“favoriable”, when the button “Decide!” is clicked, the real-time result is shown on D, 

in this case, the real-time prediction result is green indicating “True” which means the 

patient would survive. 

For the machine learning prediction process and results, we illustrate them on 

the right top section D part. For example, in this prototype part C, we choose the values 

“ARMS” for Histology, “Male” for Sex, and “favoriable” for AgeStatus as the new 

patient data attributes. when the button “Decide!” is clicked, the real-time result is 

shown. In this case, the real-time prediction result is green indicating “True” which 
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means the patient would survive. If you chose the values “ARMS” for Histology, 

“Male” for Sex, and “unfavoriable” for AgeStatus as the new patient data the 

predictive result is red indicating “False”, then the patient would die. The users can 

choose to show the patient ID or not. In this case study  

Figure 49, we chose not to show the patient ID, and we will choose to show 

patient ID in the next case study. 

In this case study, the decision tree shown in part A was trained by all the patient 

data. They are all real, accurate and can all fit into the machine learning model. Each 

branch node represents a choice between a number of alternatives and each leaf node 

represents a decision. This decision tree fitted all the training examples and is fully 

grown to give 100% accuracy on that data. But when we checked the decision tree on 

another dataset, not 100% data was fit to the decision tree as happened in case study2.  

5.2 CASE STUDY 2—ALL DATASET 

We applied another structured dataset of the genomic expression and genomic 

profiles of paediatric B-cell ALL patients treated at the Children’s Hospital at 

Westmead to our visualisation prototype. The expression and genomic SNP profiles 

of pediatric B-cell ALL patients were generated using Affymetrix expression 

microarrays (U133A, U133A 2.0, and U133 Plus 2.0) and Illumina NS12 SNP 

microarrays, respectively (Q. V. Nguyen et al., 2014). 

For example, in a scenario, as shown in Figure 50，when a new patient genomic 

data comes, we want to predict whether the patient status Relapsed or Not Relapsed 

based on three attributes: Treatment, Gender, and Protocol. We visualised the trained 

machine learning model in a tree plot on the left, 3D scatter plot for ALL patients in 

the middle with patient ID label (or identification) on, and the real-time prediction 

results on the top right in another tree plot. The users can interact between the tree 

model and scatter plot, input new patient data on the bottom fields and get the real-

time prediction results in another tree plot on the top right.  
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Figure 50 Visualisation Illustrates the machine learning model, 3D scatter plot, input 

fields and the real-time prediction result for ALL patient dataset.  

The red colour patients used treat method “Chemotherapy”, the blue ones used treat 

method “NULL” and the green ones used treat method “BMT”. The capsule shapes 

stand for female patients while the cube shape ones stand for male patients. The 

patient with a yellow halo is relapsed while the one without halo is not relapsed. When 

a branch in the tree on the left side is chosen, the related group of patients in the 

3Dscatter plot will spin. For prediction, we choose three attributes which are Treat 

Method, Gender, and Protocol. Choose the values “Chemotherapy”, “Male”, and 

“Protocol” as the new patient data, when the button “Decide!” is clicked, the real-time 

result is shown on the top right tree, in this case, the real-time prediction result is red 

“False” which means the patient would relapse. 

In the 3D scatter plot, the red colour patients used treatment method 

“Chemotherapy”, the blue colour patients used treatment method “NULL”, and the 

green ones used Bone Marrow Transplantation (BMT) treatment method. The capsule 

shapes stand for female patients while the cube shape ones stand for male patients. The 

patients with the yellow halo are relapsed and the ones without halo are not relapsed. 

We also showed patient label beside each patient in this visualisation. This 3D scatter 
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plot is connected with the machine learning model tree on the left. When the user 

chooses a branch of the machine learning tree model, the related group of patients’ 

shapes spin. For example, if the user wants to highlight the group of patients with 

Treatment Method as “NULL”, Gender as “female”, and Protocol as “Study8”, then 

the user clicks the related branch in the tree plot, a group of blue cubes will spin in the 

3D scatter plot. If the user chooses a branch in the tree plot with the treat method as 

“NULL”, Protocol as “Study 8”, then a group of blue patients including cubes and 

capsules are spinning in the 3D scatter plot.  The users can identify that there are only 

several relapsed (with halo) patients in this group. When the users select the treatment 

method as “Chemotherapy” branch in the left tree plot, the related red colour patients 

would spin. In this group, more patients were relapsed indicating with the yellow halo. 

The users then can choose the child branch such as the female group to be highlighted 

as being spun to find the pattern in this group. 

For the machine learning prediction process and results, we illustrate them on 

the top right part with another tree plot. For example, in the bottom part of this 

prototype, we chose the values “BMT” for Treat Method, “Male” for Gender, and 

“study8” for Protocol as the new patient data values. When the button “Decide!” is 

clicked, the real-time result gets shown. In this case, the real-time prediction result is 

red indicating “False”, signifying the patient would relapse.  If you chose the values 

“Chemotherapy” for Treat Method, “Female” for Gender, and “study8” for Protocol 

as the new patient data values, the predictive result is green indicating “True”, 

signifying the patient would not relapse. In this case study we choose to show patient 

ID in green colour beside the patient cube or capsule 3D shapes. 

In this case study, the decision tree is trained by all the patient data.  The data 

are all real and accurate, but some data is not fit to the machine learning model, which 

ends up less accurate decision tree. The overfitting data is caused by two major 

situations which are the presence of noise and lack of representative instances. In this 

case, the decision tree avoided the overfitting by pruning sections of the tree that 

provide little power to classify instances. Pruning reduces the complexity of the final 

classifier and improves predictive accuracy by reduction of overfitting.  Moreover, the 

complexity of the model structure for all the patient data will decide the machine 

learning model tree’s structure and make the tree plot different. 

  





Using Machine Learning to Support Better and Intelligent Visualisation for Genomic Data 93 

 

Chapter 6: Discussion, Conclusion and 

Future Work 

6.1 DISCUSSION 

Genomic research is critical to progress against cancer. By the study of cancer 

genomes, the abnormalities in genes has been revealed and drive the development and 

growth of many types of cancer. Genomic and cancer data visualisation tools can assist 

to improve our understanding of the biology of cancer and lead to new methods of 

diagnosing and treating the disease. Over the past decade, large-scale research projects 

have begun to survey and catalogue the genomic changes associated with a number of 

types of cancer which have revealed unexpected genetic similarities across different 

types of tumours. For instance, mutations in the HER2 gene (distinct from 

amplifications of this gene, for which therapies have been developed for breast, 

esophageal, and gastric cancers) have been found in a number of cancers, including 

breast, bladder, pancreatic, and ovarian (NIH, 2017a).  

The cancer genomics research field is rapidly evolving in parallel with advances 

in high-throughput genomics technologies. This evolution of the field requires 

continuous advancement in visualisation techniques and tools.  As this rapid scientific 

evolution continues, cancer researchers are highly dependent on computational 

management, analysis and visualisation of data. The conventional genomic and cancer 

data visualisation tools are two-dimensional and present data by changing with the 

creative use of colour and size, combination of space and time, and advanced computer 

graphics. 2D scatter plot, networks, heatmaps, and genomic coordinates are the 

traditional visualisation graphs used for genomic and cancer data. Most visualisation 

tools have these four visualisation methods, for example, IGV supports all the four 

visualisation methods. 

Genomic and cancer data visualisation is entering a new era with emerging 

sources of artificial intelligence and new visual environment equipment such as 

VR/AR/Immersive big screen and mobile devices. New technologies and evolving 

cognitive framework are opening new horizons to let data visualisation getting more 

accurate and contextual. VR and related technologies have been adopted in the 
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healthcare industry. Medical researchers have been exploring ways to create 3D 

models of patients’ internal organs using VR since the 1990s. Recently, VR and related 

technologies are used to plan complex operations, reduce anxiety in cancer patients, 

and help patients overcome balance and mobility problems resulting from stroke or 

head injury. Virtual reality and augmented reality are primarily considered a medium 

for delivering entertainment to offer intriguing possibility of letting us step inside the 

data. 3D vision instantly broadens the available canvas and interaction become more 

intuitive as we can reach out to touch and manipulate what is shown to us. VR 

environment is expected to bring a revolution in genomic data visualisation as one 

could integrate meta-genomic data in virtual worlds.  Approaching the problem from 

a different angle, VR devices such as Google Glass, HoloLens and Magic Leap offer 

an augmented reality experience which can facilitate the learning process of the 

biological systems because it builds on exploratory learning. 

Genomic and cancer data visualisation tools are essential to facilitate decision-

making for the treatment methods or targeted medicine. New technologies have been 

used in recent years to create visualisation tools that can explore complex genomic 

data. Further efforts are needed to develop new tools to meet the changing needs of the 

field. 

6.2 CONCLUSION 

Personalised medicine refers to diagnosis and treatment based on a person’s 

entire DNA sequence. Variants in the DNA sequence determine the differences 

between individuals and differences between types of cells such as tumour cells and 

non-tumour cells. Genomic and cancer data visualisation tools can assist in improving 

our understanding of the study of cancer and lead to new methods of diagnosing and 

treating the disease. Personalised genomic cancer medicine uses the latest genome 

sequencing to look at the genetics of cancer rather than treating it based on location to 

allow us to understand inherited cancer risk and find more effective treatments for 

people with cancer (Stevens & Rodriguez, 2015).  

AI is playing an integral role in the evolution of the field of genomics. Genomics 

is closely related to precision medicine whose market size projected to reach $87 

billion by 2023 (Insights, 2016), the field of personalised medicine is an approach to 

patient care that encompasses genetics, behaviours and environment with a goal of 
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implementing a patient or population specific treatment intervention in contrast to a 

one-size-fits-all approach. AI and machine learning have applied in genomics for 

analysing genome sequencing, gene editing, clinical workflow and direct-to-consumer 

genomics. Future applications of machine learning in the field of genomics are diverse 

and many potentially contribution to the development of patient or population-specific 

pharmaceutical drugs to look at the role of genetics in the context of how an individual 

responds to drugs (Sennaar, 2018). While the field is still quite new, there is evidence 

of research involving machine learning. For example, Tacrolimus is regarded as the 

first study that applied machine learning models in renal transplant patients. 

Tacrolimus is commonly administered to patients following a solid organ 

transplantation to prevent “acute rejection” of the new organ (Tang et al., 2017).  

This thesis combines AI and visualisation together to assist personalised 

genomic data analysis, enabling by i) a systematic review of the visualisation tools, ii) 

a qualitative review with a group of domain experts and iii) an intelligent visualisation 

prototype.  

We reviewed methods for genomic data visualisation including traditional 

approaches such as scatter plots, heatmaps, coordinates and network, as well as 

emerging technologies such as AI and VR; we also compare genomic data 

visualisation tools by time and analyse the evolution of visualising genomic data. We 

carried out an expert evaluation and analysed the experts’ feedback about the usability 

of genomic data visualisation tools as well. The preliminary qualitative evaluation with 

domain experts is for evaluating the effectiveness and domain view-points of three 

genomic visualisation tools. 

We have described our new visualisation prototype that not only shows the entire 

patient population in traditional 3D scatter plot but also illustrates, frames and 

evaluates a machine learning model. The visualisation links the machine learning 

model with the 3D scatter plot and gives real-time predictions to assist researchers or 

clinicians’ decisions. The new visualisation tool can interpret the machine learning 

model to researchers or clinicians who are not experts in predictive mathematics 

algorithms, which makes the genomic data visualisation and decision-making 

procedure more reliable for them.  Genomic and cancer data visualisation tools are 

essential to facilitate decision-making for the treatment methods or targeted medicine. 
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Our prototype contributes a new way for visual analytics to visualise, understand, 

evaluate, frame machine learning models and the prediction results.  

6.3 FUTURE WORK 

In the future, we will expand the machine learning algorithm to others types such 

as neural network and random forest based on the dataset features, and then illustrate 

these machine learning models in visualisation tools to interpret, frame and evaluate 

the complex machine learning models. As a result, the clinicians and researchers would 

read their dataset visualisation and predictive decision model at the same time to make 

the visualisation tools more reliable and trustable. We have not included adding new 

patient data to re-train the machine learning model yet, and we will add this feature in 

the future. The systematic analysis and a formal evaluation will also be carried out in 

the future. 

6.4 PUBLICATIONS 

This thesis has contributed to the following peer-reviewed journal and 

conference publications 

 

Z Qu, CW Lau, QV Nguyen, Y Zhou, DR Catchpoole (2019). Visual Analytics of 

Genomic and Cancer Data: A Systematic Review. Cancer Informatics, vol 18, 

SAGE, pp. 1-18, doi: 10.1177/1176935119835546. 

 

Z Qu, Y Zhou, QV Nguyen, DR Catchpoole (2019). Using Visualization to Illustrate 

Machine Learning Models for Genomic Data. In Proceedings of the Australasian 

Computer Science Week Multi-conference, Sydney, NSW, Australia, ACM, doi: 

10.1145/3290688.3290719 

 

CW Lau, QV Nguyen, Z Qu, S Simoff, D Catchpoole (2019).  Immersive 

Intelligence Genomic Data Visualisation. In Proceedings of the Australasian 

Computer Science Week Multi-conference, Sydney, NSW, Australia, ACM, doi: 

10.1145/3290688.3290722 

 

QV Nguyen, Z Qu, ML Huang, CW Lau, S Simoff, DR Catchpoole (2018). A 

Mobile Tool for Interactive Visualisation of Genomics Data. In Proceedings of the 

9th International Conference on Information Technology in Medicine and Education, 

IEEE, pp. 688-697. 
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Appendix A: Interview Form 

Data Visualisation Tools Feed back 
 

Your Name:                                                                           Interview Date: 

------------------------------------------------------------------------------------------------------

- 

 

1. Can you please give a little background about your research work.  Are you 

familiar with the disease dataset? 

 

 

2. Are the visualisation tools useful in capturing similarities between patient 

genetics? Can you please give more information on your opinion. 

 

 

3. Are the visualisation tools useful in capturing individual differences and 

making patient to patient comparisons? Would you like to give more feedback 

on the scenarios of the application in your work? 
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4. What do you think about the potential/usefulness of each tool? Would you 

apply the visualisation tools into your work or research to support your 

decisions? 

 

 

5. In a bigger ambition, would you think the visualisation tool is useful to enable 

personalised medicine? In which way? How would the visualisation tools help 

researchers/medical doctors to make more sense of the data and make better 

decisions? 

 

 

 

6. Are there any other comments on the visualisation tools? 
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