L

itati imi brought t b ql<’~'CORE
View metadata, citation and similar papers at core.ac.uk rought to you by o{

provided by NASA Technical Reports Server

N87-23162

2GCHAS—A HIGH PRODUCTIVITY SOFTWARE DEVELOPMENT ENVIRONMENT

Larry Babb
Computer Sciences Corporation
Systems Sciences Division

111

https://core.ac.uk/display/42836807?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2GCHAS -~ A High Productivity Software Development Environment

Larry Babb
Computer Sciences Corporation
System Sciernces Division

To the user, the most visible feature of TAE is its very powerful
user interface. To the programmer, TRE's user interface, proc
concept, standardized interface definitions, and hierarchy search
provide & set of tools for rapidly prototyping or developing
production software. The 2GCHAS (pronounced TWO GEE CHARLIE,
Second BGeneration Comprehensive Helicopter Analysis System) pro-
Jject has extended and erhanced these mechanisms, creating a
powerful and high productivity programming envirorment where
2GCHAS? development envirornment is 2GCHAS itself and where a
sustaired rate for certified, documented, and tested socftware
above 3@ delivered source instructions per programmer day has
beern achieved. The ZGCHAS envirorment is not limited to helicop-—
ter analysis, but is applicable te other disciplines where saft—
ware development is important.

BACKGROWND

Ffredicting the characteristics and performance of helicopters is
rot a mature discipline: the theory is still developing and the
computational tools based on the immature discipline are rela-
tively undeveloped. The =GCHAS project was established by the
U. 5. Army to develop a system which can predict the flight char-
acteristics of a helicopter from a physical description of the
vehicle. The objectives pertinent to the discussion in this
article include;

1. Froviding a standard set of helicopter analysis tools based
on current theory,

2 Froviding an envirornment which can assist develaping nrew
computational tools,

3. FProviding the computational framework intc which new or
modified analysis tools can be inserted.

Three major considerations have driven 2GCHAS? design. The first
is the requirement that ZGCHAS be operating system irdeperndent.
With a rich set of functicrnal requirements and initial implemer—
tations on VAX/VMS and IEM's MVS operating systems, 'pragmatic
considerations have replaced cperating system independerce with
operating system transportability. Ta achieve tramsportability,
the user and programmatic interfaces have been defined to be
constarnt across cperating systems. Host dependercies have been
restricted to the smallest rnumber of units —— operating system
procedures, 2GCHAS procedures, and software -— possible. The
result is that most of 26CHAS is and will be operating system

112

26CHAS - A High Productivity Scoftware Developmernt Envirornmert

independent.

The second major consideration is that both ernd users arnd devel-
opers of new Z6CHAS analyses are helicopter engineers arnd sci-
entists, riot programmers or computer scientists. Their language
of choice is FORTRAN. Their interest is in developing new arnaly-
sis tools, modifying existing analysis tools, and using those
tocls to predict helicopter performance in a user friendly envi-
ronment. 2GCHAS chose TAE to meet the user friendliness require-
ments.

The third major consideration is that every ZGCHAS Module (analo-—
gous to a TAE Process) has to be invokable both directly by the
user and by other Modules and must be replacable at run time.
Meeting the run time replacability requiremert turned out to be
the major contributor to the productivity of the 2GCHAS enviror-—
ment. As background to further discussicn, the top level orgarni-—
zation of 26CHAS and the ratiorale for the replacabilty require-—
ment arnd its implementaion (run time linking) will be described
in some detail.

TOFP LEVEL 2GCHRS ORGANIZATION

2GCHAS is divided into the Executive complex ard the Techriology
complex. The Technaology Complex will consist of a large rumber
of FORTRAN 77 Modules which perfaorm the helicaopter analysis. The
Executive Complex provides services (e.g., user interface, data
managemert, Module substitution) required by the Techrnology Mad-
ules and isolates them from the host cperating system. When
26CHAS is transported to a new cperating system, only the Execu-—
tive Complex is required to change.

MODULE REFLACABILITY AND RUN TIME LINKING

The replacability requirement for 2GCHAS Modules derives from the
followivig considerations:

1. There will be a large number of Techrclogy Modules in
2GCHAS. By design, as new helicopter analysis techniques are
developed, Modules will be added to or modified withirn 2GCHAS.

2. A typical analysis will use relatively few of the available
Techriclogy Modules. Available Modules might supply alterna-—
tive approximation methods, apply different flight simulation
techniques, or compute different outputs.

3. It is difficult to predict in advance which Modules are
required for an aralysis. Modules are called as required by a
combination of processing options, ocutput results desired, and
the description of the helicopter and its flight conditions.

113

ORIGINAL PAGE iS
OF POOR QUALITY

ZBCHRS — R High Froductivity Software Develapment Ervironment

4, Any Module linked into an executable image uses resorces
even though it is rever executed. For example, all Modules in
an executable image are assigned virtual memory when the image
is run. Modules which are rot executed still consume virtual
memcry quota.

5. Multiple develapers from differernt corganizations wili be
developing new Maodules throughout =2GCHAS®' l1life. Too provide a
framework for develaping new analysis techniaoues, the system

structure must be guite open. Maintairning and distributing a
starndard set of object Modules is difficult forr an open
system. -

The sclution to the veplacability and transportability require-
ments is to have run time linking, teo have a Medule call Lok
exactly like a subroutine call, and to defire a Module to be a
FORTRAN subroutine. There are cnly four minor differences be-
tweer a Module and any other FORTRAN subroutine:

1. The last argument is the completion status of the Moduie;
Z. The ENTRY statement is wnot permitteds
3. COMMON is rnot permitted for inter Module commumicationmg

4., A special set of comments, the treamble, is reguired to
provide information about the Module and its argumernts.

Suppose, for example, Module A calls Maodule E. Each Maodule 1s
compiled, producing an object file. The object files are then
linked by the Linker into an executable image which carn be exe-
cuted using the RUN command. (There must be a main pProgran

linked with the subroutives, but it has been omitted here to show
the Module lirkage process more clearly.) Figure 1 shows how the
Modules are linked using the standard linking procedure.

Figure 2 shows the run time linking techrnique used by &E6CHAS.
From the Module source, DEFMOD (DEFirne MODule) produces a Module
caller scurce file and then compiles both source files to produce

object files. In this example, Module B is defined first.
DEFMOD produces the source file for B Caller fram the Module B
source file, thern compiles both source files to produce object

files for B Caller and the body of Module B. The abject file for
E Caller is put in an object library containing the Module call-
ers for all defined Modules. The abject file for the body of B
is linked to produce a shareable image of K. Similarly, wher
Module A is defined, the acbject file for A Caller is put in the
Module caller object library and the object file for the body of
A is lirked with the library of Module callers to produce &
shareable image for Maodule A. Sivice Module A calls Module R, E
Caller is linked into the shareable image for Module A.

114

ORIGINAL PAGE iS
OF POOR QUALITY

eBCHAS — R High Productivity Software Development Ernvironment

Wheri Module A executes the "CALL B" statement, it actually exe—
cutes a subroutine call on B Caller which has been 1lirked into
the image in place of Module B. The E Caller subroutine, created
by DEFMOD, calls an Executive service, Module Execution Control
(XMEC) to activate the shareable image for Module E. When XMEC
is called, it determires if the image has already beern activated.
If the image has not beern activated, XMEC calls an operating
system service to activate it. After XMEC activates the share-
able image of Module B (or finds it already activated), XMEC exe-
cutes a subroutirne call on Maodule B and passes the argument list
from the subroutire call executed by Module A. Wher Module B
completes its execution, it retuwrns to XMEC, which returns to E
Caller, which returns to Module A. On VAX/VMS systems, XMEC uses
the Library Service LIB$FIND_IMAGE_SYMEOL to activate shareable
imapes.

From Module A’s paoint of view, a standard subroutine call has
beern executed. From 2GCHAS! point of view, the Module is assigr~
ed virtual memory and other resources only if it is executed.

Ruvi time linking, like all solutions to difficult problems, con—
tains tradeoffs. The advantages of run time linking arej;

i. Virtual memory and other rescources are allocated to Modules
ornly 1if the Modules are executed.

Z. Ernhancements to Modules cam be tested by Madule substitu-
tion at run time.

3. The option of linking a Module directly using the standard
Lirker remains available with no change in the Module saurce,
since the souwrce is standard FORTRAN 77.

The disadvantages of run time lirking are;

l. Frogram execution time is increased. The first time a
Module is called on a VRX 11/785, an elapsed time of about @.2
seconds is required to activate the Madule. Subsequenrnt calls
o the Module take considerably less time, although more than
subroutine call. Because helicopter aralysis runs will be
computationally intensive, the overhead time required to acti-—
vate the analysis Modules will be a small portiorn of the total
Joabe

2. FORTRAN COMMON blocks carmot be used to communicate between
Modules linked at run time. However, subroutines which are
contained within a single Module may communicate with each
other through COMMON blocks as usual. In 2GCHAS, the Execu-—
tive contains data marnagement services which provide a data
structure intended to replace FORTRAN COMMON blocks im commun-—
icating between Modules lirked at run time.

115

2BCHAS - A High Productivity Software Develaopment Evivircorment

e e it e e e e e +
| SUBRDUTINE A (X, Y, 2) I
| . 1
1 . } COMRPILE
I CALL B (P, O - +
| - | (!
[. | + e ——
I END | 1]
< o e o e e o + I A. 0B +——+
1 i |
o e o e e em + }
!
e e s o e i e st s e e + |
| SURROUTINE B (R, S) I i
1 . I COMRILE !
} . A + I
| .] | 1
I END | R e + i
A e e e i e e + i | i
| B.OBJ +——+
1 1 i
e e e e e + i
i
e i e e e O ettt
]
I LINK
i
e e e
| I
i A i
s i
| +—+—-=> 1
Il +———————— +
+—t—t——) l
[B |
s i
e —————— +

Figure 1. Standard FORTRAN Subroutivne Lirnkage

116

26CHAS — A High Froductivity Software Developmert Ernvirornment

e ——+
i SUBROUTINE A (X, Y, Z) | DEFMOD
} - o e e +
i - | |
I CALL B (P, Q) I+ - = = 4+ = — — +
i . I e e + .
i - I « i A CALLER .
I END I . e + .
e e e e e e + . o +
. 1] .
. i A.0BJ +————+
. | { - |
» Fmm e ————— + «
- = e - e - - + i
i
A e + }
I SUBROUTINE B (R,5) | DEFMOD l
i . e e e + 1
i .) i |
i - I+ = = = - - - %
i END I e e + .
e e e + . | B CALLER +———+
" b ———— + .
. Fr e ————— + -
. | 1 - |
e e e e e e e e e + B.0OBJ | - |
1 . ! l « |
I LINK . o ———— + . |
| e e T) + |
e s }
[L e +———
! SHARE- | l H
I ARLE i j I LINK
I IMAGE ——+—+ | i
At e + 1 1 e e e e e e e e +
[] 1
1 1 | A l
[I —_—— + } ——
I 4t {=—4+—+ | (——+—+ |
I I MODULE bl e + 1 1
I I EXECUTION I +—4—= {——4+—t—+
| I CONTROL | } B CALLER b
| } { +—+—-) fdnds JLt 3
i I (EXECUTIVE) b+ - +
t———t——) ————
e —————— +

Run~Time Linking

Figure 2. EGCHAS Module Run Time Linking

117

2GCHAS — A High Productivity Software Development Environment

DEFMOD TAKES THE DRUDGERY OUT OF MODULE CREATION

DEFMOD’s role in creating Modules for run time linking has al-
ready been described. DEFMOD provides another feature for de-
veloping and unit testing FORTRAN subroutines. From the Madule
preamble, DEFMOD creates the process FDF and all of the VBLOCK
references necessary for the user to invoke the Module directly.

To appreciate the amcunt of effort that DEFMOD saves, consider a
TAE process. It consists of at least two separate files —— the
process itself and the process FDF. Irn the process PDF, informa-
tionm about each parameter can be in as many as three disjoirnt

places —- the FARM statement, the LEVEL1 description, and the
LEVELEZ descriptior. The informatiorn in each place within the
process PDF must be cornsistent. The process FDF, in turn, must

pe consistent with the VBLOCK references in the process itself.
Consistency of physicaly separated information is hard to achieve
and the reguirement for it can lead to increased developmernt and
maintenance costs. Irn the case where the help text is separate
Freom the process PDF, there are three files which must be consis—
ternt.

in contrast, a £GCHAS Module source file contains all of the
information needed by DEFMOD (DEFine MODule) to coreate the com—
ponents rnecessary to execute the Module. The Madule FPreamble,
that special set of comments at the begirming of a Maodule, coarn—
taims all of the information about the Module and its parameters.
The oreamble format rules are less restrictive thar the rules for
a process FDF. The parameter information which becomes the FPARM
statement, the TAE LEVEL1l text, and the LEVELE text is contig-
UDUS, not separated. The irmput which becomes the TAE LEVEL1
parameter information is broken automatically (arnd reasonably) to
Fit imto the 32 column width restriction.

Tee be invoked dirvectly by the user, the Module must have, in
addition to a process PDF, VELOCK references for the parameters.
But a Module is a FORTRAN subraoutine, it conmtains no VBLOCK
references. And the Module's parameters can be of any FORTRAN
data type (i.e., INTEGER, REAL, CHARACTER, DOUEBLE FRECISION,
COMPLEX, o LOGICAL) wot just REAL, INTEGER, and STRING.

From the preamble in the Module source file, DEFMOD constructs
the recessary files. The process PDF contains the parameter
definitimns and HELF informaticon. DEFMOD constructs a FORTRAN
program (called the Module Mair) which contains the VELOCK refer-
ences, the recessary conversion code to go betweers TAE data
types and the larger set of FORTRAN data types, arnd a FORTRAN
CALL to invoke the Module.

118

2BCHAS ~ A Hiph Productivity Software Developmernt Ernvircmment

LOGICAL parameters are an especially good example of the proces—
sing provided by DEFMOD. The Module preamble states that the
parameter is of type LOGICAL. Irn the process FDF, the para-
meter’s type is (STRING, 1) and its valid values are the letters
"T" and “F". In the Module main, the letter "T" from the input
parameter is caoriverted to _a FORTRAN logical .TRUE.; the letter
"F" to FALSE. The Mcdule main CALLs the Module with a FORTRAN
LOGICAL parameter. Rfter successful return from the Module,
LOGICAL .TRUE. is converted to "T" ard .FALSE. to "F" if the
parameter is OUT or INOUT (TAE parameter type NAME).

Creating a Module with DEFMOD saves much of the effort vnaormally
required to implement a TRE process and vields three major berie-—

fits. The first is the ease with which chariges are made to the
calling sequerces of Modules. It is easy to add, delete, or
change a parameter or the parameter’s attributes by editing the
preamble and FORTRAN statements. It is similarly easy to charige

the help information for the Module or for individual parameters.

The secord berefit is the ease with which small pieces of soft-
ware (e.g., finding the roots of a polyrnomial using Newtor's
methcod) can be quickly prototyped as Modules ard tested from com—
mand or tutor mode. Although there is some effort reguired to
put a preamble in a Module, that effort is small compared to the
effort of either creating a test driver for the Module or for
implementing VBLOCK calls.

The third berefit is that packagivnp decisions carn occour very late
in the developmert cycile. Because the preamble information con-
sists of FORTRAN comments, code developed as a Module carn remain
2 Module or can be made into a subroutine lirked in to a larger

Maodule. Such a packaging decision requires ro charnge to the
source, Thus, the decision to make a unit into a Module oy rot
is not critical. Not only can the decision can be deferred, but

it is easily charged if made incorrectly.

LOOSE COUFLING OF MODULES CONTRIBUTES TO FRODUCTIVITY

Edward Yourdon and Larry Constantirne in Structured Design define
coupling as the degree to which orne software unit deperds on
knowlednge of arnocther software unit in performing its task. They
argue that = locse coupling leads to a desigr that is easier to
develop and easier to maintain and that close coupling leads to a
desigri which is more difficult to develop and maintair. Ore of
the working definitions for a loosely coupled system is that the
software units are black boxes; that is, the anly information
other software units krow about the black box are its name,
inputs, and outputs, Any blackbox unit can be replaced with a
different unit havirg the same name, inputs, and cutputs with no
effect on the system.

119

26CHAS — A High Productivity Software Developmerit Envirornment

ZGCHAS Modules have three attributes that make them a loosely
coupled system:

1. 2GCHAS Modules are FORTRAN subroutines with names and spe-
cific calling sequerces; i.e., Modules are black baox software
units;

2. COMMON is riot allowed as a communication mechanism between
Modules, thus removing the greatest source of data coupling
from &GCHAS Modules;

3. Medules are linked at execution time, rict at compile time
cor linkage edit time.

So how do Modules help improve productivity? The primary bernefit
is that any Module can be changed with little concerrn for other
Mcdules in the system. As lorg as the rew version of the Module
has the same name and calling sequence, o chavges are reguired
elsewhere. For software development, top down implementation is
easy. As they are developed, the furctional Modules replace the
limited functicrn stub Modules. The replacement only reauires
that the functiorial Module be processed by DEFMUD.

The second berefit arises from the fact that Modules are located
and leocaded at run time via an extension of the TRE hierarchy
search. A develcoper'!s perscornal version af any Module canm be in-
voked at run time instead of the "official Madule” i the 2GCHAS
system library. Thus, a developer can have caorrected versions or
completely new versions of existing Modules in a private account
and can test those Modules as part of a complete system. This
means that new Modules to be inteprated have been already been
tested as part of a complete system.

CHANGE CONTROL HELFS FRODUCTIVITY

ZGCHAS has created a set of configuration management support
tools which erhance the productivity of all developers. These
support tools provide formal change control, autcmatic system
generation from source changes, and continuirng coperation of the
previcus version while a new system is beirng gernerated.

TAE is delivered for VAX/VMS systems, the System Marager’s Guide
describes how tc set up the TRE version tree so that anily the TARE
system manager has write access. Change by anyone cther than the
system manager is effectively preverted. VAX/VMS file protection
and the TAE hierarchy search provide both contral and flexi-
bility. 2BCHAS uses these basic TAE concepts.

120

2ZBCHAS ~ A High Productivity Software Development Erivirorment

It was reccognized early that a mechanism to quickly and reliably
introduce changes to ZGCHAS in a controlled marrer was required.
The mechanism, CHASGEN, consists of seven marwal steps, each
either a DCL procedure or a ZBCHAS procedure. The CHASGEN pro-
cess is started when the Configuration Management officer is
notified that new scurce units are being delivered. The Confi-
guration Management officer begins the CHASGEN by copying the new
source units -- rot object files, libraries, executables, or
message help file indices —- into the 2GCHAS version tree. Based
on each source unit’s file type and update date, the appropriate
actions -- compile, library update, link, MSGBLD, etec. —— are
performed. Within a shart time, the Configuration Management
officer, nrot a serior programmer, has constructed a new &GCHAS
Executive.

CHASGEN has proveri to be quick and reliable. However, interrup-
tions to users or developers is castly. Therefore, CHASGEN does
rnot operate against the current version tree, but against a riewly
created version tree. The previous version remains untouched and
operational. Wheri the rnewly created version tree has been tested
and proven to be good, it is thew available for use.

STANDARD TAE FEATURES AS PRODUCTIVITY AIDS

The focus thus far has beer on the ZGCHAS extensions to TAE and
the berefits derived from those extensions. In large mnmeasure,
however, those extensions have been possible withinm the real
constraints of time and morey because TRE provided such a stable
platform upon which to build. This last section provides a brief
summary and, in some cases, a recapitulation of the TRE features
which have directly contributed to a high level of productivity
within the ZGCHAS project.

For the programmer at a terminal, HELF and TUTOR, not paper
document s, provide 2GCHAS documentation without work flow inter-
rupticnms of referring to a manual. Fewer interruptions means
that the programmer more effective uses time.

The hierarchy search and its externsion to Modules provide a
simple and easy mecharnism to check out and test new software.
Little effort is réquired to have a private version of some part

of 26CHAS and, so, there can be more effort available for other
tasks.

TAE provides many features for tailoring the user interface. So
far, every &6CHAS developer has used ULOGON to tailor the user
interface. There is a great deal of idiosyrncratic tailoring, but
two characteristics are common. The first is to use DEFCMD to
make commonly used VAX/VMS DCL commarnds available inside @2GCHAS.
The second is having FDFs which allow various editors to be
invoked from inside &GCHAS. The DEFCMDs and editor FPDFs means
that +the @&B6CHAS and DCL envirorments are the same in many re-
spects, making the tranmsition from one envirorment to the other
smoother for the develaoper.

121

26CHAS — A High Productivity Scoftware Development Erivirorment

oGCHAS chose to use message help files as a primary means of
providing online diagrnastic information. The simple and powerful
mechariisms of message help files and the MSGELD utility contrib-
ute to productivity inm three ways. The first is that messages
and their corresponding help can be prouped. Havirng the help for
possible messages produced by related software units -—-— a TRE
facility -— topether in a single place makes it easier to get
consistency of information across messages. The second is that
the Z6GCHAS project experiernce indicates that message keys tend to
get reused for similar or identical situations. Wher this hap-
pens, there is less help text to generate and the message text
can be used to pravide occcurrance specific informatior. The
third property of message files which acts to reduce effort is
that they are located ocutside of the software units to which they
apply. This mears that the continual activity of making clari—
ficatioms and additions to message help does riot appect the
software units themselves.

TAE features have significarntly reduced the testing effort for

2GCHAS. Formal testing, the use of predefined and documernted
test scernarics gererating output for comparisorn against expected
results, is a =BCHAS project requirement. The conterts of each

new system gereration or build are guickly cataloguec with script
files corntaining TUTOR and HELF commands for each ZGEHAS service.
1f the script completes without stopping, thern all of the ser-

vices are present. /R missing service stops the script -
$MESSAGE is set to "ATTN" —— allowing the tester to log the
missing service. The script files provide for a level of speed

ard repeatability that a perscon at & terminal with & written test
scemnaric can only dream of approaching.

ZGCHAS test procedures have been designed to be both self veri-

fying and self reporting. Basically this means that the test
determines whether or not it succeeded and then reports the
success to the test conductor. The effort to perform and doou-

ment formal testing is reduced because of these test procedures.
In addition to scripts, tests are implemented as procedures and
processes. %5F 1, the success/fail indicator, 1is set by every
test arnd reported in the session log. The STDOUT commarnd quali-—
fier is used to retain cutput pererated by individual tests.
Listings of session logs and test cutput provide most of the
formal test documentaticon, further reducing the testing effort.

122

ORIGINAL PAGE IS
OF POOR QUALITY

2GCHAS — A High Froductivity Software Develcopment Envvirornment

CURRENT 26CHAS STARATUS

The Executive Complex of ZGCHAS ig being developed urnder contract
by Computer Scierces Corporation (CSC) at Ames Research Center in

a series of five builds. LSC delivered Build 3 of the Executive
to the Army in September, 1386. Technology Module development
begarn in early 1986. Techriology Module developers will access

—

Executive Build 3 (arnd Build 4 later) either by telecommunicating
with AMES or by havivng a copy of the EGCHAS orm their own VAX.
Ruri time Lirnking was included in Builds 1, 2, and 3 of the Execu-
tive; was tested by the Army as part of rnormal build testing; and
was used by CSC for developing Builds & and 3.

SuMMARY

TRE provides both tools and concepts for achieving high produc—
tivity saftware development. Rdditional requiremerits have led
the 2GCHAS project to extend TAE's tocls and concepts with resul-
tine additional increases in productivity.

RCHNCW _EDBEMENT

I would like to thank the staff of the ZGCHAS praeject for their
supoort and for their diligence in creating the products and
results reported here. Special thanks to Clark Oliphint feor
peoviding text and illustrations for the discussion of rurn time
limwi VilJe

123

