94,014 research outputs found

    Design of a Virtual Reality Framework for Maintainability and Assemblability Test of Complex Systems

    Get PDF
    This paper presents a unique environment whose features are able to satisfy requirements for both virtual maintenance and virtual manufacturing through the conception of original virtual reality (VR) architecture. Virtual Reality for the Maintainability and Assemblability Tests (VR_MATE) encompasses VR hardware and software and a simulation manager which allows customisation of the architecture itself as well as interfacing with a wide range of devices employed in the simulations. Two case studies are presented to illustrate VR_MATE's unique ability to allow for both maintainability tests and assembly analysis of an aircraft carriage and a railway coach cooling system respectively. The key impact of this research is the demonstration of the potentialities of using VR techniques in industry and its multiple applications despite the subjective character within the simulation. VR_MATE has been presented as a framework to support the strategic and operative objectives of companies to reduce product development time and costs whilst maintaining product quality for applications which would be too expensive to simulate and evaluate in the real world

    Design of a Virtual Reality Framework for Maintainability and Assemblability Test of Complex Systems

    Get PDF
    This paper presents a unique environment whose features are able to satisfy requirements for both virtual maintenance and virtual manufacturing through the conception of original virtual reality (VR) architecture. Virtual Reality for the Maintainability and Assemblability Tests (VR_MATE) encompasses VR hardware and software and a simulation manager which allows customisation of the architecture itself as well as interfacing with a wide range of devices employed in the simulations. Two case studies are presented to illustrate VR_MATE's unique ability to allow for both maintainability tests and assembly analysis of an aircraft carriage and a railway coach cooling system respectively. The key impact of this research is the demonstration of the potentialities of using VR techniques in industry and its multiple applications despite the subjective character within the simulation. VR_MATE has been presented as a framework to support the strategic and operative objectives of companies to reduce product development time and costs whilst maintaining product quality for applications which would be too expensive to simulate and evaluate in the real world

    Virtual bloXing - assembly rapid prototyping for near net shapes

    Get PDF
    Virtual reality (VR) provides another dimension to many engineering applications. Its immersive and interactive nature allows an intuitive approach to study both cognitive activities and performance evaluation. Market competitiveness means having products meet form, fit and function quickly. Rapid Prototyping and Manufacturing (RP&M) technologies are increasingly being applied to produce functional prototypes and the direct manufacturing of small components. Despite its flexibility, these systems have common drawbacks such as slow build rates, a limited number of build axes (typically one) and the need for post processing. This paper presents a Virtual Assembly Rapid Prototyping (VARP) project which involves evaluating cognitive activities in assembly tasks based on the adoption of immersive virtual reality along with a novel nonlayered rapid prototyping for near net shape (NNS) manufacturing of components. It is envisaged that this integrated project will facilitate a better understanding of design for manufacture and assembly by utilising equivalent scale digital and physical prototyping in one rapid prototyping system. The state of the art of the VARP project is also presented in this paper

    Virtual assembly rapid prototyping of near net shapes

    Get PDF
    Virtual reality (VR) provides another dimension to many engineering applications. Its immersive and interactive nature allows an intuitive approach to study both cognitive activities and performance evaluation. Market competitiveness means having products meet form, fit and function quickly. Rapid Prototyping and Manufacturing (RP&M) technologies are increasingly being applied to produce functional prototypes and the direct manufacturing of small components. Despite its flexibility, these systems have common drawbacks such as slow build rates, a limited number of build axes (typically one) and the need for post processing. This paper presents a Virtual Assembly Rapid Prototyping (VARP) project which involves evaluating cognitive activities in assembly tasks based on the adoption of immersive virtual reality along with a novel non-layered rapid prototyping for near net shape (NNS) manufacturing of components. It is envisaged that this integrated project will facilitate a better understanding of design for manufacture and assembly by utilising equivalent scale digital and physical prototyping in one rapid prototyping system. The state of the art of the VARP project is also presented in this paper

    The use of non-intrusive user logging to capture engineering rationale, knowledge and intent during the product life cycle

    Get PDF
    Within the context of Life Cycle Engineering it is important that structured engineering information and knowledge are captured at all phases of the product life cycle for future reference. This is especially the case for long life cycle projects which see a large number of engineering decisions made at the early to mid-stages of a product's life cycle that are needed to inform engineering decisions later on in the process. A key aspect of technology management will be the capturing of knowledge through out the product life cycle. Numerous attempts have been made to apply knowledge capture techniques to formalise engineering decision rationale and processes; however, these tend to be associated with substantial overheads on the engineer and the company through cognitive process interruptions and additional costs/time. Indeed, when life cycle deadlines come closer these capturing techniques are abandoned due the need to produce a final solution. This paper describes work carried out for non-intrusively capturing and formalising product life cycle knowledge by demonstrating the automated capture of engineering processes/rationale using user logging via an immersive virtual reality system for cable harness design and assembly planning. Associated post-experimental analyses are described which demonstrate the formalisation of structured design processes and decision representations in the form of IDEF diagrams and structured engineering change information. Potential future research directions involving more thorough logging of users are also outlined

    Remote Real-Time Collaboration Platform enabled by the Capture, Digitisation and Transfer of Human-Workpiece Interactions

    Get PDF
    In this highly globalised manufacturing ecosystem, product design and verification activities, production and inspection processes, and technical support services are spread across global supply chains and customer networks. Therefore, a platform for global teams to collaborate with each other in real-time to perform complex tasks is highly desirable. This work investigates the design and development of a remote real-time collaboration platform by using human motion capture technology powered by infrared light based depth imaging sensors borrowed from the gaming industry. The unique functionality of the proposed platform is the sharing of physical contexts during a collaboration session by not only exchanging human actions but also the effects of those actions on the task environment. This enables teams to remotely work on a common task problem at the same time and also get immediate feedback from each other which is vital for collaborative design, inspection and verifications tasks in the factories of the future

    A constraint manager to support virtual maintainability

    Get PDF
    Virtual prototyping tools have already captivated the industry's interest as viable design tool. One of the key challenges for the research community is to extend the capabilities of Virtual Reality technology beyond its current scope of ergonomics and design reviews. The research presented in this paper is part of a larger research programme that aims to perform maintainability assessment on virtual prototypes. This paper discusses the design and implementation of a geometric constraint manager that has been designed to support physical realism and interactive assembly and disassembly tasks within virtual environments. The key techniques employed by the constraint manager are direct interaction, automatic constraint recognition, constraint satisfaction and constrained motion. Various optimization techniques have been implemented to achieve real-time interaction with large industrial models
    • 

    corecore