17,638 research outputs found

    Temporal structure in spiking patterns of ganglion cells defines perceptual thresholds in rodents with subretinal prosthesis.

    Get PDF
    Subretinal prostheses are designed to restore sight in patients blinded by retinal degeneration using electrical stimulation of the inner retinal neurons. To relate retinal output to perception, we studied behavioral thresholds in blind rats with photovoltaic subretinal prostheses stimulated by full-field pulsed illumination at 20 Hz, and measured retinal ganglion cell (RGC) responses to similar stimuli ex-vivo. Behaviorally, rats exhibited startling response to changes in brightness, with an average contrast threshold of 12%, which could not be explained by changes in the average RGC spiking rate. However, RGCs exhibited millisecond-scale variations in spike timing, even when the average rate did not change significantly. At 12% temporal contrast, changes in firing patterns of prosthetic response were as significant as with 2.3% contrast steps in visible light stimulation of healthy retinas. This suggests that millisecond-scale changes in spiking patterns define perceptual thresholds of prosthetic vision. Response to the last pulse in the stimulation burst lasted longer than the steady-state response during the burst. This may be interpreted as an excitatory OFF response to prosthetic stimulation, and can explain behavioral response to decrease in illumination. Contrast enhancement of images prior to delivery to subretinal prosthesis can partially compensate for reduced contrast sensitivity of prosthetic vision

    Neuro-electronic technology in medicine and beyond

    Get PDF
    This dissertation looks at the technology and social issues involved with interfacing electronics directly to the human nervous system, in particular the methods for both reading and stimulating nerves. The development and use of cochlea implants is discussed, and is compared with recent developments in artificial vision. The final sections consider a future for non-medicinal applications of neuro-electronic technology. Social attitudes towards use for both medicinal and non-medicinal purposes are discussed, and the viability of use in the latter case assessed

    Modelling the visual response to an OUReP retinal prosthesis with photoelectric dye coupled to polyethylene film

    Get PDF
    Objective. Retinal prostheses have been developed to restore vision in blind patients suffering from diseases like retinitis pigmentosa. Approach. A new type of retinal prosthesis called the Okayama University-type retinal prosthesis (OUReP) was developed by chemically coupling photoelectric dyes to a polyethylene film surface. The prosthesis works by passively generating an electric potential when stimulated by light. However, the neurophysiological mechanism of how OUReP stimulates the degenerated retina is unknown. Main results. Here, we explore how the OUReP affects retinal tissues using a finite element model to solve for the potential inside the tissue and an active Hodgkin-Huxley model based on rat vision to predict the corresponding retinal bipolar response. Significance. We show that the OUReP is likely capable of eliciting responses in retinal bipolar cells necessary to generate vision under most ambient conditions
    • 

    corecore