4,379 research outputs found

    Efficient Constellation-Based Map-Merging for Semantic SLAM

    Full text link
    Data association in SLAM is fundamentally challenging, and handling ambiguity well is crucial to achieve robust operation in real-world environments. When ambiguous measurements arise, conservatism often mandates that the measurement is discarded or a new landmark is initialized rather than risking an incorrect association. To address the inevitable `duplicate' landmarks that arise, we present an efficient map-merging framework to detect duplicate constellations of landmarks, providing a high-confidence loop-closure mechanism well-suited for object-level SLAM. This approach uses an incrementally-computable approximation of landmark uncertainty that only depends on local information in the SLAM graph, avoiding expensive recovery of the full system covariance matrix. This enables a search based on geometric consistency (GC) (rather than full joint compatibility (JC)) that inexpensively reduces the search space to a handful of `best' hypotheses. Furthermore, we reformulate the commonly-used interpretation tree to allow for more efficient integration of clique-based pairwise compatibility, accelerating the branch-and-bound max-cardinality search. Our method is demonstrated to match the performance of full JC methods at significantly-reduced computational cost, facilitating robust object-based loop-closure over large SLAM problems.Comment: Accepted to IEEE International Conference on Robotics and Automation (ICRA) 201

    Visually Augmented Navigation for Autonomous Underwater Vehicles

    Get PDF
    As autonomous underwater vehicles (AUVs) are becoming routinely used in an exploratory context for ocean science, the goal of visually augmented navigation (VAN) is to improve the near-seafloor navigation precision of such vehicles without imposing the burden of having to deploy additional infrastructure. This is in contrast to traditional acoustic long baseline navigation techniques, which require the deployment, calibration, and eventual recovery of a transponder network. To achieve this goal, VAN is formulated within a vision-based simultaneous localization and mapping (SLAM) framework that exploits the systems-level complementary aspects of a camera and strap-down sensor suite. The result is an environmentally based navigation technique robust to the peculiarities of low-overlap underwater imagery. The method employs a view-based representation where camera-derived relative-pose measurements provide spatial constraints, which enforce trajectory consistency and also serve as a mechanism for loop closure, allowing for error growth to be independent of time for revisited imagery. This article outlines the multisensor VAN framework and demonstrates it to have compelling advantages over a purely vision-only approach by: 1) improving the robustness of low-overlap underwater image registration; 2) setting the free gauge scale; and 3) allowing for a disconnected camera-constraint topology.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86054/1/reustice-16.pd

    C-blox: A Scalable and Consistent TSDF-based Dense Mapping Approach

    Full text link
    In many applications, maintaining a consistent dense map of the environment is key to enabling robotic platforms to perform higher level decision making. Several works have addressed the challenge of creating precise dense 3D maps from visual sensors providing depth information. However, during operation over longer missions, reconstructions can easily become inconsistent due to accumulated camera tracking error and delayed loop closure. Without explicitly addressing the problem of map consistency, recovery from such distortions tends to be difficult. We present a novel system for dense 3D mapping which addresses the challenge of building consistent maps while dealing with scalability. Central to our approach is the representation of the environment as a collection of overlapping TSDF subvolumes. These subvolumes are localized through feature-based camera tracking and bundle adjustment. Our main contribution is a pipeline for identifying stable regions in the map, and to fuse the contributing subvolumes. This approach allows us to reduce map growth while still maintaining consistency. We demonstrate the proposed system on a publicly available dataset and simulation engine, and demonstrate the efficacy of the proposed approach for building consistent and scalable maps. Finally we demonstrate our approach running in real-time on-board a lightweight MAV.Comment: 8 pages, 5 figures, conferenc

    Large-area visually augmented navigation for autonomous underwater vehicles

    Get PDF
    Submitted to the Joint Program in Applied Ocean Science & Engineering in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution June 2005This thesis describes a vision-based, large-area, simultaneous localization and mapping (SLAM) algorithm that respects the low-overlap imagery constraints typical of autonomous underwater vehicles (AUVs) while exploiting the inertial sensor information that is routinely available on such platforms. We adopt a systems-level approach exploiting the complementary aspects of inertial sensing and visual perception from a calibrated pose-instrumented platform. This systems-level strategy yields a robust solution to underwater imaging that overcomes many of the unique challenges of a marine environment (e.g., unstructured terrain, low-overlap imagery, moving light source). Our large-area SLAM algorithm recursively incorporates relative-pose constraints using a view-based representation that exploits exact sparsity in the Gaussian canonical form. This sparsity allows for efficient O(n) update complexity in the number of images composing the view-based map by utilizing recent multilevel relaxation techniques. We show that our algorithmic formulation is inherently sparse unlike other feature-based canonical SLAM algorithms, which impose sparseness via pruning approximations. In particular, we investigate the sparsification methodology employed by sparse extended information filters (SEIFs) and offer new insight as to why, and how, its approximation can lead to inconsistencies in the estimated state errors. Lastly, we present a novel algorithm for efficiently extracting consistent marginal covariances useful for data association from the information matrix. In summary, this thesis advances the current state-of-the-art in underwater visual navigation by demonstrating end-to-end automatic processing of the largest visually navigated dataset to date using data collected from a survey of the RMS Titanic (path length over 3 km and 3100 m2 of mapped area). This accomplishment embodies the summed contributions of this thesis to several current SLAM research issues including scalability, 6 degree of freedom motion, unstructured environments, and visual perception.This work was funded in part by the CenSSIS ERC of the National Science Foundation under grant EEC-9986821, in part by the Woods Hole Oceanographic Institution through a grant from the Penzance Foundation, and in part by a NDSEG Fellowship awarded through the Department of Defense

    Exactly Sparse Delayed-State Filters for View-Based SLAM

    Get PDF
    This paper reports the novel insight that the simultaneous localization and mapping (SLAM) information matrix is exactly sparse in a delayed-state framework. Such a framework is used in view-based representations of the environment that rely upon scan-matching raw sensor data to obtain virtual observations of robot motion with respect to a place it has previously been. The exact sparseness of the delayed-state information matrix is in contrast to other recent feature-based SLAM information algorithms, such as sparse extended information filter or thin junction-tree filter, since these methods have to make approximations in order to force the feature-based SLAM information matrix to be sparse. The benefit of the exact sparsity of the delayed-state framework is that it allows one to take advantage of the information space parameterization without incurring any sparse approximation error. Therefore, it can produce equivalent results to the full-covariance solution. The approach is validated experimentally using monocular imagery for two datasets: a test-tank experiment with ground truth, and a remotely operated vehicle survey of the RMS Titanic.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/86062/1/reustice-25.pd

    Implementation of Real-Time Simultaneous Localization and Mapping with Particle Filter

    Get PDF
    The goal of this thesis is to use Particle Filters to Simultaneously Localize a mobile robot in an unknown environment and produce an accurate Map. The theory behind Monte Carlo Localization and Occupancy Grid Maps is introduced and compared with improvements to the Particle Filter such as the Shared Gridmaps and Variance Sampler. A Particle Filter algorithm is developed to use sonar measurements to create occupancy maps, and inertial sensors and wheel encoders to update robot's odometry. The Algorithm is applied to a four-wheel robot in an indoor environment with hallways and is successful in creating detailed maps of the test location and accurate estimate of the robot's state

    Simultaneous localisation and mapping: A stereo vision based approach

    Get PDF
    With limited dynamic range and poor noise performance, cameras still pose considerable challenges in the application of range sensors in the context of robotic navigation, especially in the implementation of Simultaneous Localisation and Mapping (SLAM) with sparse features. This paper presents a combination of methods in solving the SLAM problem in a constricted indoor environment using small baseline stereo vision. Main contributions include a feature selection and tracking algorithm, a stereo noise filter, a robust feature validation algorithm and a multiple hypotheses adaptive window positioning method in 'closing the loop'. These methods take a novel approach in that information from the image processing and robotic navigation domains are used in tandem to augment each other. Experimental results including a real-time implementation in an office-like environment are also presented. © 2006 IEEE
    • …
    corecore