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Abstract - With limited dynamic range and poor noise
performance, cameras still pose considerable challenges in the
application of range sensors in the context of robotic navigation,
especially in the implementation of Simultaneous Localisation
and Mapping (SLAM) with sparse features. This paper presents
a combination of methods in solving the SLAM problem in a
constricted indoor environment using small baseline stereo
vision. Main contributions include a feature selection and
tracking algorithm, a stereo noise filter, a robust feature
validation algorithm and a multiple hypotheses adaptive window
positioning method in 'closing the loop'. These methods take a
novel approach in that information from the image processing
and robotic navigation domains are used in tandem to augment
each other. Experimental results including a real-time
implementation in an office-like environment are also presented.

Index Terms - SLAM, KLT, Loop closure, Stereo vision.

I. INTRODUCTION

There have been various attempts in using cameras as
range sensors in robotic navigation. They in most cases fall in
to two categories, namely in obstacle detection[1, 2] and in
solving localization and mapping problem[3, 4]. In SLAM
there is a wide and diverse range of implementations. From
active stereo vision [5], static binocular and trinocular vision
[6] to single camera bearing only SLAM[7]. The latter not
used as a range sensor in the strict sense.

The limited dynamic ranges in current CCD imagers make
them vulnerable in outdoors. In an indoor environment with
more control over lighting conditions, it is possible to push
further the state of the art in robotic navigation with these
sensors. In the onset a feature based SLAM implementation
using stereo camera looks straightforward. However several
issues needed to be addressed before a robust implementation
can be achieved. In this work we address some of these issues
and present the results achieved with experiments conducted
using a pioneer robot equipped with a stereo camera in an
office environment. Especially when interpreting the results
presented it is imperative to note the small baseline
(-:0.088m) of the camera and the wide angle lenses (- 900)
used. According to [8] a baseline/depth ratio of less than 1/30
would not make much sense. This translates to an inconsistent
filter performance and in this exposition we present several

filtering techniques that make the Extended Kalman Filter
(EKF) based estimations consistent.

In this work, the well established Kanade-Lucas-Tomasi
(KLT) [9] algorithm is used in tracking features between
image frames essentially reinforcing the data association and a
novel multiple hypotheses adaptive window positioning
method is used in establishing a loop closure. Also we show
with empirical evidence that an EKF based algorithm still can
be inconsistent due to gross errors present in observations and
limitations in the current error models that defy conventional
outlier detection methods. As a solution, we present a robust
data validation algorithm with substantive experimental
evidence.

Rest of the paper is organized as follows. Section II
contains a summary of the 3D SLAM implementation whilst a
summary of the (KLT) tracking algorithm is presented in
Section III. Section IV presents two methods in dealing with
stereo noise. Section V describes the loop closure. In section
VI we present comparative results of several SLAM
implementations with our proposed implementation. Section
VII concludes the paper.

II. 3D SLAM FORMULATION

The SLAM frame work based on Kalman filtering is well
established [10], hence here we present only a summary to the
3D extension. The robot state is defined by X, = [x, yr fX
where x, and y, denotes location of the robot's rear axle centre
with respect to a global coordinate frame and y. is the heading
with reference to the x-axis of the same coordinate system.
Landmarks are modeled as point features, Pi = [xi Yi Zi X i

1,...,N and represented by Cartesian coordinates as in Fig. 1.
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Fig. 1 The robot in 3D world coordinates observing a feature in 3d space.
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A. Vehicle and landmark augmentedprocess model
The vehicle motion through the environment is modeled

as a conventional discrete time process model as in (1).

Xr (k + 1) x,r(k) + AT V(k) cos((r (k))
Y< (k + 1) L&(k) + AT V(k) sin(Qr (k)) (1)
lr (k + 1)- (p, (k) + ATco(k)

AT is the time step, V(k) is the instantaneous velocity and co(k)
is the instantaneous turn-rate. The robot is assumed to be
travelling on a horizontal plane. The landmarks in the
environment are assumed to be stationary point features and
hence the process model is,

xi (k + 1) xi (k)-
Yi (k + 1) = yi (k) (2)

_Z, (k + 1) -_Zj (k)

where, i (=1,...,N) is the landmark number. Using (1) and (2),
the augmented state transition matrix for the complete system
can be represented.

B. Observation model
The observation model can be represented as,

zx(k+1) a
Z (k +1) = zy (k+l1) = b (3)

zz(k+1) Zf(k+1)
where

a = (xfi (k + 1)-Xr (k + 1)) cos(or (k)) + (yfi (k + 1)-Yr (k + 1)) sin(or (k))
b =-(x (k + 1)-xr (k + 1)) sin(or (k)) + (yfi (k + 1) (k + 1)) cos(Or (k))

It is to be noted that each feature is defined by a point in
3D space, x f(k) = [x fi(k) Y (k) zfi(k) T * The measurement

error covariance is,

respectively. fand B are the camera focal length and base line.
Having defined the process model and the observation model,
the standard Kalman filter based realization [10] is carried out.

III. KLT IMPLEMENTATION

Data association is very crucial in a robust SLAM
implementation. One strong advantage of using vision is its
ability to track features in the image plane, and hence
enhancing data association. Kanade, Lucas and Tomasi [11,
12] have proposed a feature selection and robust tracking
algorithm (KLT). The main advantage of KLT over other
descriptor based (e.g. [4] )methods is its ability to efficiently
track features between consecutive images in real time. A
description of the KLT algorithm is given in [9] and the
complete derivation of the algorithm is presented in the
unpublished note by Birchfield [13]. The tracker and the
feature selection method compliment each other in that the
combination is optimal by design. In this work we use KLT to
extract reliable features and track them efficiently between
images. The tracking algorithm is described in brief below.

Given two images I,J assuming small inter-frame
displacements, image motion can be described by suitably
moving every point in the current frame to achieve the next
frame

I(x, y,t + ) = I(x -(x, y, t,r),y-(x, y, t,r)) (6)

displacement of a point at x is given by a = (j, 7) and using
the affine motion model

6 = Dx+d (7)
where, D [x

d
]y is the deformation matrix and d is the

Ld, dyy
displacement vector. A point at x in the first image I moves to
point Ax + d in the second image J.

J(Ax + d) = I(x) (8)

Pf, = vg,PPrVgjyq, + Vgi

B2Rd2
d2

f2o~ad Uf ad

d2 d2

RVgj T

v xfyfizfi

-Vf ad~

d2

-Uf a7d 2 U ad UV ad
d2 u d2 d22fo 2 2

Vf ad UV ad 2 + Vd

d2 d2 v d2

where Pr is the error covariance matrix of the robot location
estimate extracted from the state covariance matrix P(k/k) and
R is the measurement noise covariance. Vg is the Jacobean of
the observation function. And q,, ,v',d represents the pixel
uncertainties in image u, v location and the disparity d

Where, A= 1 + D In order to find the above motion
parameters A and D minimise dissimilarity,

£8 Jf [J(Ax + d) _ I(x)]2 w(x) dx
w

(9)

where w(x) is a weighting function, which is set to 1 in our
implementation. In order for the SLAM to perform real-time
the number of features intialised/tracked per image was set to
20.

IV. MANAGING NOISE

A. Noise Filter
KLT provides with good features to track. However, it

can pick up illusive features in the image plane like an
intersection of two far apart real world features. Those
features are catastrophic for SLAM as they violate the
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fundamental fixed landmark assumption. Such features can be
detected by analyzing depth (disparity) discontinuties in a
small support region surrounding the point of interest as
follows.

Given the stereo images, a corresponding depth map
(disparity image) of the scene is created. Then a small patch of
the disparity image around the corresponding feature location
selected by KLT is obtained (Our experiments showed that a
3x3 patch yields better results). A histogram for this small
patch is generated and the mean and the standard deviation are
calculated. Then the resulting standard deviation a is
compared against a predetermined threshold (0.20m). If the
test is successful the feature is used in the filter. For successful
new features a delayed initialization is carried out in order to
assert the stability of the feature (Fig. 2.)

B. Feature Validation Algorithm
One of the most difficult issues in a SLAM

implementation is the data association problem, where the
hypothesis of assigning an observation to an existing map
location is tested. In our implementation the KLT tracker
solves this problem given the high frame rates used to capture
images. Since the consecutive images are only 'slightly'
displaced, the tracker successfully tracked over 95% of the
features in our trial run. However initial SLAM
implementation with KLT based data association showed that
the EKF based SLAM was not consistent (this is illustrated in
Section VI). Further investigations revealed that this was in
part due to stereo mismatches and in part due to KLT tracking

Run KLTto find best n-fhetresl

Select 7h featre

Cdalculate ()

[F]

[T]

-[F],

features inconsistently. Both issues could be attributed to the
poor texture presence in the test environment and especially
the former issue to the use of a smaller baseline, wide angle
camera.

In Fig. 3, the left image is a portion of an image taken
from a trial run inside our lab. This is a typical image of our
test environment where the pathways are very narrow with
little texture throughout the camera's field of view. This
generates large number of stereo mismatches. The image to
the right is the disparity image generated by the stereo
correspondence algorithm with lighter shades indicating
objects closer to camera. Though there are several small light
patches to the middle and right of this image indicating
features closer to the camera, in reality these features are quite
far from it. This incorrect estimation of disparity in stereo
vision gives rise not only to mean shift (gross errors) but also
to incorrect estimations of uncertainties (5) in observations.
Here we propose a solution to this by utilizing the correlations
between features and the camera pose corresponding to a
single image. The algorithm begins with the intuition,

Given a single image frame, the features selected are
correlated with the camera pose that it was taken. Thus a
single successful update in the pose estimate using any of
these features should reflect this fact resulting in very small
innovations for the remainder of features observed with
previously initialized states.

I.e. given a set of features derived from a single image; a
feature is selected randomly to update the prior state estimate
at current time step: the primary update. A new prior estimate
is derived for the features. Then a very tight gate (0.8 o) is
used to validate the remainder of features. If a t (80%) number
of features satisfy this test, the corresponding feature set is
used to update the state. This procedure is iterated until a
solution is found or, if not the set that encompasses the
maximum no of conforming features is used for the update,
once all the features are exhausted in primary updates. The
method has its inspirations in the RanSaC [14] algorithm,
hence the term t, the threshold parameter. RanSaC was used in
[15] for global localisation in matching groups of descriptors
to a global map.

V. CLOSING THE LooP

Loop closing is important as it can significantly reduce
the uncertainty of the system. A novel adaptive window
positioning method is used in testing the hypothesis of seeing
an 'old' feature again at an eminent loop closure. Multiple
hypothesis of association are generated for a newly observed
feature with a subset of features previously seen and bounded

-[T]-

Fig. 2 KLT in combination with the noise filter during feature initialization
Fig. 3 Part of an image from the stereo camera (left) and the corresponding
disparity image (right). Note the gross disparity errors in the right hand side.
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by a distance measure based on the state estimates of 'old'
features and the estimated position of the new feature. Then
each hypothesis is tested with the KLT based dissimilarity
measure by adapting the KLT search window position to
accommodate the hypothesised feature location. If a unique
solution is found for a given dissimilarity threshold
corresponding hypothesis is accepted. Else the feature is
initialised. Essentially this method relaxes the small inter-
frame displacement assumption in the original KLT
formulation.

Fig. 4 illustrates this process. Image on the top left shows
a new feature found by the KLT feature selection criteria (red
dot on the black square on the far wall-magnified in the inset).
Right image corresponds to the same part of the environment
but taken from a different location during the robot test run.
Red dots indicate features selected by KLT. There are three
features on the same black square (magnified in the inset) on
the wall and this subset of features form three hypotheses
according to the above criteria. Bottom image shows that ones
the dissimilarity criterion in KLT is applied to them it picks up
the feature correctly. This shows that the loop closing is
possible with a reasonable viewpoint variance in the two
images.

However a prevailing shortcoming in the current method
of using KLT based loop closure detection is its inability to
handle larger view point variations. This is mainly attributed
to the KLT's poor affine and scale invariance properties.

VI. EXPERIMENTAL RESULTS

A. Experimental Setup
A Pioneer robot equipped with a MEGA-DCS stereo

camera (see Fig. 12) from Videre Design is driven through an
arbitrary path in an office like environment while the camera
is capturing stereo images at 4Hz. Pioneer is also equipped
with a SICK laser, which is used separately to capture range
and bearing to a set of laser beacons laid in the environment.
These observations are utilized in a separate 2D SLAM
algorithm for comparison purposes. In this experiment, the
number of features selected in each image was limited to 20.
This number was kept constant by replacing lost features
when tracking of features between images failed. Three
different SLAM algorithms were implemented in this
experiment and we will reference them later by the names
given below.

1. SLAM3D batch - 3D feature based EKF SLAM with
innovation gating to validate KLT tracked features
with a batch update [11 ] algorithm

2. SLAM3D - 3D feature based EKF SLAM with the
previously described feature validation algorithm.
Utilizes a batch update when the final successful
feature set is found.

3. A laser based 2D SLAM algorithm was used for
benchmarking the results. It is worth noting that
although we consider the laser based SLAM provides
the true path, it has a gross error of about 5cm in both
cross-track and along-track directions.

Fig. 4 Multiple hypothesis approach and adaptive window positioning. A new
feature detected in the current image (left-inset) and the hypotheses generated

(right-inset) and a unique solution is found (bottom).

Same tuning parameters were used for both vision based
SLAM algorithms.

B. Experimental Results
Fig. 5 shows the robot pose error plots using the

SLAM3D batch along with the 2-sigma error bounds
estimated by the EKF. Previously mentioned laser based
SLAM was used to generate the 'true' path. It is apparent (by
the under estimation of error) that even with good data
association provided by KLT the filter is inconsistent.

Fig. 6 shows the results of the same dataset as above with
the second algorithm (SLAM3D) without loop closure. Both
noise filters discussed in section IV are implemented in this
algorithm. The improvement in filter performance is readily
noticeable indicating a well tuned EKF. The three-
dimensional map generated by the algorithm is shown in Fig.
7. The 2D path estimated from the laser based SLAM is
shown in black and light-green line indicates the SLAM3D
estimate of the path. It can be seen qualitatively that the
estimated robot path from the SLAM3D agrees closely with
the more standard 2D laser based SLAM. The errors are only
apparent in the final leg of the robot path. Those errors are
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Fig. 5 Robot pose estimate error for SLAM3D batch relative to the laser
based SLAM estimate with the 2-sigma error bounds
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Fig. 6 Relative error between SLAM3D estimated robot pose and the laser
based SLAM pose estimate with the 2-sigma error bounds. (without loop

closure)

k --'', ~ ~... .. ... .. ...

2.~~~~~~~~~~~

Lv } ' 4 g '

s -4 f ., $ ,

Fig. 7 Map and the estimated path (light-green) along with the laser based
EKF SLAM estimate of the path (dotted). (Without loop closure)

mainly due to the accumulation of SLAM errors in the long
run and lower number of good features registered in some
portions of the run (discussed later in the section). As
apparent from the misalignment of the wall along the y-
direction near x=2 cumulative gross error is prominent in the
x-direction while errors in orientation and y-direction are
considerably lower.

Fig. 8 plots the state errors and 2-sigma error bounds
using SLAM3D with the previously discussed method of loop
closure. The loop closure is indicated by the large uncertainty
reduction especially in the x and y-directions. Since even
without the loop closure the gross errors in the heading
estimate were smaller (Fig. 6) it is expected to see only a
minor improvement in the relative error in estimates between
SLAM3D and the laser based benchmarking algorithm. Fig. 9
is indicative of a successful loop closure with the apparent
lack of misalignment of the wall that was present in Fig. 7.

Fig. 10 indicates the feature survival histogram. It could
be noted that some good features could last more than 60
frames, which is desirable for SLAM, whilst the others can
disappear instantly especially during the third leg of the
traverse only a few features have been registered. This is
mainly due to KLT picking up features far away along the
corridor (due to lack of well textured features nearby) which
the stereo algorithm was not able to register proper disparities
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Fig. 8 Relative error between SLAM3D and the laser based SLAM pose
estimates along with the 2-sigma error bounds. (with loop closure)
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Fig. 9 Map and the estimated path (light-green) along with the laser based
EKF SLAM estimate of the path (dotted). (with loop closure)

hence the noise filter has attenuated them. In such ill-
conditioned situations odometry contributes locally.
C. Real-time Implementation

Currently we have an implementation of the discussed
algorithms in real-time sans the loop closure on a pioneer
(Fig. 11 & 12). The interface provides a real-time Occupancy
grid (Fig. 11) based on the pose estimates from the SLAM
algorithm and the laser observations. This provides a visual
feed back of the performance of the SLAM algorithm.

We have conducted several test runs in our lab area with
statistically reliable results. Table I shows the prominent
parameters involved in this implementation. However

0

50 5 0 5 0 5 0 5 0 5

Feature Number

Fig. 10 Feature survival histogram
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TABLE I
REAL-TIME IMPLEMENTATION PARAMETERS

Parameter Value
Camera baseline/(m) 0.088
Image resolution/(pix2) 320x240
Robot speed/(m/sec) 0.2-0.3
Gd,Gu,G6v(pix) 1.5,1.0,1.0
Processing power Intel Pentium M, 1.13GHz, 512 MB RAM

depending on the quality of the features picked up by KLT
during some of the trials we have observed large absolute
errors (>3%). This is suggestive of the necessity for more
experiments and further improvements to the algorithms.

VII. CONCLUSION

Stereo vision based SLAM is still a challenging problem
due to the gross errors in depth map generation, feature
occlusions and other factors present in the environment. We
have presented a comprehensive set of methods that has roots
in both image processing and Bayesian estimation domains to
achieve consistent small baseline stereo vision based SLAM.
We believe that to achieve robust SLAM solutions using
vision sensors requires an augmentative approach between
these two domains. We have presented a methodology for
determining good features with the aid of KLT. Further, the
data association problem was minimized by utilizing the
image feature tracking capability of the KLT. A RanSaC
inspired algorithm in the data association phase was also
presented. The loop closure was addressed by utilizing a
multiple hypothesis filter based on the KLT dissimilarity
criterion. This is fairly robust to scale and affine changes.
Experiments were carried out in an office like environment to

Fig. 11 Stereo vision based real-time SLAM interface

Fig. 12 Pioneer equipped with various sensors including the stereo camera

assess the robustness and they show that the filter is
consistent. Finally we have presented the real-time
implementation of the discussed algorithm without loop
closure.

We are furthering our investigations to improve the loop
closure with larger view point variations which the current
version is not capable of. Especially in ways of utilizing the
knowledge of estimated state of the robot and map. We are
also in the process of integrating a real-time loop closure
method in to the interface.
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