902 research outputs found

    Efficient implementation of real-time programs under the VAX/VMS operating system

    Get PDF
    Techniques for writing efficient real-time programs under the VAX/VMS oprating system are presented. Basic operations are presented for executing at real-time priority and for avoiding needlless processing delays. A highly efficient technique for accessing physical devices by mapping to the input/output space and accessing the device registrs directly is described. To illustrate the application of the technique, examples are included of different uses of the technique on three devices in the Langley Avionics Integration Research Lab (AIRLAB): the KW11-K dual programmable real-time clock, the Parallel Communications Link (PCL11-B) communication system, and the Datacom Synchronization Network. Timing data are included to demonstrate the performance improvements realized with these applications of the technique

    Experiences running NASTRAN on the Microvax 2 computer

    Get PDF
    The MicroVAX operates NASTRAN so well that the only detectable difference in its operation compared to an 11/780 VAX is in the execution time. On the modest installation described here, the engineer has all of the tools he needs to do an excellent job of analysis. System configuration decisions, system sizing, preparation of the system disk, definition of user quotas, installation, monitoring of system errors, and operation policies are discussed

    Sixth Annual Users' Conference

    Get PDF
    Conference papers and presentation outlines which address the use of the Transportable Applications Executive (TAE) and its various applications programs are compiled. Emphasis is given to the design of the user interface and image processing workstation in general. Alternate ports of TAE and TAE subsystems are also covered

    Ada (trademark) projects at NASA. Runtime environment issues and recommendations

    Get PDF
    Ada practitioners should use this document to discuss and establish common short term requirements for Ada runtime environments. The major current Ada runtime environment issues are identified through the analysis of some of the Ada efforts at NASA and other research centers. The runtime environment characteristics of major compilers are compared while alternate runtime implementations are reviewed. Modifications and extensions to the Ada Language Reference Manual to address some of these runtime issues are proposed. Three classes of projects focusing on the most critical runtime features of Ada are recommended, including a range of immediately feasible full scale Ada development projects. Also, a list of runtime features and procurement issues is proposed for consideration by the vendors, contractors and the government

    NASTRAN migration to UNIX

    Get PDF
    COSMIC/NASTRAN, as it is supported and maintained by COSMIC, runs on four main-frame computers - CDC, VAX, IBM and UNIVAC. COSMIC/NASTRAN on other computers, such as CRAY, AMDAHL, PRIME, CONVEX, etc., is available commercially from a number of third party organizations. All these computers, with their own one-of-a-kind operating systems, make NASTRAN machine dependent. The job control language (JCL), the file management, and the program execution procedure of these computers are vastly different, although 95 percent of NASTRAN source code was written in standard ANSI FORTRAN 77. The advantage of the UNIX operating system is that it has no machine boundary. UNIX is becoming widely used in many workstations, mini's, super-PC's, and even some main-frame computers. NASTRAN for the UNIX operating system is definitely the way to go in the future, and makes NASTRAN available to a host of computers, big and small. Since 1985, many NASTRAN improvements and enhancements were made to conform to the ANSI FORTRAN 77 standards. A major UNIX migration effort was incorporated into COSMIC NASTRAN 1990 release. As a pioneer work for the UNIX environment, a version of COSMIC 89 NASTRAN was officially released in October 1989 for DEC ULTRIX VAXstation 3100 (with VMS extensions). A COSMIC 90 NASTRAN version for DEC ULTRIX DECstation 3100 (with RISC) is planned for April 1990 release. Both workstations are UNIX based computers. The COSMIC 90 NASTRAN will be made available on a TK50 tape for the DEC ULTRIX workstations. Previously in 1988, an 88 NASTRAN version was tested successfully on a SiliconGraphics workstation

    The 2GCHAS: A high productivity software development environment

    Get PDF
    To the user, the most visible feature of the Transportable Applications Executive (TAE) is its very powerful user interface. To the programmer, TAE's user interface, proc concept, standardized interface definitions, and hierarchy search provide a set of tools for rapidly prototyping or developing production software. The 2GCHAS (Second Generation Comprehensive Helicopter Analysis System) project has extended and enhanced these mechanisms, creating a powerful and high productivity programming environment where the 2GCHAS development environment is 2GCHAS itself and where a sustained rate for certified, documented, and tested software above 30 delivered source instructions per programmer day has been achieved. The 2GCHAS environment is not limited to helicopter analysis, but is applicable to other disciplines where software development is important

    Data base management system configuration specification

    Get PDF
    The functional requirements and the configuration of the data base management system are described. Techniques and technology which will enable more efficient and timely transfer of useful data from the sensor to the user, extraction of information by the user, and exchange of information among the users are demonstrated

    Software product description

    Get PDF
    An overview of the MultiNet system is presented. Services, supported configurations, remote printer services, netstat, netcontrol, DECnet interoperability services, and programming libraries are briefly described

    Software Management Environment (SME) installation guide

    Get PDF
    This document contains installation information for the Software Management Environment (SME), developed for the Systems Development Branch (Code 552) of the Flight Dynamics Division of Goddard Space Flight Center (GSFC). The SME provides an integrated set of management tools that can be used by software development managers in their day-to-day management and planning activities. This document provides a list of hardware and software requirements as well as detailed installation instructions and trouble-shooting information

    Functional requirements document for the Earth Observing System Data and Information System (EOSDIS) Scientific Computing Facilities (SCF) of the NASA/MSFC Earth Science and Applications Division, 1992

    Get PDF
    Five scientists at MSFC/ESAD have EOS SCF investigator status. Each SCF has unique tasks which require the establishment of a computing facility dedicated to accomplishing those tasks. A SCF Working Group was established at ESAD with the charter of defining the computing requirements of the individual SCFs and recommending options for meeting these requirements. The primary goal of the working group was to determine which computing needs can be satisfied using either shared resources or separate but compatible resources, and which needs require unique individual resources. The requirements investigated included CPU-intensive vector and scalar processing, visualization, data storage, connectivity, and I/O peripherals. A review of computer industry directions and a market survey of computing hardware provided information regarding important industry standards and candidate computing platforms. It was determined that the total SCF computing requirements might be most effectively met using a hierarchy consisting of shared and individual resources. This hierarchy is composed of five major system types: (1) a supercomputer class vector processor; (2) a high-end scalar multiprocessor workstation; (3) a file server; (4) a few medium- to high-end visualization workstations; and (5) several low- to medium-range personal graphics workstations. Specific recommendations for meeting the needs of each of these types are presented
    corecore