7,305 research outputs found

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Practical Moving Target Detection in Maritime Environments Using Fuzzy Multi-sensor Data Fusion

    Get PDF
    As autonomous ships become the future trend for maritime transportation, it is of importance to develop intelligent autonomous navigation systems to ensure the navigation safety of ships. Among the three core components (sensing, planning and control modules) of the system, an accurate detection of target ships’ navigation information is critical. Within a typical maritime environment, the existence of sensor noises as well as the influences generated by varying environment conditions largely limit the reliability of using a single sensor for environment awareness. It is therefore vital to use multiple sensors together with a multi-sensor data fusion technology to improve the detection performance. In this paper, a fuzzy logic-based multi-sensor data fusion algorithm for moving target ships detection has been proposed and designed using both AIS and radar information. A two-stage fuzzy logic association method has been particularly developed and integrated with Kalman filtering to achieve a computationally efficient performance. The effectiveness of the proposed algorithm has been tested and validated in simulations where multiple target ships are transiting with complex movements

    A Comprehensive Mapping and Real-World Evaluation of Multi-Object Tracking on Automated Vehicles

    Get PDF
    Multi-Object Tracking (MOT) is a field critical to Automated Vehicle (AV) perception systems. However, it is large, complex, spans research fields, and lacks resources for integration with real sensors and implementation on AVs. Factors such those make it difficult for new researchers and practitioners to enter the field. This thesis presents two main contributions: 1) a comprehensive mapping for the field of Multi-Object Trackers (MOTs) with a specific focus towards Automated Vehicles (AVs) and 2) a real-world evaluation of an MOT developed and tuned using COTS (Commercial Off-The-Shelf) software toolsets. The first contribution aims to give a comprehensive overview of MOTs and various MOT subfields for AVs that have not been presented as wholistically in other papers. The second contribution aims to illustrate some of the benefits of using a COTS MOT toolset and some of the difficulties associated with using real-world data. This MOT performed accurate state estimation of a target vehicle through the tracking and fusion of data from a radar and vision sensor using a Central-Level Track Processing approach and a Global Nearest Neighbors assignment algorithm. It had an 0.44 m positional Root Mean Squared Error (RMSE) over a 40 m approach test. It is the authors\u27 hope that this work provides an overview of the MOT field that will help new researchers and practitioners enter the field. Additionally, the author hopes that the evaluation section illustrates some difficulties of using real-world data and provides a good pathway for developing and deploying MOTs from software toolsets to Automated Vehicles

    An Overview about Emerging Technologies of Autonomous Driving

    Full text link
    Since DARPA started Grand Challenges in 2004 and Urban Challenges in 2007, autonomous driving has been the most active field of AI applications. This paper gives an overview about technical aspects of autonomous driving technologies and open problems. We investigate the major fields of self-driving systems, such as perception, mapping and localization, prediction, planning and control, simulation, V2X and safety etc. Especially we elaborate on all these issues in a framework of data closed loop, a popular platform to solve the long tailed autonomous driving problems
    • …
    corecore