20,464 research outputs found

    Applying Machine Learning Tools to Detect Cyber Attacks in Financial Firms and Banks

    Get PDF
    The use of machine learning in cybersecurity is becoming increasingly important for detecting cyber attacks in financial firms and banks. Machine learning offers improved scalability, efficiency, and actionability compared to traditional methods that rely on human interaction. Various machine learning techniques, including deep learning, support vector machines, and Bayesian classification, have shown promise in detecting cyber attacks. This study uses machine-learning techniques and tools to detect cyber attacks in financial firms and banks, and recommends the use of XGBoost due to its high performance. Ensuring cybersecurity in financial firms and banks is crucial for maintaining the integrity, confidentiality, and transparency of transactions in virtual and online banking systems

    An Overview on Application of Machine Learning Techniques in Optical Networks

    Get PDF
    Today's telecommunication networks have become sources of enormous amounts of widely heterogeneous data. This information can be retrieved from network traffic traces, network alarms, signal quality indicators, users' behavioral data, etc. Advanced mathematical tools are required to extract meaningful information from these data and take decisions pertaining to the proper functioning of the networks from the network-generated data. Among these mathematical tools, Machine Learning (ML) is regarded as one of the most promising methodological approaches to perform network-data analysis and enable automated network self-configuration and fault management. The adoption of ML techniques in the field of optical communication networks is motivated by the unprecedented growth of network complexity faced by optical networks in the last few years. Such complexity increase is due to the introduction of a huge number of adjustable and interdependent system parameters (e.g., routing configurations, modulation format, symbol rate, coding schemes, etc.) that are enabled by the usage of coherent transmission/reception technologies, advanced digital signal processing and compensation of nonlinear effects in optical fiber propagation. In this paper we provide an overview of the application of ML to optical communications and networking. We classify and survey relevant literature dealing with the topic, and we also provide an introductory tutorial on ML for researchers and practitioners interested in this field. Although a good number of research papers have recently appeared, the application of ML to optical networks is still in its infancy: to stimulate further work in this area, we conclude the paper proposing new possible research directions

    A traffic classification method using machine learning algorithm

    Get PDF
    Applying concepts of attack investigation in IT industry, this idea has been developed to design a Traffic Classification Method using Data Mining techniques at the intersection of Machine Learning Algorithm, Which will classify the normal and malicious traffic. This classification will help to learn about the unknown attacks faced by IT industry. The notion of traffic classification is not a new concept; plenty of work has been done to classify the network traffic for heterogeneous application nowadays. Existing techniques such as (payload based, port based and statistical based) have their own pros and cons which will be discussed in this literature later, but classification using Machine Learning techniques is still an open field to explore and has provided very promising results up till now

    Evaluation of machine-learning methods for ligand-based virtual screening

    Get PDF
    Machine-learning methods can be used for virtual screening by analysing the structural characteristics of molecules of known (in)activity, and we here discuss the use of kernel discrimination and naive Bayesian classifier (NBC) methods for this purpose. We report a kernel method that allows the processing of molecules represented by binary, integer and real-valued descriptors, and show that it is little different in screening performance from a previously described kernel that had been developed specifically for the analysis of binary fingerprint representations of molecular structure. We then evaluate the performance of an NBC when the training-set contains only a very few active molecules. In such cases, a simpler approach based on group fusion would appear to provide superior screening performance, especially when structurally heterogeneous datasets are to be processed

    Adversarial Detection of Flash Malware: Limitations and Open Issues

    Full text link
    During the past four years, Flash malware has become one of the most insidious threats to detect, with almost 600 critical vulnerabilities targeting Adobe Flash disclosed in the wild. Research has shown that machine learning can be successfully used to detect Flash malware by leveraging static analysis to extract information from the structure of the file or its bytecode. However, the robustness of Flash malware detectors against well-crafted evasion attempts - also known as adversarial examples - has never been investigated. In this paper, we propose a security evaluation of a novel, representative Flash detector that embeds a combination of the prominent, static features employed by state-of-the-art tools. In particular, we discuss how to craft adversarial Flash malware examples, showing that it suffices to manipulate the corresponding source malware samples slightly to evade detection. We then empirically demonstrate that popular defense techniques proposed to mitigate evasion attempts, including re-training on adversarial examples, may not always be sufficient to ensure robustness. We argue that this occurs when the feature vectors extracted from adversarial examples become indistinguishable from those of benign data, meaning that the given feature representation is intrinsically vulnerable. In this respect, we are the first to formally define and quantitatively characterize this vulnerability, highlighting when an attack can be countered by solely improving the security of the learning algorithm, or when it requires also considering additional features. We conclude the paper by suggesting alternative research directions to improve the security of learning-based Flash malware detectors

    Topic-centric Classification of Twitter User's Political Orientation

    Get PDF
    In the recent Scottish Independence Referendum (hereafter, IndyRef), Twitter offered a broad platform for people to express their opinions, with millions of IndyRef tweets posted over the campaign period. In this paper, we aim to classify people's voting intentions by the content of their tweets---their short messages communicated on Twitter. By observing tweets related to the IndyRef, we find that people not only discussed the vote, but raised topics related to an independent Scotland including oil reserves, currency, nuclear weapons, and national debt. We show that the views communicated on these topics can inform us of the individuals' voting intentions ("Yes"--in favour of Independence vs. "No"--Opposed). In particular, we argue that an accurate classifier can be designed by leveraging the differences in the features' usage across different topics related to voting intentions. We demonstrate improvements upon a Naive Bayesian classifier using the topics enrichment method. Our new classifier identifies the closest topic for each unseen tweet, based on those topics identified in the training data. Our experiments show that our Topics-Based Naive Bayesian classifier improves accuracy by 7.8% over the classical Naive Bayesian baseline
    • …
    corecore