B Universit
of GlasgowY

vvvvvvvvvvvvvv

Jouet, S., Cziva, R. and Pezaros, D. P. (2016) Arbitrary Packet Matching in
OpenFlow. In: 16th International Conference on High Performance
Switching and Routing (HPSR), Budapest, Hungary, 1-4 Jul 2015, ISBN
9781479998715 (doi:10.1109/HPSR.2015.7483106)

This is the author’s final accepted version.

There may be differences between this version and the published version.

You are advised to consult the publisher’s version if you wish to cite from
it.

http://eprints.gla.ac.uk/105925/

Deposited on: 28 January 2016

Enlighten — Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://dx.doi.org/10.1109/HPSR.2015.7483106
http://eprints.gla.ac.uk/105925/
http://eprints.gla.ac.uk/

Arbitrary Packet Matching in OpenFlow

Simon Jouet, Richard Cziva and Dimitrios P. Pezaros
School of Computing Science, University of Glasgow, Glasgow, G12 8QQ, Scotland
{s.jouet.1, r.cziva.l} @research.gla.ac.uk, dimitrios.pezaros @ glasgow.ac.uk

Abstract—OpenFlow has emerged as the de facto control
protocol to implement Software-Defined Networking (SDN). In
its current form, the protocol specifies a set of fields on which
it matches packets to perform actions, such as forwarding,
discarding or modifying specific protocol header fields at a switch.
The number of match fields has increased with every version of
the protocol to extend matching capabilities, however, it is still
not flexible enough to match on arbitrary packet fields which
limits innovation and new protocol development with OpenFlow.

In this paper, we argue that a fully flexible match structure
is superior to continuously extending the number of fields
to match upon. We use Berkeley Packet Filters (BPF) for
packet classification to provide a protocol-independent, flexible
alternative to today’s OpenFlow fixed match fields. We have
implemented a prototype system and evaluated the performance
of the proposed match scheme, with a focus on the time it takes
to execute and the memory required to store different match
filter specifications. Our prototype implementation demonstrates
that line-rate arbitrary packet classification can be achieved with
complex BPF programs.

I. INTRODUCTION

Software-Defined Networking (SDN) is an emerging
paradigm to centralise the control plane of large communica-
tion networks and separate it from the data plane responsible
for packet processing and forwarding. SDN makes it easier to
introduce new abstractions, simplifies network management,
and facilitates network evolution and innovation. It has been
used for traffic engineering, QoS enforcement and network
virtualization. OpenFlow [1] is the most popular and widely
deployed realisation of SDN, and has become the de facto
standard due to its open-source implementation, well-defined
API and standardised protocol. OpenFlow is designed to use
hardware components of existing switches such as the Ternary
Content Addressable Memory (TCAM) to provide fast packet
classification in the data path and alleviate slow CPU-based
packet classification [2]. As a result of the open protocol
design, reference implementation and backward compatibility
to legacy hardware, network vendors have quickly adopted,
deployed and maintained OpenFlow-enabled switches.

The first production-ready release of OpenFlow was able
to match on 12 fields of the packet header from L1 to
L4, while the most recent version of the protocol (1.5) can
match on 44 fields. Table I shows each major revision of the
OpenFlow protocol alongside the number of supported fields,
the maximum number of fields a single flow can match on
(referred as depth), and the maximum number of bits a single
flow entry requires. The large increase in size between versions
1.1 and 1.2 is related to the addition of IPv6 support. This
growth over time shows that the number of supported fields
is not likely to slow down as network requirements evolve to
support new protocols, such as, e.g., GRE, VXLAN, STT and

TABLE I: Number of fields supported by OpenFlow for each
protocol revision and associated storage required for individual
flow entries. The depth range corresponds to the minimum core
set of fields to a complete implementation including optional
fields.

OF Version | Release date | Match fields | Depth | Size (bits)
<1.0 Mar 2008 10 10 248
1.0 Dec 2009 12 12 264
1.1 Feb 2011 15 15 320
1.2 Dec 2011 36 9-18 603
1.3 Jun 2012 40 9-22 701
1.4 Oct 2013 41 9-23 709
1.5 Dec 2014 44 10-26 773

OTYV, as well as operator-specific protocols and encapsulations.
However, expanding OpenFlow to support more fields requires
TCAM size in switches to grow accordingly, or otherwise
incur a significant reduction in the number of flows installed
at the switch at any given time. On a standard OpenFlow
Top-of-Rack switch, such as, e.g., a Pronto 3290 (FireBolt
3 switching ASIC) running OpenFlow 1.0, around 2000 flows
can be simultaneously inserted [3]. If the same switch was
to support OpenFlow 1.5 and following the growth shown in
Table I, only approx. 700 flow entries could be accommodated.

OpenFlow has been designed for innovation in network
protocols [1] with a limited number of supported fields.
However, even if kept up to date, it cannot satisfy the flexibility
requirements of a clean-slate protocol design [4]. The current
approach to match packets on other than OpenFlow fields is
to do it at the OpenFlow controller, resulting in additional
latency, network traffic and controller load. This problem of
fixed match fields has been acknowledged by the introduction
of OpenFlow eXtended Match fields (OXM) in version 1.2,
and the addition of the packet type awareness in the pipeline of
1.5. Another limitation of the current matching, is the inability
to do logical operations other than equality such as “greater
than” and “lower than”, necessary for range matching. We
argue that packet matching should be designed independently
of any protocol implementation, and allow the control plane
to specify the matching process through a set of platform-
independent instructions designed to match packets at every
layer. Through such instruction set, the execution of the
matching could be left as an implementation detail relying on
software optimisations (such as Just In Time (JIT) compilation)
or hardware acceleration using, e.g., FPGAs or ASICs.

In 1992, McCanne and Jacobson defined the Berkeley
Packet Filter (BPF) [5], a widely-used approach for packet
filtering within the Linux kernel!, subsequently used by tcp-
dump and libpcap. Even though now over 20 years old, BPF

Thttps://www.kernel.org/doc/Documentation/networking/filter.txt

ether dst <dst>

1d[8]
jeq# 0x56789012 jt 2 jf 19

________ ! Idh[6]
________ I jeq# 0x1234 jt4 jf 19

ether proto IPv6

(ether proto IPv4)— -(

)_ ! [Idh[12]

]----[jeq# 0x800 jt 11 jf 19]

dst host <dst_ip>

eth_dst
eth_type

I Idb[23]
________ \ jeq# 0x6 jt 13 f 19
I

jeq# 0x86dd jt 6 jf 10

..... _———

|
I
Pvd) IPv6) ! (ip proto TCP)— -(ip proto UDP)— 1 [Idb[zo] Idh[20]
i : I (===t ====19 jeq# 0x6 jt 8 jf 19 jset# Ox1fff jt 19 jf 15
}p_[;)roto]p_groto (tcp src port <port>)— (udp src port <port>)-| a ! JI ! ! - !
ipv4_src ipv6_src -
. : ¢ i "
ipv4_dst ipv6_dst (" tepdstport<port>)= (_ udp dstport <port> }- X }22%56216“ o :SEI[);([::]]&OX”
* * Layerd ! jeq# 0x16 jt 18 jf 19
|
o e |
tcp_src udp_src
tep_dst udp_dst

(b) Directed acyclic control flow graph

(a) Mandatory match fields required by
OpenFlow 1.3 represented as a tree. A
depth of 9 for L1-L4 matching can be seen,
in relation to the depth column of table I.

(CFG) representation of OF 1.3 match
fields. Conditional jumps are shown as a
solid arrow on true and dashed on false.

(c) Example of a BPF program matching on
source mac address, IPv4 and IPv6 packets
with a TCP source port of 22. The paths
leading to a MISS have been omitted for
clarity.

Fig. 1: OpenFlow 1.3 field specification and the associated transformation into a BPF program.

is still maintained in the kernel and doesn’t show any signs of
deprecation. On the contrary, the recent integration of extended
BPF (eBPF) in Linux kernel 3.18 extends its use on non-
networking parts of the kernel. An often forgotten fact is
that BPF was defined as a “pseudo-machine” (currently called
virtual-machine) with a goal to provide protocol independence
through a simple but general instruction set designed for fast
interpretation and execution.

In this paper, we present arbitrary matching for OpenFlow
switches. We use BPF as the underlying packet matching
instruction set and define a new OXM to match packets using
BPF at the switches. We show that our proposed match reduces
the number of flow entries, allows matching on fields and
protocols not supported by current OpenFlow, and mitigates
the use of the SDN controller for the classification of packets
unmatchable by the switch. We present a prototype imple-
mentation using a software switch and finally highlight the
feasibility of BPF matching for line-rate processing.

The remainder of the paper is structured as follows. Sec-
tion II explains the relationship between BPF and OpenFlow
match fields. Section III shows how BPF can be used for
OpenFlow matching and presents the extension to OpenFlow
match fields we used. Section IV gives an overview of our
prototype system consisting of a high-level match language,
an OpenFlow controller, and a software switch. Section V
evaluates the feasibility of BPF for line-rate matching con-
sidering memory requirements and processing speed. Finally,
section VI concludes the paper.

II. BPF FOR OPENFLOW

Since 1992, the BPF-based packet filters have become
essential to build network services. BPF has been used for
traffic monitoring [6], network engineering [7] and intrusion
detection [8]. The most popular use-case today is in tcpdump
where filter expressions are compiled to BPF bytecode and

executed in BPF engines such as in libpcap. In the last 15
years, many extensions to BPF have been released and used.
For example, xPF [9] provides packet filtering for low-cost,
high-speed networking, while BPF+ [10] extends BPF to a
general packet filter framework consisting of a filter program
translator, a byte code optimizer, a byte code safety verifier and
a just-in-time assembler for increased performance. Swift [11]
provides dynamic, high-speed packet filtering. To the best of
our knowledge, we are the first to use BPF for packet matching
in OpenFlow networks.

One of the original design criteria of BPF has been to
only allow forward jumps, resulting in a non Turing-complete
language that can be synthesized into a directed acyclic
Control Flow Graph (CFG). Limiting to only forward jumps,
prevents loops and therefore allows a worst-case execution
time to be calculated, necessary for realtime packet filtering
and classification. Furthermore, CFGs can be directly mapped
to code for a register machine suitable for modern processors
and allowing a single parse per layer, therefore reducing the
number of memory accesses. Capping memory accesses is
in itself important since they can be the limiting factor on
how fast packets can be matched [12]. Therefore, with its
realtime memory and processing properties as well as protocol
and platform independence, BPF is a good fit for packet
classification. However, current implementations of BPF are
designed for packet filtering at an end-host rather than on
network devices and therefore match on layer L2 and above
(not L1), preventing a full translation from OpenFlow match
fields to BPE.

Figure la shows the graph of all mandatory match fields
between L1 and L4 defined in OpenFlow 1.3 specification and
necessary for any OpenFlow compliant switch implementation.
This graph also shows the mutual exclusion between IPv4
and IPv6 header fields depending on the Ethernet type. As
this figure only shows the mandatory fields, it matches the
minimum depth presented in Table I. In order to translate

0 78 1516 2324 31

length organisation id| standard id protocol id

payload[length — 4]

Fig. 2: Proposed Layer 1 structure containing its overall length,
identifiers (organisation, standard and protocol id) and payload.

the OpenFlow match fields into a BPF program, the simplest
approach is to convert the match fields from Figure la to a
CFG structure that can be subsequently transformed to BPF.
Figure 1b shows the translation from OpenFlow to a CFG using
tcpdump’s BPF filter syntax> with each node representing a
packet field and each edge a transition, depending on the
comparison result. The two leaf nodes MISS and MATCH
represent the return state of the program. Finally, in Figure 1c
we show a BPF program matching on all packets from Ethernet
source 12:34:56:78:90:12, with IPv4 or IPv6 at L3, TCP at L4
and a source port of 22.

To implement the match shown in Figure 1c using Open-
Flow, two separate rules are required: one for IPv4 and one
for IPv6, instead of the single BPF rule. Furthermore, if we
wanted to match traffic on, e.g., all system ports (all source
or destination ports between 0 and 1024), a single BPF match
using jlt 1024 for the source and destination ports would be
required, instead of 2048 individual OpenFlow flow entries
(1024 matching on source and 1024 matching on destination
ports). Requiring so many flow entries would use most of the
entries in a traditional ToR switch preventing any additional
rules. Finally, if one needed to match TTL-expiring packets in
order to, e.g., detect loops in the network, standard OpenFlow
match fields are not an option, since there is no match in the
protocol for this particular field. However, a single BPF filter
containing only 6 instructions can be used.

III. DESIGN

In this Section, we define a L1 structure that can be
prepended to the normal L2 packet for arbitrary packet classifi-
cation using a BPF program. Then, we present the design of an
experimental OXM field for OpenFlow used by the controller
to send BPF programs to switches.

A. LI matching with BPF

BPF was originally designed for packet filtering on a
single interface, with only the packet content passed to the
BPF engine. Therefore, no information is available about the
packets’ logical or physical input ports (L1). To allow packet
classification using BPF and the translation from OpenFlow
matches, L1 information must be readily accessible by the
instruction set. The main challenge at this stage is to allow
L1 matching to be arbitrary the same way L2+ is. Without
an arbitrary L1 matching structure, the same limitation as

Zhttp://www.tcpdump.org/manpages/pcap-filter. 7.txt

0 78 1516 2324 31

1

input port

8 1 3 12
Ll length organisation id standard id protocol id

12:34:56:78:90:ab

Destination MAC

L2

ab:cd:ef:12:34:56

Source MAC

0x0800

Ether Type

Layer 3+

Fig. 3: Example packet structure passed in the BPF engine.
The packet arrived on port 1 over a 1000BASE-T link.

OpenFlow’s will emerge requiring constant updates to support
emerging protocols and requirements.

To use L1 information with BPF, we have considered
two options: the first one is to use the extended addressing
mode of Id and Idx instructions; and the second is to use
the normal addressing scheme for L1+ layers instead of L2+.
Using the extended addressing mode, BPF can load additional
information to the accumulator or index register of the engine.
BPF extensions have been used in the Linux kernel to provide
additional information to the filter such as the length of
the packet, processor identifier, and the interface index. This
approach is suitable for the Linux kernel since accessing L1
information for packet filtering is unlikely as a single filter
cannot match packets from multiple interfaces. However, for
a packet classifier, the interface which the packet arrived at
as well as other L1 information are necessary to establish a
forwarding decision. For instance, in a learning switch, the
source MAC address is associated with the switch’s physical
input port. Therefore, L1 information is as critical as the layers
above and using two different addressing modes for L1 and
L2+ is counter-intuitive. Our proposed approach is to pass to
the BPF engine not only the L2+ packet but all the layers
including L1, allowing the same instruction set and engine to
be used for packet classification.

Since there is no formal specification of the L1 layer, a
proposed format is shown in Figure 2. This structure allows
fast BPF execution by aligning the header on 32 bits (the size
of a word in BPF) as well as providing the length. The length
is the number of bytes of the L1 structure and can be loaded
in the index register using ldxb 0, and therefore allow the L2
layer to be directly accessed using the index register as the
offset. The identifiers for L1 have been split to an organisation,
standard, and protocol identifier, each being a single byte wide.
The structure and length of the L1 payload are associated to
the identifier and relate to the information available at the
particular physical layer. Since most of the widely used L1
protocols have been specified by the IEEE 802 LAN/MAN
Standards Committee (e.g., IEEE 802.3x and 802.11x), our de-
sign choice was to map IEEE 802 Standards with organisation
id of 1. Similarly, other organisation ids could be associated
with, e.g., the International Organization for Standardization
(ISO), the International Telecommunication Union (ITU), etc.
Subsequently, the standard id refers to a standard within the
organisation such as, e.g., 3 for IEEE 802.3 Ethernet, 11898 for

15 23 31 63

OXM { class field p| length experimenter id
header OXFFFF 1 52 0x{f000077
1d jt it (4]
0x20 0 0 0x00000004
jne jt if #2
Ox15 0 3 0x00000002
Idh jt it [20]
BPF 0x28 0 0 0x00000014
jne jt if #0x800
0x15 0 1 000000800
ret jt it match
0x6 0 0 0x00008tfF
ret jt it miss
0x6 0 0 000000000

Fig. 4: Example BPF experimenter OXM

ISO CAN bus, or ITU 992.1 for ADSL. Finally, the protocol id
would be a variant such as, e.g., an for I0GBASE-T (802.3an)
or B for ADSL over ISDN (xDSL Annex B).

In OpenFlow, the only mandatory L1 field is the switch
input port. This is logical for wired Ethernet, but it is not
suitable in a wireless environment where one might be inter-
ested in, e.g., a particular channel. Using the payload field
of the L1 structure, either the input port for Ethernet or a
channel number for WiFi can be matched upon depending on
the identifiers (organisation, standard and protocol ids). Using
these 3 identifiers, it is possible for a BPF program to match on
all Ethernet or WiFi packets by loading and comparing bytes 2
(organisation id) and 3 (standard id). Using the protocol id, it
is possible to match on specific link types, e.g., a I0GBASE-
T link or ranges of protocol revisions such as 802.3-2015
protocol amendments (802.3bk/bj/bm). An example packet
structure passed on to the BPF engine is shown in Figure 3.
The example shows a 1000BASE-T (802.3ab) frame received
on port 1 from source ab:cd:ef:12:34:56 to 12:34:56:78:90:ab
carrying an IPv4 payload.

B. OpenFlow OXM

From OpenFlow 1.2, the protocol can be extended to
support additional matching capabilities. A Type-Length-Value
(TLV) structure, called OpenFlow eXtensible Match (OXM),
can be used to identify a specific field using a class and field
identifier as well as a value to match against and optional
bitmask. This approach provides a consistent way to use the
OpenFlow protocol between switches with different supported
match fields. Until version 1.2, the match structure had to be
modified both in the switch and controller. If either one had a
modified structure, the protocol at both ends would be different
and therefore incompatible. OXM has been used for example
in SensorFlow [13] to transfer Concatenated Attribute-Value
(CAV) pairs for sensor nodes and for IPv6 support [14].

Our OXM field has been designed and implemented to
transfer a compiled, platform-independent BPF program from
the controller to the switch. The structure of the field is shown
in Figure 4, containing an OXM header and 6 BPF instructions
as the payload. A single BPF instruction takes 8 bytes: 2 bytes
for the opcode, 1 byte for each true and false jump pointers,
and 4 bytes for a generic multi-use argument. Since the length
of an OXM payload in the current OpenFlow specification
is stored in a byte and includes the size of the experimenter

header (255 — 4), our OXM field has a fixed size of 248 bytes
which can hold a BPF program of up to 31 instructions (as
a comparison, the BPF program shown in Figure 1c consists
of 20 instructions). This limitation of 255 bytes is for a single
oxm_field within an ofp_match structure. Therefore, using the
current OpenFlow protocol, it is possible to send larger BPF
programs by splitting them into fragments the size of a single
match field. The OpenFlow specification states that for a given
oxm_class, oxm_field, and oxm_hasmask, the length must be
constant to simplify parsing in software. In order to support
this, the payload sent containing the BPF instructions is padded
with zeros up to 248 bytes.

IV. PROTOTYPE IMPLEMENTATION

In this Section, we present a prototype implementation of
the proposed system. The prototype is publicly available from
our GitHub repositories®*>.

A. Match syntax

BPF programs can be written using an assembly-like
language as shown in Figure 4 with tools such as bpf_asm
included in the Linux kernel’s networking tools. However,
writing a filter this way can be complicated and requires
a deep understanding of the packet structure at each layer.
Therefore, these filters are usually compiled from a higher,
more natural language, such as the filter syntax used by
tcpdump or WireShark. For instance, using tcpdump, the filter
“ip src 10.0.0.1” is compiled into a BPF machine language
containing instructions similar to Figure 1c.

Since we added L1 information to the packet structure
for classification purposes, existing filter compilers must be
modified to offset the load operations accessing packet content
by the length of the L1 header. For instance, in tcpdump where
packets are filtered at L2, a BPF program matching on the
source MAC must read bytes 6 to 11. With the L1 header,
reading the source MAC address of a packet carried over an
Ethernet link can be done by reading bytes 8 to 13 (shifted by
8, 4 for the header and 4 for the input port). We have written
a tool on top of tcpdump to automatically shift the memory
location of the load instructions and to extend the syntax to
add 11_length, organisation_id, standard_id, protocol_id and
input_port. This tool is also able to translate OpenFlow match
rules to a filter using tcpdump syntax and subsequently compile
it into a BPF program. This translation and compilation process
follows the three subfigures of Figure 1.

B. Controller design

We used the Ryu controller [15] as it supports recent
OpenFlow specifications (up to OF 1.4) and enables fast
prototyping in Python. We have implemented the appropriate
converting methods for our OXM field from and to OpenFlow’s
wire protocol using Python’s pack and unpack methods. A
new class called BPFProgram has been defined to represent
the BPF program in a Python data structure containing tuples
of the opcode, two jump pointers (true and false) and the
argument. In the example below in Code 1, we show a simple

30penflow to BPF: https:/github.com/simon-jouet/ofbpftranslator
4Software switch: https://github.com/czivar/ofsoftswitch13
SController: https://github.com/czivar/ryu

OpenFlow controller with BPF OXM field support |

[]

OF 1.3 secure channel -

Software Switch T
Meter tables
W (OpenFlow packet parsing)
flow #1 - match: in_port=1, IP; action: out: 2

l : Group tables | |
NetBee Parser - -
(flow extract)
flow #2 - match: bpf_match=<BPF>, IP; action: drop
<<<<< flow #3 - match: bpf_match=<BPF2>; action: out: 1 |-+ |.-»

Flow tables output
call bpf_filter(<BPF>, packet)
Libpcap

ports
Fig. 5: Architecture of our BPF-enabled software switch, based
on the OpenFlow 1.3 Software Switch (OfSoftSwitch) [16].

input
ports

<<<<< ---> NetBee link

BPFProgram that has two match conditions: the packet needs
to come from input port 2 (line #2 loads the appropriate word
and #3 compares it) and it needs to be an IP packet (line
#4 and #5) to reach the match (line #6). This BPFProgram
can be set as a parameter to Ryu’s OFPMatch() structure
and installed using a standard OpenFlow-compliant FlowMod
message.

1 BPFProgram((

2 (0x20, 0, 0, 0x00000004), # load word

3 (0x15, 0, 3, 0x00000002), # in _port: 2

4 (0x28, 0, 0, 0x00000014), # load half word
5 (0x15, 0, 1, 0x00000800), # IPv4 (0x800)

6 (0x6, 0, 0, OxO000ffff), # MATCH

7 (O0x6, 0, 0, 0x00000000), # MISS

8 1))

Code 1: BPFProgram sent by the Ryu controller. Figure 4
shows the OXM structure of the same BPF program.

C. Switch instrumentation

Our prototype switch is based on Ericson’s OpenFlow 1.3
Software Switch [16], an open-source, user-space software
switch implemented in C and built on top of Stanford’s Open-
Flow reference switch. It is designed for fast experimentation
purposes with the latest OpenFlow versions. The switch, as
seen in Figure 5, has been extended to use BPF filters for
packet matching by calling libpcap’s user-space bpf_filter().
The original switch, as shown in the architecture, relies on
NetBee, a powerful packet processing library that parses L2+
packets from input ports defined by NetPDL [17], an XML-
based protocol description language.

The first major modification in the switch was altering oflib,
the library converting to and from OpenFlow’s wire protocol
to understand and parse our new OXM match field described
in Section III-B and store the BPF program at the flow entry’s
match structure. Also, Ofdatapath, the actual implementation
of the switching logic has been modified to pass packets to the
BPF classifier if they are matched with a flow that contains a
BPF match. A BPF engine takes a BPF program (which can be
found in a match structure of the flow entry in our case) and a

TABLE II: Comparing different match scenarios using Open-
Flow match fields and BPF OXM match fields.

OF 1.3 match fields BPF OXM
Match # Flow | TCAM # Flow | # BPF | RAM
ate entries space (B) entries inst.’s space (B)
[in_port [1 [4 [1 [4 [32 |
[all fields [1 | 88 [1 | 34 [272 |
[system ports [2048 [8192 [1 [15 [120 |
[in_port exclusion | 23 | 92 [1 [4 | 32 |
[TTL expiry [- [- [1 [6 [48 |

linear pointer to the packet. Since we require L1 information
in the BPF engine (as described in Section III-A) we prepend
L1 information to the L2+ packet. Currently, L1 information
attached to the packets contains only the input port.

V. RESULTS

In this Section, we provide details about the performance of
our proposed match scheme compared to OpenFlow’s standard
match fields. We also provide an experimental evaluation of
different BPF engines.

A. Flow entries and memory usage

The first two match scenarios in Table II are in_port and
all fields that can be expressed using one flow entry with both
matching structures (OpenFlow and BPF OXM). The in_port
matches packets on a specific input port. As shown, using the
OpenFlow standard match field requires only 4 bytes instead
of 32 bytes required for the BPF program. This memory
difference is a consequence of the arbitrary matching as both
the BPF instructions and matching data must be stored. Rule
all fields uses each available OpenFlow field to match (9 fields,
cf. Figure I). As shown, the TCAM space is still significantly
lower with OpenFlow match fields, as our BPF match rule
needs 34 instructions to perform the same match.

Matches system ports and in_port exclusion present sce-
narios when using OpenFlow match fields result in excessive
number of flow entries. Rule system ports matches on all
ports between 0-1024 for either destination or source. Using
OpenFlow match fields, 2048 separated entries are required
using 8192 bytes of TCAM space. With our BPF OXM fields,
a BPF program with 15 instructions using 120 bytes of memory
can be used. Rule in_port exclusion is a match on every
traffic not arriving on a specific port, such as filtering every
traffic where input port is not 1. As OpenFlow match fields
don’t support exclusion, 23 flow entries should be set that
match on all other ports on a 24 port switch. Using BPF
OXM, one flow entry is enough using 4 instructions. It is
clearly shown that range and exclusion matching are extremely
inefficient with standard OpenFlow match fields. Finally, the
TTL expiry match rule mentioned in Section II is an example
of the variety of match scenarios that cannot be expressed with
current OpenFlow match fields. To match on the IP-TTL field,
our BPF OXM can be used with 6 instructions taking 48 bytes
of memory space.

Even when the memory requirement of BPF programs is
higher than an equivalent OpenFlow match, a simple high-
speed RAM can be used instead of a TCAM as there is no

30

Iibpca{p *
Linux
25 L JIT Linux x

20
15

12.224
10

Time (us)

! ! ! ! ! !

512 1024 1536 2048 2560 3072 3584 4096
BPF Instructions

0.678

Fig. 6: Performance of different BPF engines.

need for ternary logic. TCAMs have various drawbacks, they
require more transistors than traditional RAM and therefore
are expensive, requiring an excessive chip area, a lot of power
to operate and become slower as they get larger.

B. BPF engines

In order to use BPF programs for packet classification,
it is necessary for a switch implementation to be able to
execute them at line-rate. Figure 6, shows the performance
benchmark of three different and widely used BPF engines
on a commodity machine. The performance of each engine
is evaluated as the time taken to execute BPF programs with
increasing number of instructions. Both the libpcap and Linux
engines are interpreters, with libpcap slightly outperforming
the kernel interpreter. The BPF JIT compiler added in as part
of the Kernel 3.0 significantly outperforms both interpreters.

In the figure the time axis has two markers at 0.672us
and 12.224us representing the time at which minimum and
maximum size packets must be classified to achieve line-rate
on a 1Gbps link. The libpcap interpreter can execute up to
108 and 2090 instructions on minimum and maximum-sized
packets, respectively, the Linux interpreter 95 and 1790, and
finally 415 and ~ 3100 for the Linux JIT engine. In Table
IT we have shown that an OpenFlow rule using every field
can be translated to only 34 instructions, therefore OpenFlow
equivalent matches as well as more complex ones can be
achieved without degrading the line-rate performances.

VI. CONCLUSION

Today’s OpenFlow switches use fixed number of fields
to match packets with flow entries. Even though the number
of matchable fields has increased with every version of the
protocol, it still only covers a subset of the packet headers.
Current matching is limited to only wildcards or exact match
that can result in extremely large number of flow entries
required for simple matches such as port ranges. Moreover,
matching is limited to the standard Internet protocols (Ethernet,
IP, TCP/UDP, etc) and there is no option to use arbitrary
protocols or Layer 1 matching.

In this paper, we have argued for adding a platform-
independent instruction set to OpenFlow, capable of matching
packets on any field, layer or protocol. We proposed to use
the Berkeley Packet Filters (BPF) instruction set for packet
classification instead of continuously extending match fields.
We presented a Layer 1 structure to allow arbitrary physical
layer matching and extend OpenFlow to more than Ethernet
networks. Finally, we have prototyped the proposed approach
on an OpenFlow software switch and evaluated the memory
and processing requirements to achieve line-rate classification.

ACKNOWLEDGMENTS

This work was supported in part by the UK Engineering
and Physical Sciences Research Council (EPSRC) projects
EP/L026015/1 and EP/L005255/1. The authors would like to
thank Eder Leao Fernandes for his insight on OfSoftSwitch,
and Markus Koetter for his work on benchmarking BPF
engines.

REFERENCES

[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling Innovation
in Campus Networks,” SIGCOMM, Mar. 2008.

[2] J. Naous, D. Erickson, G. A. Covington, G. Appenzeller, and N. McK-
eown, “Implementing an OpenFlow Switch on the NetFPGA Platform,”
ser. ANCS. ACM, 2008.

[3] Pica8 — Open Networking, “OpenFlow data center, a case study,”
2014. [Online]. Available: http://nvirters.org/wp-content/uploads/2014/
03/MeetUp0227B.pdf

[4] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker, “P4:
Programming Protocol-independent Packet Processors,” SIGCOMM,
Jul. 2014.

[S] S. McCanne and V. Jacobson, “The BSD packet filter: A new architec-
ture for user-level packet capture,” in USENIX, 1993.

[6] S. Kornexl, V. Paxson, H. Dreger, A. Feldmann, and R. Sommer,
“Building a time machine for efficient recording and retrieval of high-
volume network traffic,” in SIGCOMM. USENIX Association, 2005.

[7] C. Partridge, A. C. Snoeren, W. T. Strayer, B. Schwartz, M. Condell,
and I. Castineyra, “Fire: Flexible intra-as routing environment,” JSAC,
2001.

[8] M. Roesch et al., “Snort: Lightweight Intrusion Detection for Net-
works,” in LISA, vol. 99, no. 1, 1999, pp. 229-238.

[9] S. Ioannidis, K. Anagnostakis, J. Ioannidis, and A. Keromytis,
packet filtering for low-cost network monitoring,” in HPSR, 2002.

[10] A. Begel, S. McCanne, and S. L. Graham, “Bpf+: Exploiting global
data-flow optimization in a generalized packet filter architecture,” in
SIGCOMM, vol. 29, no. 4. ACM, 1999, pp. 123-134.

[11] Z. Wu, M. Xie, and H. Wang, “Swift: A fast dynamic packet filter.” in
NSDI, vol. 8, 2008, pp. 279-292.

[12] W. Jiang, Q. Wang, and V. Prasanna, “Beyond tcams: An sram-based
parallel multi-pipeline architecture for terabit ip lookup,” in INFOCOM
2008, April 2008.

[13] T. Luo, H.-P. Tan, and T. Q. Quek, “Sensor openflow: Enabling
software-defined wireless sensor networks,” Communications Letters,
IEEE, vol. 16, no. 11, pp. 1896-1899, 2012.

[14] R. R. Denicol, E. L. Fernandes, C. E. Rothenberg, and Z. L. Kis,
“On IPv6 support in OpenFlow via Flexible Match Structures,” OFE-
LIA/CHANGE Summer School, 2011.

[15] Ryu SDN controller. [Online]. Available: http://osrg.github.io/ryu/

[16] E. L. Fernandes and C. E. Rothenberg, “OpenFlow 1.3 software
switch,” In SBRC’2014, 2014. [Online]. Available: https://github.com/
CPgD/ofsoftswitch13

[17] F Risso and M. Baldi, “NetPDL: an extensible XML-based language
for packet header description,” Computer Networks, vol. 50, no. 5, 2006.

<

xpf:

