89 research outputs found

    The cockpit for the 21st century

    Get PDF
    Interactive surfaces are a growing trend in many domains. As one possible manifestation of Mark Weiser’s vision of ubiquitous and disappearing computers in everywhere objects, we see touchsensitive screens in many kinds of devices, such as smartphones, tablet computers and interactive tabletops. More advanced concepts of these have been an active research topic for many years. This has also influenced automotive cockpit development: concept cars and recent market releases show integrated touchscreens, growing in size. To meet the increasing information and interaction needs, interactive surfaces offer context-dependent functionality in combination with a direct input paradigm. However, interfaces in the car need to be operable while driving. Distraction, especially visual distraction from the driving task, can lead to critical situations if the sum of attentional demand emerging from both primary and secondary task overextends the available resources. So far, a touchscreen requires a lot of visual attention since its flat surface does not provide any haptic feedback. There have been approaches to make direct touch interaction accessible while driving for simple tasks. Outside the automotive domain, for example in office environments, concepts for sophisticated handling of large displays have already been introduced. Moreover, technological advances lead to new characteristics for interactive surfaces by enabling arbitrary surface shapes. In cars, two main characteristics for upcoming interactive surfaces are largeness and shape. On the one hand, spatial extension is not only increasing through larger displays, but also by taking objects in the surrounding into account for interaction. On the other hand, the flatness inherent in current screens can be overcome by upcoming technologies, and interactive surfaces can therefore provide haptically distinguishable surfaces. This thesis describes the systematic exploration of large and shaped interactive surfaces and analyzes their potential for interaction while driving. Therefore, different prototypes for each characteristic have been developed and evaluated in test settings suitable for their maturity level. Those prototypes were used to obtain subjective user feedback and objective data, to investigate effects on driving and glance behavior as well as usability and user experience. As a contribution, this thesis provides an analysis of the development of interactive surfaces in the car. Two characteristics, largeness and shape, are identified that can improve the interaction compared to conventional touchscreens. The presented studies show that large interactive surfaces can provide new and improved ways of interaction both in driver-only and driver-passenger situations. Furthermore, studies indicate a positive effect on visual distraction when additional static haptic feedback is provided by shaped interactive surfaces. Overall, various, non-exclusively applicable, interaction concepts prove the potential of interactive surfaces for the use in automotive cockpits, which is expected to be beneficial also in further environments where visual attention needs to be focused on additional tasks.Der Einsatz von interaktiven Oberflächen weitet sich mehr und mehr auf die unterschiedlichsten Lebensbereiche aus. Damit sind sie eine mögliche Ausprägung von Mark Weisers Vision der allgegenwärtigen Computer, die aus unserer direkten Wahrnehmung verschwinden. Bei einer Vielzahl von technischen Geräten des täglichen Lebens, wie Smartphones, Tablets oder interaktiven Tischen, sind berührungsempfindliche Oberflächen bereits heute in Benutzung. Schon seit vielen Jahren arbeiten Forscher an einer Weiterentwicklung der Technik, um ihre Vorteile auch in anderen Bereichen, wie beispielsweise der Interaktion zwischen Mensch und Automobil, nutzbar zu machen. Und das mit Erfolg: Interaktive Benutzeroberflächen werden mittlerweile serienmäßig in vielen Fahrzeugen eingesetzt. Der Einbau von immer größeren, in das Cockpit integrierten Touchscreens in Konzeptfahrzeuge zeigt, dass sich diese Entwicklung weiter in vollem Gange befindet. Interaktive Oberflächen ermöglichen das flexible Anzeigen von kontextsensitiven Inhalten und machen eine direkte Interaktion mit den Bildschirminhalten möglich. Auf diese Weise erfüllen sie die sich wandelnden Informations- und Interaktionsbedürfnisse in besonderem Maße. Beim Einsatz von Bedienschnittstellen im Fahrzeug ist die gefahrlose Benutzbarkeit während der Fahrt von besonderer Bedeutung. Insbesondere visuelle Ablenkung von der Fahraufgabe kann zu kritischen Situationen führen, wenn Primär- und Sekundäraufgaben mehr als die insgesamt verfügbare Aufmerksamkeit des Fahrers beanspruchen. Herkömmliche Touchscreens stellen dem Fahrer bisher lediglich eine flache Oberfläche bereit, die keinerlei haptische Rückmeldung bietet, weshalb deren Bedienung besonders viel visuelle Aufmerksamkeit erfordert. Verschiedene Ansätze ermöglichen dem Fahrer, direkte Touchinteraktion für einfache Aufgaben während der Fahrt zu nutzen. Außerhalb der Automobilindustrie, zum Beispiel für Büroarbeitsplätze, wurden bereits verschiedene Konzepte für eine komplexere Bedienung großer Bildschirme vorgestellt. Darüber hinaus führt der technologische Fortschritt zu neuen möglichen Ausprägungen interaktiver Oberflächen und erlaubt, diese beliebig zu formen. Für die nächste Generation von interaktiven Oberflächen im Fahrzeug wird vor allem an der Modifikation der Kategorien Größe und Form gearbeitet. Die Bedienschnittstelle wird nicht nur durch größere Bildschirme erweitert, sondern auch dadurch, dass Objekte wie Dekorleisten in die Interaktion einbezogen werden können. Andererseits heben aktuelle Technologieentwicklungen die Restriktion auf flache Oberflächen auf, so dass Touchscreens künftig ertastbare Strukturen aufweisen können. Diese Dissertation beschreibt die systematische Untersuchung großer und nicht-flacher interaktiver Oberflächen und analysiert ihr Potential für die Interaktion während der Fahrt. Dazu wurden für jede Charakteristik verschiedene Prototypen entwickelt und in Testumgebungen entsprechend ihres Reifegrads evaluiert. Auf diese Weise konnten subjektives Nutzerfeedback und objektive Daten erhoben, und die Effekte auf Fahr- und Blickverhalten sowie Nutzbarkeit untersucht werden. Diese Dissertation leistet den Beitrag einer Analyse der Entwicklung von interaktiven Oberflächen im Automobilbereich. Weiterhin werden die Aspekte Größe und Form untersucht, um mit ihrer Hilfe die Interaktion im Vergleich zu herkömmlichen Touchscreens zu verbessern. Die durchgeführten Studien belegen, dass große Flächen neue und verbesserte Bedienmöglichkeiten bieten können. Außerdem zeigt sich ein positiver Effekt auf die visuelle Ablenkung, wenn zusätzliches statisches, haptisches Feedback durch nicht-flache Oberflächen bereitgestellt wird. Zusammenfassend zeigen verschiedene, untereinander kombinierbare Interaktionskonzepte das Potential interaktiver Oberflächen für den automotiven Einsatz. Zudem können die Ergebnisse auch in anderen Bereichen Anwendung finden, in denen visuelle Aufmerksamkeit für andere Aufgaben benötigt wird

    Object grasping and safe manipulation using friction-based sensing.

    Full text link
    This project provides a solution for slippage prevention in industrial robotic grippers for the purpose of safe object manipulation. Slippage sensing is performed using novel friction-based sensors, with customisable slippage sensitivity and complemented by an effective slippage prediction strategy. The outcome is a reliable and affordable slippage prevention technology

    Bringing the Physical to the Digital

    Get PDF
    This dissertation describes an exploration of digital tabletop interaction styles, with the ultimate goal of informing the design of a new model for tabletop interaction. In the context of this thesis the term digital tabletop refers to an emerging class of devices that afford many novel ways of interaction with the digital. Allowing users to directly touch information presented on large, horizontal displays. Being a relatively young field, many developments are in flux; hardware and software change at a fast pace and many interesting alternative approaches are available at the same time. In our research we are especially interested in systems that are capable of sensing multiple contacts (e.g., fingers) and richer information such as the outline of whole hands or other physical objects. New sensor hardware enable new ways to interact with the digital. When embarking into the research for this thesis, the question which interaction styles could be appropriate for this new class of devices was a open question, with many equally promising answers. Many everyday activities rely on our hands ability to skillfully control and manipulate physical objects. We seek to open up different possibilities to exploit our manual dexterity and provide users with richer interaction possibilities. This could be achieved through the use of physical objects as input mediators or through virtual interfaces that behave in a more realistic fashion. In order to gain a better understanding of the underlying design space we choose an approach organized into two phases. First, two different prototypes, each representing a specific interaction style – namely gesture-based interaction and tangible interaction – have been implemented. The flexibility of use afforded by the interface and the level of physicality afforded by the interface elements are introduced as criteria for evaluation. Each approaches’ suitability to support the highly dynamic and often unstructured interactions typical for digital tabletops is analyzed based on these criteria. In a second stage the learnings from these initial explorations are applied to inform the design of a novel model for digital tabletop interaction. This model is based on the combination of rich multi-touch sensing and a three dimensional environment enriched by a gaming physics simulation. The proposed approach enables users to interact with the virtual through richer quantities such as collision and friction. Enabling a variety of fine-grained interactions using multiple fingers, whole hands and physical objects. Our model makes digital tabletop interaction even more “natural”. However, because the interaction – the sensed input and the displayed output – is still bound to the surface, there is a fundamental limitation in manipulating objects using the third dimension. To address this issue, we present a technique that allows users to – conceptually – pick objects off the surface and control their position in 3D. Our goal has been to define a technique that completes our model for on-surface interaction and allows for “as-direct-as possible” interactions. We also present two hardware prototypes capable of sensing the users’ interactions beyond the table’s surface. Finally, we present visual feedback mechanisms to give the users the sense that they are actually lifting the objects off the surface. This thesis contributes on various levels. We present several novel prototypes that we built and evaluated. We use these prototypes to systematically explore the design space of digital tabletop interaction. The flexibility of use afforded by the interaction style is introduced as criterion alongside the user interface elements’ physicality. Each approaches’ suitability to support the highly dynamic and often unstructured interactions typical for digital tabletops are analyzed. We present a new model for tabletop interaction that increases the fidelity of interaction possible in such settings. Finally, we extend this model so to enable as direct as possible interactions with 3D data, interacting from above the table’s surface

    AUGMENTED TOUCH INTERACTIONS WITH FINGER CONTACT SHAPE AND ORIENTATION

    Get PDF
    Touchscreen interactions are far less expressive than the range of touch that human hands are capable of - even considering technologies such as multi-touch and force-sensitive surfaces. Recently, some touchscreens have added the capability to sense the actual contact area of a finger on the touch surface, which provides additional degrees of freedom - the size and shape of the touch, and the finger's orientation. These additional sensory capabilities hold promise for increasing the expressiveness of touch interactions - but little is known about whether users can successfully use the new degrees of freedom. To provide this baseline information, we carried out a study with a finger-contact-sensing touchscreen, and asked participants to produce a range of touches and gestures with different shapes and orientations, with both one and two fingers. We found that people are able to reliably produce two touch shapes and three orientations across a wide range of touches and gestures - a result that was confirmed in another study that used the augmented touches for a screen lock application

    The cockpit for the 21st century

    Get PDF
    Interactive surfaces are a growing trend in many domains. As one possible manifestation of Mark Weiser’s vision of ubiquitous and disappearing computers in everywhere objects, we see touchsensitive screens in many kinds of devices, such as smartphones, tablet computers and interactive tabletops. More advanced concepts of these have been an active research topic for many years. This has also influenced automotive cockpit development: concept cars and recent market releases show integrated touchscreens, growing in size. To meet the increasing information and interaction needs, interactive surfaces offer context-dependent functionality in combination with a direct input paradigm. However, interfaces in the car need to be operable while driving. Distraction, especially visual distraction from the driving task, can lead to critical situations if the sum of attentional demand emerging from both primary and secondary task overextends the available resources. So far, a touchscreen requires a lot of visual attention since its flat surface does not provide any haptic feedback. There have been approaches to make direct touch interaction accessible while driving for simple tasks. Outside the automotive domain, for example in office environments, concepts for sophisticated handling of large displays have already been introduced. Moreover, technological advances lead to new characteristics for interactive surfaces by enabling arbitrary surface shapes. In cars, two main characteristics for upcoming interactive surfaces are largeness and shape. On the one hand, spatial extension is not only increasing through larger displays, but also by taking objects in the surrounding into account for interaction. On the other hand, the flatness inherent in current screens can be overcome by upcoming technologies, and interactive surfaces can therefore provide haptically distinguishable surfaces. This thesis describes the systematic exploration of large and shaped interactive surfaces and analyzes their potential for interaction while driving. Therefore, different prototypes for each characteristic have been developed and evaluated in test settings suitable for their maturity level. Those prototypes were used to obtain subjective user feedback and objective data, to investigate effects on driving and glance behavior as well as usability and user experience. As a contribution, this thesis provides an analysis of the development of interactive surfaces in the car. Two characteristics, largeness and shape, are identified that can improve the interaction compared to conventional touchscreens. The presented studies show that large interactive surfaces can provide new and improved ways of interaction both in driver-only and driver-passenger situations. Furthermore, studies indicate a positive effect on visual distraction when additional static haptic feedback is provided by shaped interactive surfaces. Overall, various, non-exclusively applicable, interaction concepts prove the potential of interactive surfaces for the use in automotive cockpits, which is expected to be beneficial also in further environments where visual attention needs to be focused on additional tasks.Der Einsatz von interaktiven Oberflächen weitet sich mehr und mehr auf die unterschiedlichsten Lebensbereiche aus. Damit sind sie eine mögliche Ausprägung von Mark Weisers Vision der allgegenwärtigen Computer, die aus unserer direkten Wahrnehmung verschwinden. Bei einer Vielzahl von technischen Geräten des täglichen Lebens, wie Smartphones, Tablets oder interaktiven Tischen, sind berührungsempfindliche Oberflächen bereits heute in Benutzung. Schon seit vielen Jahren arbeiten Forscher an einer Weiterentwicklung der Technik, um ihre Vorteile auch in anderen Bereichen, wie beispielsweise der Interaktion zwischen Mensch und Automobil, nutzbar zu machen. Und das mit Erfolg: Interaktive Benutzeroberflächen werden mittlerweile serienmäßig in vielen Fahrzeugen eingesetzt. Der Einbau von immer größeren, in das Cockpit integrierten Touchscreens in Konzeptfahrzeuge zeigt, dass sich diese Entwicklung weiter in vollem Gange befindet. Interaktive Oberflächen ermöglichen das flexible Anzeigen von kontextsensitiven Inhalten und machen eine direkte Interaktion mit den Bildschirminhalten möglich. Auf diese Weise erfüllen sie die sich wandelnden Informations- und Interaktionsbedürfnisse in besonderem Maße. Beim Einsatz von Bedienschnittstellen im Fahrzeug ist die gefahrlose Benutzbarkeit während der Fahrt von besonderer Bedeutung. Insbesondere visuelle Ablenkung von der Fahraufgabe kann zu kritischen Situationen führen, wenn Primär- und Sekundäraufgaben mehr als die insgesamt verfügbare Aufmerksamkeit des Fahrers beanspruchen. Herkömmliche Touchscreens stellen dem Fahrer bisher lediglich eine flache Oberfläche bereit, die keinerlei haptische Rückmeldung bietet, weshalb deren Bedienung besonders viel visuelle Aufmerksamkeit erfordert. Verschiedene Ansätze ermöglichen dem Fahrer, direkte Touchinteraktion für einfache Aufgaben während der Fahrt zu nutzen. Außerhalb der Automobilindustrie, zum Beispiel für Büroarbeitsplätze, wurden bereits verschiedene Konzepte für eine komplexere Bedienung großer Bildschirme vorgestellt. Darüber hinaus führt der technologische Fortschritt zu neuen möglichen Ausprägungen interaktiver Oberflächen und erlaubt, diese beliebig zu formen. Für die nächste Generation von interaktiven Oberflächen im Fahrzeug wird vor allem an der Modifikation der Kategorien Größe und Form gearbeitet. Die Bedienschnittstelle wird nicht nur durch größere Bildschirme erweitert, sondern auch dadurch, dass Objekte wie Dekorleisten in die Interaktion einbezogen werden können. Andererseits heben aktuelle Technologieentwicklungen die Restriktion auf flache Oberflächen auf, so dass Touchscreens künftig ertastbare Strukturen aufweisen können. Diese Dissertation beschreibt die systematische Untersuchung großer und nicht-flacher interaktiver Oberflächen und analysiert ihr Potential für die Interaktion während der Fahrt. Dazu wurden für jede Charakteristik verschiedene Prototypen entwickelt und in Testumgebungen entsprechend ihres Reifegrads evaluiert. Auf diese Weise konnten subjektives Nutzerfeedback und objektive Daten erhoben, und die Effekte auf Fahr- und Blickverhalten sowie Nutzbarkeit untersucht werden. Diese Dissertation leistet den Beitrag einer Analyse der Entwicklung von interaktiven Oberflächen im Automobilbereich. Weiterhin werden die Aspekte Größe und Form untersucht, um mit ihrer Hilfe die Interaktion im Vergleich zu herkömmlichen Touchscreens zu verbessern. Die durchgeführten Studien belegen, dass große Flächen neue und verbesserte Bedienmöglichkeiten bieten können. Außerdem zeigt sich ein positiver Effekt auf die visuelle Ablenkung, wenn zusätzliches statisches, haptisches Feedback durch nicht-flache Oberflächen bereitgestellt wird. Zusammenfassend zeigen verschiedene, untereinander kombinierbare Interaktionskonzepte das Potential interaktiver Oberflächen für den automotiven Einsatz. Zudem können die Ergebnisse auch in anderen Bereichen Anwendung finden, in denen visuelle Aufmerksamkeit für andere Aufgaben benötigt wird

    An Augmented Interaction Strategy For Designing Human-Machine Interfaces For Hydraulic Excavators

    Get PDF
    Lack of adequate information feedback and work visibility, and fatigue due to repetition have been identified as the major usability gaps in the human-machine interface (HMI) design of modern hydraulic excavators that subject operators to undue mental and physical workload, resulting in poor performance. To address these gaps, this work proposed an innovative interaction strategy, termed “augmented interaction”, for enhancing the usability of the hydraulic excavator. Augmented interaction involves the embodiment of heads-up display and coordinated control schemes into an efficient, effective and safe HMI. Augmented interaction was demonstrated using a framework consisting of three phases: Design, Implementation/Visualization, and Evaluation (D.IV.E). Guided by this framework, two alternative HMI design concepts (Design A: featuring heads-up display and coordinated control; and Design B: featuring heads-up display and joystick controls) in addition to the existing HMI design (Design C: featuring monitor display and joystick controls) were prototyped. A mixed reality seating buck simulator, named the Hydraulic Excavator Augmented Reality Simulator (H.E.A.R.S), was used to implement the designs and simulate a work environment along with a rock excavation task scenario. A usability evaluation was conducted with twenty participants to characterize the impact of the new HMI types using quantitative (task completion time, TCT; and operating error, OER) and qualitative (subjective workload and user preference) metrics. The results indicated that participants had a shorter TCT with Design A. For OER, there was a lower error probability due to collisions (PER1) with Design A, and lower error probability due to misses (PER2)with Design B. The subjective measures showed a lower overall workload and a high preference for Design B. It was concluded that augmented interaction provides a viable solution for enhancing the usability of the HMI of a hydraulic excavator

    On the critical role of the sensorimotor loop on the design of interaction techniques and interactive devices

    Get PDF
    People interact with their environment thanks to their perceptual and motor skills. This is the way they both use objects around them and perceive the world around them. Interactive systems are examples of such objects. Therefore to design such objects, we must understand how people perceive them and manipulate them. For example, haptics is both related to the human sense of touch and what I call the motor ability. I address a number of research questions related to the design and implementation of haptic, gestural, and touch interfaces and present examples of contributions on these topics. More interestingly, perception, cognition, and action are not separated processes, but an integrated combination of them called the sensorimotor loop. Interactive systems follow the same overall scheme, with differences that make the complementarity of humans and machines. The interaction phenomenon is a set of connections between human sensorimotor loops, and interactive systems execution loops. It connects inputs with outputs, users and systems, and the physical world with cognition and computing in what I call the Human-System loop. This model provides a complete overview of the interaction phenomenon. It helps to identify the limiting factors of interaction that we can address to improve the design of interaction techniques and interactive devices.Les humains interagissent avec leur environnement grâce à leurs capacités perceptives et motrices. C'est ainsi qu'ils utilisent les objets qui les entourent et perçoivent le monde autour d'eux. Les systèmes interactifs sont des exemples de tels objets. Par conséquent, pour concevoir de tels objets, nous devons comprendre comment les gens les perçoivent et les manipulent. Par exemple, l'haptique est à la fois liée au sens du toucher et à ce que j'appelle la capacité motrice. J'aborde un certain nombre de questions de recherche liées à la conception et à la mise en œuvre d'interfaces haptiques, gestuelles et tactiles et je présente des exemples de contributions sur ces sujets. Plus intéressant encore, la perception, la cognition et l'action ne sont pas des processus séparés, mais une combinaison intégrée d'entre eux appelée la boucle sensorimotrice. Les systèmes interactifs suivent le même schéma global, avec des différences qui forme la complémentarité des humains et des machines. Le phénomène d'interaction est un ensemble de connexions entre les boucles sensorimotrices humaines et les boucles d'exécution des systèmes interactifs. Il relie les entrées aux sorties, les utilisateurs aux systèmes, et le monde physique à la cognition et au calcul dans ce que j'appelle la boucle Humain-Système. Ce modèle fournit un aperçu complet du phénomène d'interaction. Il permet d'identifier les facteurs limitatifs de l'interaction que nous pouvons aborder pour améliorer la conception des techniques d'interaction et des dispositifs interactifs
    • …
    corecore