21,692 research outputs found

    SCB-dataset: A Dataset for Detecting Student Classroom Behavior

    Full text link
    The use of deep learning methods for automatic detection of students' classroom behavior is a promising approach to analyze their class performance and enhance teaching effectiveness. However, the lack of publicly available datasets on student behavior poses a challenge for researchers in this field. To address this issue, we propose a Student Classroom Behavior dataset (SCB-dataset) that reflects real-life scenarios. Our dataset includes 11,248 labels and 4,003 images, with a focus on hand-raising behavior. We evaluated the dataset using the YOLOv7 algorithm, achieving a mean average precision (map) of up to 85.3%. We believe that our dataset can serve as a robust foundation for future research in the field of student behavior detection and promote further advancements in this area.Our SCB-dataset can be downloaded from: https://github.com/Whiffe/SCB-datase

    Student Classroom Behavior Detection based on Improved YOLOv7

    Full text link
    Accurately detecting student behavior in classroom videos can aid in analyzing their classroom performance and improving teaching effectiveness. However, the current accuracy rate in behavior detection is low. To address this challenge, we propose the Student Classroom Behavior Detection method, based on improved YOLOv7. First, we created the Student Classroom Behavior dataset (SCB-Dataset), which includes 18.4k labels and 4.2k images, covering three behaviors: hand raising, reading, and writing. To improve detection accuracy in crowded scenes, we integrated the biformer attention module and Wise-IoU into the YOLOv7 network. Finally, experiments were conducted on the SCB-Dataset, and the model achieved an [email protected] of 79%, resulting in a 1.8% improvement over previous results. The SCB-Dataset and code are available for download at: https://github.com/Whiffe/SCB-dataset.Comment: arXiv admin note: text overlap with arXiv:2305.0782

    Student Classroom Behavior Detection based on Spatio-Temporal Network and Multi-Model Fusion

    Full text link
    Using deep learning methods to detect students' classroom behavior automatically is a promising approach for analyzing their class performance and improving teaching effectiveness. However, the lack of publicly available spatio-temporal datasets on student behavior, as well as the high cost of manually labeling such datasets, pose significant challenges for researchers in this field. To address this issue, we proposed a method for extending the spatio-temporal behavior dataset in Student Classroom Scenarios (SCB-ST-Dataset4) through image dataset. Our SCB-ST-Dataset4 comprises 757265 images with 25810 labels, focusing on 3 behaviors: hand-raising, reading, writing. Our proposed method can rapidly generate spatio-temporal behavior datasets without requiring extra manual labeling. Furthermore, we proposed a Behavior Similarity Index (BSI) to explore the similarity of behaviors. We evaluated the dataset using the YOLOv5, YOLOv7, YOLOv8, and SlowFast algorithms, achieving a mean average precision (map) of up to 82.3%. Last, we fused multiple models to generate student behavior-related data from various perspectives. The experiment further demonstrates the effectiveness of our method. And SCB-ST-Dataset4 provides a robust foundation for future research in student behavior detection, potentially contributing to advancements in this field. The SCB-ST-Dataset4 is available for download at: https://github.com/Whiffe/SCB-dataset.Comment: arXiv admin note: substantial text overlap with arXiv:2310.02522; text overlap with arXiv:2306.0331

    Detection of a hand-raising gesture by locating the arm

    Get PDF

    An Immersive Telepresence System using RGB-D Sensors and Head Mounted Display

    Get PDF
    We present a tele-immersive system that enables people to interact with each other in a virtual world using body gestures in addition to verbal communication. Beyond the obvious applications, including general online conversations and gaming, we hypothesize that our proposed system would be particularly beneficial to education by offering rich visual contents and interactivity. One distinct feature is the integration of egocentric pose recognition that allows participants to use their gestures to demonstrate and manipulate virtual objects simultaneously. This functionality enables the instructor to ef- fectively and efficiently explain and illustrate complex concepts or sophisticated problems in an intuitive manner. The highly interactive and flexible environment can capture and sustain more student attention than the traditional classroom setting and, thus, delivers a compelling experience to the students. Our main focus here is to investigate possible solutions for the system design and implementation and devise strategies for fast, efficient computation suitable for visual data processing and network transmission. We describe the technique and experiments in details and provide quantitative performance results, demonstrating our system can be run comfortably and reliably for different application scenarios. Our preliminary results are promising and demonstrate the potential for more compelling directions in cyberlearning.Comment: IEEE International Symposium on Multimedia 201

    A Spatio-Temporal Attention-Based Method for Detecting Student Classroom Behaviors

    Full text link
    Accurately detecting student behavior from classroom videos is beneficial for analyzing their classroom status and improving teaching efficiency. However, low accuracy in student classroom behavior detection is a prevalent issue. To address this issue, we propose a Spatio-Temporal Attention-Based Method for Detecting Student Classroom Behaviors (BDSTA). Firstly, the SlowFast network is used to generate motion and environmental information feature maps from the video. Then, the spatio-temporal attention module is applied to the feature maps, including information aggregation, compression and stimulation processes. Subsequently, attention maps in the time, channel and space dimensions are obtained, and multi-label behavior classification is performed based on these attention maps. To solve the long-tail data problem that exists in student classroom behavior datasets, we use an improved focal loss function to assign more weight to the tail class data during training. Experimental results are conducted on a self-made student classroom behavior dataset named STSCB. Compared with the SlowFast model, the average accuracy of student behavior classification detection improves by 8.94\% using BDSTA

    StuArt: Individualized Classroom Observation of Students with Automatic Behavior Recognition and Tracking

    Full text link
    Each student matters, but it is hardly for instructors to observe all the students during the courses and provide helps to the needed ones immediately. In this paper, we present StuArt, a novel automatic system designed for the individualized classroom observation, which empowers instructors to concern the learning status of each student. StuArt can recognize five representative student behaviors (hand-raising, standing, sleeping, yawning, and smiling) that are highly related to the engagement and track their variation trends during the course. To protect the privacy of students, all the variation trends are indexed by the seat numbers without any personal identification information. Furthermore, StuArt adopts various user-friendly visualization designs to help instructors quickly understand the individual and whole learning status. Experimental results on real classroom videos have demonstrated the superiority and robustness of the embedded algorithms. We expect our system promoting the development of large-scale individualized guidance of students.Comment: Novel pedagogical approaches in signal processing for K-12 educatio

    Understanding face and eye visibility in front-facing cameras of smartphones used in the wild

    Get PDF
    Commodity mobile devices are now equipped with high-resolution front-facing cameras, allowing applications in biometrics (e.g., FaceID in the iPhone X), facial expression analysis, or gaze interaction. However, it is unknown how often users hold devices in a way that allows capturing their face or eyes, and how this impacts detection accuracy. We collected 25,726 in-the-wild photos, taken from the front-facing camera of smartphones as well as associated application usage logs. We found that the full face is visible about 29% of the time, and that in most cases the face is only partially visible. Furthermore, we identified an influence of users' current activity; for example, when watching videos, the eyes but not the entire face are visible 75% of the time in our dataset. We found that a state-of-the-art face detection algorithm performs poorly against photos taken from front-facing cameras. We discuss how these findings impact mobile applications that leverage face and eye detection, and derive practical implications to address state-of-the art's limitations

    A time series feature of variability to detect two types of boredom from motion capture of the head and shoulders

    Get PDF
    Boredom and disengagement metrics are crucial to the correctly timed implementation of adaptive interventions in interactive systems. psychological research suggests that boredom (which other HCI teams have been able to partially quantify with pressure-sensing chair mats) is actually a composite: lethargy and restlessness. Here we present an innovative approach to the measurement and recognition of these two kinds of boredom, based on motion capture and video analysis of changes in head and shoulder positions. Discrete, three-minute, computer-presented stimuli (games, quizzes, films and music) covering a spectrum from engaging to boring/disengaging were used to elicit changes in cognitive/emotional states in seated, healthy volunteers. Interaction with the stimuli occurred with a handheld trackball instead of a mouse, so movements were assumed to be non-instrumental. Our results include a feature (standard deviation of windowed ranges) that may be more specific to boredom than mean speed of head movement, and that could be implemented in computer vision algorithms for disengagement detection
    • …
    corecore