1,121 research outputs found

    cphVB: A System for Automated Runtime Optimization and Parallelization of Vectorized Applications

    Full text link
    Modern processor architectures, in addition to having still more cores, also require still more consideration to memory-layout in order to run at full capacity. The usefulness of most languages is deprecating as their abstractions, structures or objects are hard to map onto modern processor architectures efficiently. The work in this paper introduces a new abstract machine framework, cphVB, that enables vector oriented high-level programming languages to map onto a broad range of architectures efficiently. The idea is to close the gap between high-level languages and hardware optimized low-level implementations. By translating high-level vector operations into an intermediate vector bytecode, cphVB enables specialized vector engines to efficiently execute the vector operations. The primary success parameters are to maintain a complete abstraction from low-level details and to provide efficient code execution across different, modern, processors. We evaluate the presented design through a setup that targets multi-core CPU architectures. We evaluate the performance of the implementation using Python implementations of well-known algorithms: a jacobi solver, a kNN search, a shallow water simulation and a synthetic stencil simulation. All demonstrate good performance

    Virtual Machine Support for Many-Core Architectures: Decoupling Abstract from Concrete Concurrency Models

    Get PDF
    The upcoming many-core architectures require software developers to exploit concurrency to utilize available computational power. Today's high-level language virtual machines (VMs), which are a cornerstone of software development, do not provide sufficient abstraction for concurrency concepts. We analyze concrete and abstract concurrency models and identify the challenges they impose for VMs. To provide sufficient concurrency support in VMs, we propose to integrate concurrency operations into VM instruction sets. Since there will always be VMs optimized for special purposes, our goal is to develop a methodology to design instruction sets with concurrency support. Therefore, we also propose a list of trade-offs that have to be investigated to advise the design of such instruction sets. As a first experiment, we implemented one instruction set extension for shared memory and one for non-shared memory concurrency. From our experimental results, we derived a list of requirements for a full-grown experimental environment for further research

    A Compiler and Runtime Infrastructure for Automatic Program Distribution

    Get PDF
    This paper presents the design and the implementation of a compiler and runtime infrastructure for automatic program distribution. We are building a research infrastructure that enables experimentation with various program partitioning and mapping strategies and the study of automatic distribution's effect on resource consumption (e.g., CPU, memory, communication). Since many optimization techniques are faced with conflicting optimization targets (e.g., memory and communication), we believe that it is important to be able to study their interaction. We present a set of techniques that enable flexible resource modeling and program distribution. These are: dependence analysis, weighted graph partitioning, code and communication generation, and profiling. We have developed these ideas in the context of the Java language. We present in detail the design and implementation of each of the techniques as part of our compiler and runtime infrastructure. Then, we evaluate our design and present preliminary experimental data for each component, as well as for the entire system

    The Design and Implementation of a Bytecode for Optimization on Heterogeneous Systems

    Get PDF
    As hardware architectures shift towards more heterogeneous platforms with different vari- eties of multi- and many-core processors and graphics processing units (GPUs) by various manufacturers, programmers need a way to write simple and highly optimized code without worrying about the specifics of the underlying hardware. To meet this need, I have designed a virtual machine and bytecode around the goal of optimized execution on highly variable, heterogeneous hardware, instead of having goals such as small bytecodes as was the ob- jective of the Java R Virtual Machine. The approach used here is to combine elements of the Dalvik R virtual machine with concepts from the OpenCL R heterogeneous computing platform, along with an annotation system so that the results of complex compile time analysis can be available to the Just-In-Time compiler. The annotation format is flexible so that the set of annotations can be expanded as the field of heterogeneous computing continues to grow. An initial implementation of this virtual machine was written in the Scala programming language and makes use of the Java bindings for OpenCL to execute code segments on a GPU. The implementation consists of an assembler that converts an assembly version of the bytecode into its binary representation and an interpreter that runs programs from the assembled binary. Because the bytecode contains valuable optimization information, decisions can be made at runtime to choose how best to execute code segments. To demonstrate this concept, the interpreter uses this information to produce OpenCL ker- nel code for specified bytecode blocks and then builds and executes these kernels to improve performance. This hybrid interpreter/Just-In-Time compiler serves as an initial implemen- tation of a virtual machine that provides optimized code tailored to the available hardware on which the application is running

    Speculative Staging for Interpreter Optimization

    Full text link
    Interpreters have a bad reputation for having lower performance than just-in-time compilers. We present a new way of building high performance interpreters that is particularly effective for executing dynamically typed programming languages. The key idea is to combine speculative staging of optimized interpreter instructions with a novel technique of incrementally and iteratively concerting them at run-time. This paper introduces the concepts behind deriving optimized instructions from existing interpreter instructions---incrementally peeling off layers of complexity. When compiling the interpreter, these optimized derivatives will be compiled along with the original interpreter instructions. Therefore, our technique is portable by construction since it leverages the existing compiler's backend. At run-time we use instruction substitution from the interpreter's original and expensive instructions to optimized instruction derivatives to speed up execution. Our technique unites high performance with the simplicity and portability of interpreters---we report that our optimization makes the CPython interpreter up to more than four times faster, where our interpreter closes the gap between and sometimes even outperforms PyPy's just-in-time compiler.Comment: 16 pages, 4 figures, 3 tables. Uses CPython 3.2.3 and PyPy 1.

    Hera-JVM: abstracting processor heterogeneity behind a virtual machine

    Get PDF
    Heterogeneous multi-core processors, such as the Cell processor, can deliver exceptional performance, however, they are notoriously difficult to program effectively. We present Hera-JVM, a runtime system which hides a processor’s heterogeneity behind a homogeneous virtual machine interface. Preliminary results of three benchmarks running under Hera-JVM are presented. These results suggest a set of application behaviour characteristics that the runtime system should take into account when placing threads on different core types.
    corecore