474 research outputs found

    Container-based network function virtualization for software-defined networks

    Get PDF
    Today's enterprise networks almost ubiquitously deploy middlebox services to improve in-network security and performance. Although virtualization of middleboxes attracts a significant attention, studies show that such implementations are still proprietary and deployed in a static manner at the boundaries of organisations, hindering open innovation. In this paper, we present an open framework to create, deploy and manage virtual network functions (NF)s in OpenFlow-enabled networks. We exploit container-based NFs to achieve low performance overhead, fast deployment and high reusability missing from today's NFV deployments. Through an SDN northbound API, NFs can be instantiated, traffic can be steered through the desired policy chain and applications can raise notifications. We demonstrate the systems operation through the development of exemplar NFs from common Operating System utility binaries, and we show that container-based NFV improves function instantiation time by up to 68% over existing hypervisor-based alternatives, and scales to one hundred co-located NFs while incurring sub-millisecond latency

    Arbitrary Packet Matching in OpenFlow

    Get PDF
    OpenFlow has emerged as the de facto control protocol to implement Software-Defined Networking (SDN). In its current form, the protocol specifies a set of fields on which it matches packets to perform actions, such as forwarding, discarding or modifying specific protocol header fields at a switch. The number of match fields has increased with every version of the protocol to extend matching capabilities, however, it is still not flexible enough to match on arbitrary packet fields which limits innovation and new protocol development with OpenFlow. In this paper, we argue that a fully flexible match structure is superior to continuously extending the number of fields to match upon. We use Berkeley Packet Filters (BPF) for packet classification to provide a protocol-independent, flexible alternative to today’s OpenFlow fixed match fields. We have implemented a prototype system and evaluated the performance of the proposed match scheme, with a focus on the time it takes to execute and the memory required to store different match filter specifications. Our prototype implementation demonstrates that line-rate arbitrary packet classification can be achieved with complex BPF programs

    Programming Protocol-Independent Packet Processors

    Full text link
    P4 is a high-level language for programming protocol-independent packet processors. P4 works in conjunction with SDN control protocols like OpenFlow. In its current form, OpenFlow explicitly specifies protocol headers on which it operates. This set has grown from 12 to 41 fields in a few years, increasing the complexity of the specification while still not providing the flexibility to add new headers. In this paper we propose P4 as a strawman proposal for how OpenFlow should evolve in the future. We have three goals: (1) Reconfigurability in the field: Programmers should be able to change the way switches process packets once they are deployed. (2) Protocol independence: Switches should not be tied to any specific network protocols. (3) Target independence: Programmers should be able to describe packet-processing functionality independently of the specifics of the underlying hardware. As an example, we describe how to use P4 to configure a switch to add a new hierarchical label

    A recursive approach to network management

    Full text link
    Nowadays there is an increasing need for a general management paradigm which can simplify network management and further enable network innovations. In this paper, in response to limitations of current Software Defined Networking (SDN) management solutions, we propose a recursive approach to enterprise network management, where network management is done through managing various Virtual Transport Networks (VTNs). Different from the traditional virtual network model which mainly focuses on routing/tunneling, our VTN provides communication service with explicit Quality-of-Service (QoS) support for applications via transport flows, and it involves all mechanisms (e:g:, routing, addressing, error and flow control, resource allocation) needed to support such transport flows. Based on this approach, we design and implement a management layer, which recurses the same VTN-based management mechanism for enterprise network management. Comparing with an SDN-based management approach, our experimental results show that our management layer achieves better network performance

    Multi-layer virtual transport network management

    Full text link
    Nowadays there is an increasing need for a general paradigm which can simplify network management and further enable network innovations. Software Defined Networking (SDN) is an efficient way to make the network programmable and reduce management complexity, however it is plagued with limitations inherited from the legacy Internet (TCP/IP) architecture. In this paper, in response to limitations of current Software Defined Networking (SDN) management solutions, we propose a recursive approach to enterprise network management, where network management is done through managing various Virtual Transport Networks (VTNs) over different scopes (i.e., regions of operation). Different from the traditional virtual network model which mainly focuses on routing/tunneling, our VTN provides communication service with explicit Quality-of-Service (QoS) support for applications via transport flows, and it involves all mechanisms (e.g., addressing, routing, error and flow control, resource allocation) needed to support such transport flows. Based on this approach, we design and implement a management architecture, which recurses the same VTN-based management mechanism for enterprise network management. Our experimental results show that our management architecture achieves better performance.National Science Foundation awards: CNS-0963974 and CNS-1346688
    • …
    corecore