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The Design and Implementation of a Bytecode for

Optimization on Heterogeneous Systems

Kerry Allen Seitz, Jr.

Abstract

As hardware architectures shift towards more heterogeneous platforms with different vari-

eties of multi- and many-core processors and graphics processing units (GPUs) by various

manufacturers, programmers need a way to write simple and highly optimized code without

worrying about the specifics of the underlying hardware. To meet this need, I have designed

a virtual machine and bytecode around the goal of optimized execution on highly variable,

heterogeneous hardware, instead of having goals such as small bytecodes as was the ob-

jective of the Java R© Virtual Machine. The approach used here is to combine elements of

the Dalvik R© virtual machine with concepts from the OpenCL R© heterogeneous computing

platform, along with an annotation system so that the results of complex compile time

analysis can be available to the Just-In-Time compiler. The annotation format is flexible

so that the set of annotations can be expanded as the field of heterogeneous computing

continues to grow. An initial implementation of this virtual machine was written in the

Scala programming language and makes use of the Java bindings for OpenCL to execute

code segments on a GPU. The implementation consists of an assembler that converts an

assembly version of the bytecode into its binary representation and an interpreter that runs

programs from the assembled binary. Because the bytecode contains valuable optimization

information, decisions can be made at runtime to choose how best to execute code segments.

To demonstrate this concept, the interpreter uses this information to produce OpenCL ker-

nel code for specified bytecode blocks and then builds and executes these kernels to improve



performance. This hybrid interpreter/Just-In-Time compiler serves as an initial implemen-

tation of a virtual machine that provides optimized code tailored to the available hardware

on which the application is running.
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Chapter 1

Introduction

1.1 Motivation

Computing hardware is in the middle of a dramatic shift from the single-core, generally

homogeneous model that dominated prior to roughly 2005 to a many-core, generally hetero-

geneous future. This shift began as a simple move from single-core to multi-core processors.

More recently, many-core processors in the form of Graphics Processing Units (GPU) from

NVIDIA R© and AMD R©, as well as Many Integrated Core (MIC) Architectures from Intel R©,

have moved more into the mainstream. This move is probably best illustrated by the line

of Fusion R© chips from AMD that include GPU circuitry on the same piece of silicon as

the CPU. The ubiquitous nature of this development is illustrated by the fact that the first

Fusion chips to be released were intended for laptops, not workstations or servers.

In many ways, hardware has gotten ahead of software. Most developers are still used to

working in a single-threaded, homogeneous environment. Not only do we have the legacy of

developers being trained for that world, but also most of the languages and tools that are in

use were designed for that environment. Tools and languages are improving for multi-core

1
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environments, but for the most part, this type of development is harder and more costly

than single-threaded development.

If development is not yet prepared for homogeneous, multi-core environments, it is

certainly far from ready to tackle the challenges of many-core, heterogeneous environments.

There are standards for doing this type of programming such as OpenCL R© and CUDA R©.

However, these standards force the programmer to interact with the machine at a low

level, which tends to increase development cost and require much more effort from the

programmers. To make these systems more accessible, we need higher-level tools that allow

the developer to spend his/her time focusing on the logic of the application instead of

the details of the platform on which it will be running. This need is likely to become

increasingly important as the options for platforms grow. If making a portable program

requires separate development for the different options from Intel (CPU, CPU/GPU, MIC),

AMD (CPU, Fusion, GPU), NVIDIA (GPU, Tegra), and the host of other combinations

that are likely to appear in the near future, then producing optimized code that can cover

the various options will be prohibitively expensive.1

1.2 Design Plan

The productivity of developers on single-threaded, homogeneous environments was greatly

assisted by the development of platforms that support higher-level programming in a man-

ner that is generally machine independent. These types of platforms include the Java R©

Virtual Machine (JVM) and the Common Language Runtime (.NET R©) environment in

which bytecode is produced for a virtual machine and then optimized by a Just-In-Time

(JIT) compiler that can produce code that is suited to the machine on which the program is

1It is worth noting that even today there are a combinatorial number of options as a machine might have
an Intel Sandy Bridge CPU/GPU combo with a graphics card from either AMD or NVIDIA.
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actually running. Unfortunately, these environments were made with design goals that did

not include optimizability on a JIT or support for many-core, heterogeneous environments.

Indeed, in the case of the JVM, the design goals were small bytecodes and fast emulation.

As a result, it uses a stack based architecture which causes some problems for producing

optimal performance even on single-threaded hardware [11, 23].

With all of these things in mind, I set out to develop a bytecode that has a primary de-

sign goal of being able to support optimization for performance on heterogeneous platforms.

My approach was to borrow ideas from one of the newest register-based virtual machine

platforms, Dalvik R©, and combine those with aspects of the OpenCL standard for hetero-

geneous computing. In order to provide possible optimization suggestions to the virtual

machine, the bytecode contains annotations. These annotations may pertain to individual

instructions, blocks of code, or variables. Because programming environments are rapidly

changing and predicting the next major advances is challenging at best, the annotation

format is very flexible so that additional annotations can be implemented in the future and

can be formatted to best represent the appropriate information.

1.3 Implementation Plan

As an initial implementation of a virtual machine to execute the bytecode, I wrote a hybrid

interpreter/JIT compiler using the Scala programming language. I chose to use a high-level

language for the interpreter/JIT to make the implementation work less time consuming in

order to focus on bytecode design issues (especially those that arose during implementation)

rather than tedious coding. More importantly, however, I wanted the implementation to

be able to run code on a GPU, as the main design goal of this project is to create a

better platform for heterogeneous computing. By using Scala, I could easily use the Java
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bindings for OpenCL to execute blocks of code on a GPU (for information about OpenCL,

see [16]). Also, because Scala compiles to bytecode for the JVM, the interpreter is platform

independent. As long as the appropriate Java Runtime Environment (JRE) and OpenCL

environments are installed, then this implementation also meets the design goal of being

platform independent.



Chapter 2

Related Work

2.1 Background

Arguably the biggest goal of heterogeneous computing is increasing code efficiency, a topic

explored in great depth. Almost all modern compilers perform optimizations to increase

code performance, but these optimizations sometimes incur a performance cost. Dynamic

compilation and optimization that occurs in a virtual machine (VM) must execute quickly;

otherwise, the time spent optimizing might negate the speed-ups provided by the optimiza-

tions. Furthermore, users expect quick and responsive program execution, so a VM cannot

perform time consuming optimizations and compilations at start-up.

2.1.1 Annotations

In order to aid the VM’s optimization efforts, Krintz and Calder [9] developed an annotation

framework for the JVM to reduce compilation overhead. By reducing this overhead, complex

optimizations can more efficiently be performed in the VM, allowing for greater runtime

performance. This framework integrates annotations into Java class files using the attribute

5
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structure defined in the Java language specification. Because one of Java’s design goals

is small bytecode size, Krintz and Calder, when designing their framework, decided to

minimize the increase in file size caused by adding annotations. However, because small

bytecode size is not one of my goals in this design, the annotations here can use as much

size as necessary to provide valuable runtime information.2 Vallée-Rai et al. [24] also

investigated an annotation framework for the JVM. They found that because class files can

often be optimized statically, adding annotations to these files may reduce the number of

optimizations that the JIT compiler must perform, thereby allowing the compiler to focus

on more expensive optimizations. Furthermore, some runtime checks, such as certain array

index bounds checks, can be performed at compile time. If these checks are performed at

compile time, annotations can be used to forgo the checks at runtime.

2.1.2 Concurrency

The idea of providing more high-level concurrency support in VMs is not a novel concept.

Marr et al. [12], recognizing the transition to many-core processors, argued that VMs

need to abstract concurrency to take advantage of this shift. In addition, they surveyed

17 VMs to determine the current support for concurrency models and found only limited

explicit concurrency support. While some current VMs support models of concurrency

on multi-core processors, few provide abstractions for running code on GPUs. General

purpose GPU (GPGPU) programming has come a long way in recent years. Many of the

first GPGPU applications had to use graphics libraries such as OpenGL and Direct3D to

access the capabilities of the GPU. Because these libraries were not designed for GPGPU

programming, they limit the programmer’s ability to access parts of the hardware that can

2As memory continues to increase in capacity while decreasing in price, the size of a compiled program
will become less significant, but performance will remain an issue, especially in high performance computing
applications.



7

accelerate performance for general purpose applications. Furthermore, using these libraries

for GPGPU programming is, at best, a work-around that puts additional burdens on the

programmer. Realizing the potential of GPGPU programming, Peercy et al. [20] developed

a VM for GPUs focused on performance. The Data Parallel Virtual Machine (DPVM)

that they developed provides a simplified method to write code for GPUs yet still reveals

low-level functionality for when it is needed. Many applications that would benefit from

acceleration using a GPU are indeed highly data parallelizable. However, having the option

to easily program other types of parallel applications for execution on a GPU would be

preferable, and the DPVM is limited in this regard.

Another example of a VM that utilizes the GPU is GViM (GPU-accelerated Virtual

Machine). Because high performance computing systems are now taking advantage of the

many-core GPUs, Gupta et al. [7] sought to virtualize this hardware to reduce the complex-

ity when writing code for it. Their result was GViM, “a system designed for virtualizing and

managing the resources of a general purpose system accelerated by graphics processors.”

Although GViM incurs a performance cost over non-virtualized solutions, the flexibility and

reduction in programmer effort resulting from this VM model helps to justify the virtualiza-

tion of hardware other than simple CPUs. Indeed, virtualized execution will likely always

perform worse than code written and compiled for specific devices. If a programmer knows

the intricacies of the hardware for which he/she is writing code, then he/she can write

extremely efficient code. However, I suspect that very few programmers know these minute

details, and likely even fewer are willing to spend the time and effort to write fine-tuned

code for perfectly efficient execution. Doing so would substantially increase development

costs, and for most applications, the effort is not worth the result. Moreover, even when

the most efficient code is written, this code is not portable to other devices. By compiling

source code to a bytecode and allowing a VM to optimize the code at runtime, we simul-
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taneously get portability and efficiency, while allowing programmers to write in high-level

languages without concern for low-level concepts.

2.1.3 Heterogeneous

While the examples provided above allow easier access to the GPU, they do not utilize code

execution on both the CPU and the GPU. Ideally, we would like to take advantage of all

of the hardware within a computer, which is a driving force in heterogeneous computing.

The MapCG framework [8] provides a means to write code for both the GPU and the CPU

using a high-level programming model. This framework allows programmers to write code

in the high-level MapReduce framework [5]. The MapCG runtime then compiles the source

code for execution on the CPU and the GPU. Along with providing access to both the CPU

and the GPU in a high-level environment, this framework also allows for code portability

to other CPU and GPU architectures.

In the recent past, most computing occurred on the CPU. Now, more attention is

being paid to GPGPU computing as a way to increase program efficiency. New technology

is constantly evolving, and predicting the next big advance in hardware development is

challenging at best, if not impossible. Therefore, we need systems that can adapt to new

technology, while maintaining backwards compatibility with older code. Devices such as

field-programmable gate arrays (FPGA) provide a promising avenue for advancement in

hardware efficiency [10], and, ideally, we would like to have old code utilize this hardware as

effectively as possible without requiring rewrites or recompiles from source. In a world where

computers are becoming more heterogeneous, we need a way to provide programmers with

a programming model that is independent of the hardware, because each piece of hardware

has its own underlying instruction set architecture. The key to this model is virtualization

[1]. Therefore, I have developed a bytecode and VM for use in a heterogeneous environment
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that preserves optimization information in annotations so that, at runtime, the code can

be optimized and executed efficiently on whichever devices are available and will provide

the best performance. Because technology is ever-changing, I present a flexible annotation

format to allow additional annotations to be implemented as new technology and techniques

arise.

2.2 Dalvik

The Dalvik Virtual Machine is an integral part of Google’s Android R© operating system.

This VM runs all of the apps written for this platform. Code for the Dalvik VM is typically

written in Java, but the Dalvik bytecode differs significantly from the Java bytecode. First

and foremost, the Dalvik VM is register-based [2], rather than stack-based like the JVM [11].

A register-based VM and bytecode offer a few advantages over stack-based architectures.

Because modern CPUs are register-based, this type of bytecode more closely mimics the

hardware on which it is running. Therefore, if the number of registers implemented in

the VM matches (or is close to) the number of registers in the actual hardware, then

register allocation can be performed during the original compilation rather than in the JIT

compilation stage. Even though register allocation can be quite efficient (as it must be

for the runtime allocation that occurs in the JVM), performing allocation at compile time

eliminates one more thing the VM must do, thus freeing time for more complex runtime

optimization. Furthermore, Shi et al. [23] found that a register-based VM is faster than a

stack-based VM when implemented as an interpreter. Because many JIT compilers, such

as Oracle’s Hotspot VM [13], initially use an interpreter to decrease start-up time, Shi’s

findings suggest that a register-based bytecode will improve performance in modern VMs.

Of course, a register-based bytecode also has some disadvantages. Because it does not
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make any assumptions about the number of registers, a stack-based bytecode is simpler

and possibly better suited for JIT compilation [23]. To mitigate these disadvantages, the

bytecode presented in this work is neither register- nor stack-based. Instead, it is more

high-level in that it preserves the concept of variables. The bytecode is based on the Dalvik

bytecode, but instead of referencing registers, it references variables. Type information is

also preserved for these variables. Use of type information in low-level languages has been

explored in other contexts before (for example, see [14] and [15]).

2.3 OpenCL

The biggest motivation behind developing this new bytecode and virtual machine model

is the increasing emphasis on heterogeneous computing. The OpenCL standard provides a

way to utilize any piece of hardware in the computer, as long as the appropriate drivers are

installed. A program written in OpenCL can query the machine to determine which devices

are available and then select the device or devices best suited for running each section of

code. Because this functionality is consistent with my goal of exploiting a heterogeneous

environment, I chose to use OpenCL to implement GPU code execution in this virtual

machine.

While the bytecode does not contain any instructions specifically for the OpenCL imple-

mentation, the OpenCL computation model influenced some of the information preserved in

the bytecode from the original source code. This additional information is stored in anno-

tations, and provides optimization hints to the JIT compiler. An OpenCL program consists

of two distinct sections: the host and the kernels. The host serves only to set up kernels

and queue them for execution, while the kernels are where the real computation happens.

Part of the host setup includes querying for and deciding which devices the program will
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use [16]. This execution model works well with annotations that specify on what type of

device a particular block of code will execute most efficiently. For example, a code section

that can be parallelized over a large set of data is well suited for execution on a GPU, so

an annotation can accompany this bytecode block indicating as such. Furthermore, this

annotation might aid the virtual machine in determining how to convert the bytecode into

kernels when using the OpenCL implementation.

Another annotation that OpenCL helped to motivate is an annotation that states the

variables used in a certain section of code. Because the OpenCL memory model requires

that data be copied to each device where it is needed, this annotation allows the VM to

optimize memory moves to different devices. Moreover, because memory move operations

are computationally expensive, annotations such as whether an object is immutable or func-

tionally immutable will tell the VM whether certain memory moves are actually necessary

(for example, copying an immutable object back to the host is unnecessary and wastes

computation time). A functionally immutable object is technically a mutable object (i.e.,

some state in that object changes), but the state change is not visible outside of that ob-

ject. Therefore, a functionally immutable object can be considered immutable for certain

optimization purposes (such as memory moves). Furthermore, even if an object is neither

immutable nor functionally immutable, in certain programs the object may not actually mu-

tate. If the mutable object does not mutate during program execution, then this object can

be treated as immutable. This type of analysis can be performed at compile time in many

situations, so an annotation can accompany that object stating its pseudo-immutability.
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Bytecode Design

3.1 Instructions

The bytecode contains two distinct types of information: the instructions and the annota-

tions. The instructions are the actual operations that must be performed when executing

the code. These instructions are very low-level, much like instructions in assembly and

machine code. When compiled bytecode is generated, it is encoded in a binary format.

3.1.1 General Format

Each instruction is 128 bits long. A fixed-length instruction format was chosen so that the

VM could make use of the many advantages of this format over variable-length instructions.

By knowing exactly how long each instruction is, the VM can pipeline instructions by

beginning to decode future instructions before the current one is finished executing. The

VM can also more easily rearrange instructions to better suit the devices if it knows the

length of each instruction from the start. Furthermore, when making use of annotations

that apply to blocks of code, the VM needs to know how long the block is in order to

12
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perform the appropriate optimization action. Variable-length instructions can reduce the

size of the compiled bytecode by eliminating wasted space that comes from the unused bits

of some instructions in the fixed-length design, but because bytecode file size is not a major

concern of this bytecode and VM, the advantages of fixed-length instructions far outweigh

those of variable-length instructions.

For each instruction, the first 16 bits denote which instruction to perform, and the last

16 bits are reserved for annotations associated with the instruction. The other bits are

used to store references to variables, type information, or literal values, as determined by

the individual instructions, using 16 bits for each variable or type and groups of 16 bits for

literals. Figure 3.1 shows a pictoral representation of the instruction format.

instruction var1 var2 var3 var4 var5 var6 annotation

Figure 3.1: The basic format of the instructions in this bytecode. Each box represents 16
bits. Some fields may be unused in certain instructions. The var slots may also be replaced
by types or literals, depending on the instruction. Slots can be combined to accommodate
literals longer than 16 bits. See Chapter 4 for a list of the instructions in this bytecode.

3.1.2 Variables and Types

Instructions refer to variables by using a 16 bit integer reference. Each stack frame contains

a new set of variables. Each variable also has a type associated with it, which is specified

using a 16 bit reference when the variable is initialized. For this reason, all variables must be

initialized explicitly in the bytecode in order to specify the type and to provide annotations

associated with it. By using 16 bits to reference variables and types, a program can contain

up to 65,536 (216) variables per stack frame and up to 65,536 types, which should be many

more than any program should ever need. The first eight types are reserved for the primitives

that are built into most modern hardware (boolean, char, byte, short, integer, long, float,
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and double), and the ninth type is reserved to denote arrays. The rest of the types are

defined by user and language/library defined types. The use of a 16 bit field to represent

a type has already been established in Dalvik and the JVM [2, 11]; however, associating

annotations with variables and types has only been explored in a limited context.

Along with type information for individual variables, the types used in generics will also

be preserved in the bytecode. This information will be located in annotations to variables

that take a generic parameter. Thus, unlike the JVM, this bytecode will not be limited

by type erasure. Because object types can contain annotations, knowing as much type

information as possible is beneficial for optimization; therefore, preventing type erasure

both aids the programmer’s efforts and allows for greater optimization potential.

Like Dalvik’s Dex files and the JVM class files, this bytecode also has type files which

contain methods and variables associated with objects. The headers for these type files are

similar in form to the headers used in Dalvik and the JVM [2, 11]. However, the headers

also contain annotation information that pertains to the type as a whole. In addition,

annotations will accompany the fields and methods to provide specific details for each. For

example, an object may or may not be immutable as a whole, so this information is stored

in the header. In mutable objects, methods that do not change the object can be classified

as non-mutating so that if only these methods are used within a program, the object can

be considered immutable and take advantage of optimizations associated with immutable

objects. By storing annotations both in the header and with individual methods and fields,

the bytecode provides more information to the JIT compiler so that it can make intelligent

optimization decisions based on the hardware that it has available.
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3.1.3 Function Calls

When a function call instruction executes, a few key steps occur. First, the stack frame

shifts so that the function will have a new set of variables. The first variable contains a

pointer to the object on which the function was invoked (i.e., a “this” pointer). If the

function is static, then the data in the first variable slot does not matter as the VM will

not use it. The next n variables contain the arguments to the function, where n is the

number of arguments to that function and n ≤ 4. If a function requires more than four

variables, the first three are passed using variable indices, and the remaining variables are

stored in memory through instructions preceding the function call. The address to this

memory location is then stored in a variable and passed to the function in the fourth

argument slot. The function is responsible for extracting the variables from memory as

needed, using bytecode instructions inserted by the compiler. The fourth argument slot

also serves as the location to which the function should return a variable. Thus, the data

stored in the variable referenced by this slot will be lost when the function returns unless

the data is stored elsewhere. Unfortunately, this design decision requires extra variable

copies in many situations (e.g., whenever four arguments are required and all of them must

remain unchanged after the function executes); however, the process of storing variables in

memory and referencing their location when the number of function arguments is greater

than four is computationally expensive. If a dedicated return variable slot were built into

this instruction (rather than the dual-use fourth argument/return variable slot), then the

function call instruction would only have three variable slots, meaning that any method with

four or more arguments would need to perform the memory storage operations. Therefore,

I decided that having more arguments passed directly in the instruction is preferable and,

thus, that using the fourth slot as both an argument slot and the return slot is the best
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decision for this bytecode.

3.1.4 Other Considerations

Much attention was given to deciding how long to make each instruction. Much like the

rationale for using 16 bits to represent variables and types, using 16 bits to identify instruc-

tions and annotations provides many more combinations than should be necessary, without

making instructions unreasonably large. After the instruction field and the annotation field,

96 bits remain for variable references, type references, and literals. Considering the variable

initialization instruction, the biggest primitive types (the long and the double) are 64 bits.

Then, 32 bits remain in the instruction after the instruction field, annotation field, and 64

bit literal field. The two sets of 16 bits within the 32 remaining bits, then, are perfect for

referencing a variable and a type. Thus, when using 16 bits each to reference instructions,

annotations, variables, and types, 128 bits is the minimum instruction size needed to contain

the variable initialization instructions for the long and the double. The 128 bit instruction

length also works well for function calls by providing six 16 bit fields to reference the object

on which the method is called, to encode the method number of the method to execute, and

to hold four arguments to the method (providing four slots for arguments before resorting

to storing additional arguments in memory seemed sufficient).

As the instruction format is rather long, many instructions will not use the full 128

bits available and will instead have some slots with unused data. For some instructions,

the bytecode could be modified to contain variations that perform multiple operations on

different sets of data. For example, an add instruction could take two sets of three variables

(one destination variable and two source variables in each set), denoting two distinct add

operations that can be executed in parallel. This possibility echoes the ideas of the Very

Long Instruction Word (VLIW) architectures [6]. For simplicity, I chose not to include
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these types of instruction in the current bytecode design. However, I felt that mentioning

this aspect of flexibility in the bytecode is important in case new advantages of the VLIW

architecture or something similar are discovered. Recent research in auto-vectorization

may also help to motivate the addition of these types of instructions (see, for example,

[17, 18, 21]). By performing compile time auto-vectorization and having special bytecode

instructions for the results of this analysis, the virtual machine could make immediate use of

Single Instruction Multiple Data (SIMD) instructions at runtime to improve performance.

3.2 Annotations

The annotations in this bytecode come in two forms. The first form is a set of annotations

that are expressed in individual instructions, represented by a 16 bit integer in the last

16 bits of the instruction. The meaning of the annotation depends on the instruction with

which it is associated (e.g., the same configuration of 16 bits may mean one thing when used

with a variable instantiation instruction but have an entirely different meaning when used

with an add instruction). For some instructions, each combination of 16 bits will represent

a unique annotation. For others, however, the 16 bits will serve as bit flags so that multiple

pieces of information can be associated with a single instruction. For example, knowing

whether a variable is constant, escapes the current thread, and/or escapes the current stack

frame can provide important optimization information, so the 16-bit annotation for the

variable declaration instruction is implemented as a set of bit flags. Thus, a variable can

be flagged with all three of these annotations, and more, within the declaration instruction

itself.

The other annotation form in this bytecode is the annotation file. This file contains all

of the annotations associated with the code other than the annotations specified in the last
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field of the instructions themselves. A special annotation instruction is used to reference

these annotations, and these instructions are inserted by the compiler at the appropriate

locations to specify information for potential optimizations, such as before a block of code

that is well suited for execution on a GPU. The annotation instruction uses the last 16

bits to describe the annotation type. The 64 bits after the instruction field encode an

offset in the annotation file for the full annotation data. The location in the annotation

file must contain the length of the annotation followed by the specific information for that

annotation. The format of the information is defined by the annotation type that was in the

bytecode instruction. Each type of annotation can have an entirely different format. This

flexible annotation format allows for new annotations to be easily added in the future. The

creators of those annotations can decide how best to arrange the information associated

with them. With this flexibility comes the limitation that the annotation creator must also

modify the VM to include information about how to process this new annotation. If a VM

identifies an annotation that it is not aware of, it will simply ignore the annotation. Thus,

programs compiled with new annotations are backwards compatible with older VMs, but

some potentially useful optimization information will go unused.



Chapter 4

Instruction Set

This chapter contains a list of the instructions included in this bytecode. It is divided

into sections based on the type of instruction, and descriptions are also included in these

sections. In the figures, empty boxes indicate unused fields. Unless otherwise noted, all

fields in the following figures are 16 bits. Asterisks are used to denote instructions that are

not implemented in the current version of the hybrid interpreter/JIT compiler (discussed

in Chapter 6). The current implementation works only with integer instructions.

Each instruction contains an annotation segment, which uses a full 16 bits to provide for

future additions and to make sure that there are not constraints on future growth; program

analysis is an area of significant current work, and new languages might have constructs that

provide particularly useful information for optimization. In some cases, there are clear and

obvious uses for some of the bits. Variable declaration and object creation are two of these

cases. For variable declaration, a bit is reserved for specifying if the variable is constant

after declaration. For object creation, two bits are reserved for the results of escape analysis

to see if the object can escape the current stack frame or the current thread. This type of

analysis can allow for stack allocation of objects or the removal of synchronization code [4].

19
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4.1 Variable and Object Instructions

The first group of instructions is shown in Figure 4.1 and deals with variables and object

creation, as well as type casting. As with many instructions, after the 16 bit opcode, the

next 16 bit field stores a destination variable. The third 16 bit field encodes a type, except

in the assignment instructions, where the type will be known from the initialization of

the destination variable. The variable creation instructions then provide an initial value,

either from a source variable or from a literal that can be up to 64 bits. The type casting

instruction specifies a source variable and a destination variable for the cast, storing the

value of the source variable in the destination variable of the new type rather than changing

the type of the source variable.

The init-var-lit, set-var-lit, and set-field-lit instructions use 64 bits to en-

code the literal value. When variables that do not use 64 bits (int, short, etc.) are initialized

and set with these instructions, only the n rightmost bits are used, where n is the number

of bits used in that type. For example, when initializing an int with a literal value, only the

rightmost 32 bits are extracted from the 64 bit literal and used to set the int with a value.

4.2 Mathematical Instructions

Figure 4.2 contains the instructions for numeric unary and binary operations. The binary

operations come in forms where both operands are variables as well as forms where one

operand is a literal. In the instruction name, type is used to indicate an appropriate primitive

type (e.g., int, double, etc.).
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4.3 Array Instructions

Figure 4.3 shows the different array instructions. While arrays can be modeled in languages

as data types that sit at the library level [19], the bytecode needs to have a way to set

aside and access larger chunks of continuous memory. The virtual machine implementation

is given freedom in how it stores objects in an array. The Java model of storing references

provides simplicity for languages that make extensive use of subtyping, but it has perfor-

mance costs in the form of additional memory loads and potentially poor interactions with

cache. For that reason, if the type is final and references to elements of the array do not es-

cape local usage to outlive the array itself, the VM should have the freedom to place objects

directly into the array block. This option will be particularly useful for multi-dimensional

arrays and is a significant part of the reason the X10 language includes the concept of a

Rail [3]. Through program analysis, this same type of optimization can be applied at the

VM level in languages that do not explicitly provide constructs for it.

4.4 Control Structure Instructions

The last major group of instructions is shown in Figure 4.4, which contains the flow con-

trol instructions. These instructions include required and conditional branches, as well as

method invocations. The branch to a specific instruction will be the most commonly used

form, but branching to variable locations is also allowed to provide greater flexibility.

4.5 Annotation Instruction

The annotation instruction, shown in Figure 4.5, is used to specify all annotations that are

not associated with any single instruction. For example, if an annotation applies to a group
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of instructions (e.g., denoting that a code block is well suited for a GPU), then it should use

the annotation instruction to identify the annotation. The annotation instruction contains

a literal value that indicates an offset within the annotation file where the information for

this annotation is located. This instruction also contains an annotation segment in the

last 16 bits that is used to specify the type of the annotation. Because the format of the

annotation file is not strictly defined, the VM must know how to process each annotation

type in order to make use of the information within. The annotation type is provided so

that the VM can either determine how to interpret the data in the annotation file or ignore

the annotation if the type is not recognized. This design allows for backwards compatibility

so that code compiled with new annotations can run on older VMs.

4.6 Binary Encoding

The instruction names listed in the previous sections are convenient when describing the

bytecode and understanding the function of each instruction. However, the actual bytecode

contains only binary values, not string representations of instruction names. Thus, each

instruction in the bytecode has a corresponding binary representation. Figure 4.6 lists the

binary encodings (as hexadecimal values) for each of the instructions implemented in the

current version of the VM. The current implementation only works with integers, but the

binary mappings are designed such that they can easily be extended to other types. For

example, the binary representation for add-int is 0x1402. In the VM, integers are denoted

as type 4, so the second digit in the hexadecimal form of the binary encoding denotes the

type of the instruction. Thus, to determine the binary encodings of the add instructions for

the other primitives, simply change the second digit to the value that corresponds to that

type.
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Instantiates variable destVar with the value from sourceVar

init-var destVar type sourceVar annotation

Instantiates variable destVar with the value of literal

init-var-lit destVar type literal (64 bits) annotation

Assigns variable destVar with the value from sourceVar

set-var destVar sourceVar annotation

Assigns variable destVar with the value of literal

set-var-lit destVar literal (64 bits) annotation

Sets the field fieldNum in object objVar to the value in sourceVar

set-field objVar fieldNum sourceVar annotation

Sets the field fieldNum in object objVar to the value of literal

set-field-lit objVar fieldNum literal (64 bits) annotation

Gets the value of field fieldNum in object objVar and stores it in destVar

get-field objVar fieldNum destVar annotation

Creates a new object of type type, storing a reference to it in destVar

obj-create destVar type annotation

Typecast of sourceVar to type, storing the type-casted object in destVar

typecast* destVar type sourceVar annotation

Figure 4.1: The instructions related to variable and object creation, assignment, and the
type cast. Empty boxes indicate unused fields. Unless otherwise noted, all fields are 16 bits.
Asterisks are used to denote instructions that are not implemented in the current version
of the hybrid interpreter/JIT compiler.
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Unary ones-complement

not-type destVar sourceVar annotation

Unary twos-complement

neg-type destVar sourceVar annotation

Binary operators on two variables

op-type
add
sub
mul
div
rem
and
or
xor

destVar sourceVar1 sourceVar2 annotation

Binary operation between a variable and a literal. The size of literal depends on the type

op-type-lit
add
sub
mul
div
rem
and
or
xor

destVar sourceVar literal (16-64 bits) annotation

Figure 4.2: The basic math instructions that are part of the bytecode. In the instruction
name, type can be replaced by any of the primitive types. Empty boxes indicate unused
fields. Unless otherwise noted, all fields are 16 bits.
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Creates a new array of size sizeVar and type type, storing a reference to it into destVar

new-array destVar type sizeVar annotation

Creates a new array of size literal and type type, storing a reference to it into destVar

new-array-
lit

destVar type literal (32 bits) annotation

Stores the length of the array referenced by sourceVar into destVar

array-len destVar sourceVar annotation

Stores sourceVar in array arrayVar at position locVar

array-put sourceVar arrayVar locVar annotation

Stores value at position locVar in array arrayVar into destVar

array-get destVar arrayVar locVar annotation

Figure 4.3: The instructions that are intended to work with arrays in the VM. Empty boxes
indicate unused fields. Unless otherwise noted, all fields are 16 bits.
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Jumps to the bytecode instruction at location dest

goto-lit dest (64 bits) annotation

Jumps to the bytecode instruction at the location stored in destVar

goto-var destVar annotation

Branch to bytecode instruction at location dest if sourceVar1 and sourceVar2 compare as specified

if-test-lit
if-eq-lit
if-ne-lit
if-lt-lit
if-le-lit
if-gt-lit
if-ge-lit

sourceVar1 sourceVar2 dest (64 bits) annotation

Branch to bytecode instruction stored in destVar if sourceVar1 and sourceVar2 compare as specified

if-test-var
if-eq-var
if-ne-var
if-lt-var
if-le-var
if-gt-var
if-ge-var

sourceVar1 sourceVar2 destVar annotation

Invokes method methodNo on object objVar with arguments argVar1 - argVar4

invoke objVar methodNo argVar1 argVar2 argVar3 argVar4 annotation

Invokes static method methodNo on class literal with arguments argVar1 - argVar4

invoke-
static

literal methodNo argVar1 argVar2 argVar3 argVar4 annotation

Returns from a function, returning the value of type type from variable sourceVar

return sourceVar type annotation

Returns from a function

return-
void

annotation

Throws the exception stored in sourceVar

throw* sourceVar annotation

Figure 4.4: The bytecode instructions that support program flow control. Empty boxes
indicate unused fields. Unless otherwise noted, all fields are 16 bits. Asterisks are used
to denote instructions that are not implemented in the current version of the hybrid inter-
preter/JIT compiler.
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Accesses information for the annotation type annotation at offset literal in the annotation file

annot literal (64 bits) annotation

Figure 4.5: The instruction used to reference annotations in the annotation file. Empty
boxes indicate unused fields. Unless otherwise noted, all fields are 16 bits.

annot 0x0000 or-int 0x1408 if-lt-var 0x3003
init-var 0x0001 xor-int 0x1409 if-le-var 0x3004
set-var 0x0002 add-int-lit 0x1412 if-gt-var 0x3005
set-field 0x0003 sub-int-lit 0x1413 if-ge-var 0x3006
get-field 0x0004 mul-int-lit 0x1414 invoke 0x3007
obj-create 0x0005 div-int-lit 0x1415 invoke-static 0x3008
typecast 0x0006 rem-int-lit 0x1416 return 0x3009
init-var-lit 0x0011 and-int-lit 0x1417 return-void 0x300A
set-var-lit 0x0012 or-int-lit 0x1418 throw 0x300B
set-field-lit 0x0013 xor-int-lit 0x1419 goto-lit 0x3010
not-int 0x1400 new-array 0x2000 if-eq-lit 0x3011
neg-int 0x1401 new-array-lit 0x2010 if-ne-lit 0x3012
add-int 0x1402 array-len 0x2001 if-lt-lit 0x3013
sub-int 0x1403 array-put 0x2002 if-le-lit 0x3014
mul-int 0x1404 array-get 0x2003 if-gt-lit 0x3015
div-int 0x1405 goto-var 0x3000 if-ge-lit 0x3016
rem-int 0x1406 if-eq-var 0x3001
and-int 0x1407 if-ne-var 0x3002

Figure 4.6: The binary encodings (in hexadecimal form) for each bytecode instruction.



Chapter 5

First-Cut Annotations

The cornerstone of the proposed VM design is that compilers can do costly and complex

analysis to discover information that is useful for optimization, but that the information

will only be useful if it is retained in some form in the bytecode so that it is available to

the JIT. As a rule, the JIT does not have the luxury of duplicating these analyses because

it needs to start up quickly and consume minimal resources while the program is running.

My solution is to provide ample options for the results of these analyses to be included in

the bytecode. Some of this can be placed in the instructions themselves, as noted in the

previous section. However, additional flexibility is provided through a separate annotation

file and instructions that can reference into it. In this section, I consider some of these

annotations.

At the class level, there are obvious advantages for annotations that specify if a given

class is immutable or functionally immutable. An immutable class is one for which the

values stored in instances cannot change in any way after instantiation. A functionally

immutable class relaxes this restriction so that any changes in the object’s state are not

visible to outside code. An instance of a functionally immutable class might have a mutable

28
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field that is not directly accessible from the outside and which is used only for optimization.

Instances of such a class are not as thread safe as a truly immutable class, but they can be

safely copied and distributed without needing to communicate changes back to the original.

This fact is particularly beneficial in a heterogeneous environment where devices often have

separate memory spaces.

The class level annotations can also include the results of analyses such as shape analysis

[22]. This annotation can provide the VM with information that is significant for memory

allocation or the use of preloading instructions to prevent pipeline stalls. The memory allo-

cation aspect is particularly useful in heterogeneous systems because many devices do not

support dynamic memory allocation or have cached memory hierarchies that are standard

in CPUs.

Another use of annotations is the specification of full types for generics/parametric types.

This information has to be stored in annotations because the types can be arbitrarily long,

as it is possible for them to be recursively nested. The optimization benefits of having access

to full types is well known from their use in C++ in techniques such as expression templates

[25]. Putting the basic types that result from type erasure into the primary bytecode

allows the JIT to get running quickly using the limited space in standard instructions. The

complete types will be available in annotations for optimizations or for languages that allow

run time matching on those types.

The true power of allowing arbitrary annotations in a separate file is realized when one

looks at the impact on heterogeneous computing. This area is still in rapid development

and will inevitably experience significant changes in the coming years. Annotations aimed

at heterogeneous computing specify when blocks of code are particularly well suited for

being run as kernels or when they would work particularly well on certain types of devices.

For example, if there is a loop that is data parallel, annotations could be added that



30

indicate that the range of commands for that loop would be well suited for a kernel and

that the kernel would be well suited for execution on a data parallel device such as a GPU.

This type of information is distinctly lacking in current platform-independent bytecodes,

and it is too much to ask a JIT to do the analysis that would be required to identify them.

Even worse, platforms like the JVM throw away a significant amount of information that is

associated with the original code, making it even harder to discover what may or may not

run well on a particular device. In the near future, systems in which most of the computing

power resides in a many-core chip will likely be common. These types of systems will make

platforms that cannot effectively use that power far less effective.

One of the other major benefits of JITs is that they can take runtime information into

account. This feature is particularly significant in parallel and heterogeneous processing.

Deciding whether a particular process should be split across threads or run as a kernel on a

particular device can often only happen at runtime when the value of some size parameter

is known. Compilers can add annotations estimating how large a parameter needs to be in

order for these approaches to be beneficial, but the decision for whether any particular call

should be handled in one way or another requires knowing the runtime values.



Chapter 6

Implementation

The current implementation of a virtual machine to run this bytecode is written using the

Scala programming language and incorporates OpenCL code (through the JavaCL bindings)

to execute code segments on a GPU. Thus, because Scala is a high-level programming

language, this implementation is high-level and not intended to be used for real applications.

Rather, this version of the VM serves three main purposes: 1) to show that this bytecode can

be successfully implemented; 2) to aid in the bytecode and VM design process by bringing

to light certain considerations and difficulties that arise when trying implement the design;

and 3) to demonstrate that code can be translated at runtime to execute on various devices

(in this case, the CPU and the GPU). Also, the current implementation only works with

integer values, and not all bytecode instructions are implemented (the figures in Chapter

4 denotes which instructions are not implemented). The following sections describe the

current implementation. Code for this implementation is included in Appendix A.
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6.1 The Class File Format

All code that the VM runs is contained within a class file. Like in the JVM and Dalvik,

a class can contain both static and non-static methods. The main method that the VM

should initially run when launched must be static. All of the data contained in the class

files are encoded in binary.

In order to provide relevant information to the VM, each class file contains a header.

The header format used in this design is modeled largely after the headers in the Dalvik

Dex files. However, the headers in this design contain less information than Dalvik’s.

The current version of the header design contains only the information needed for this

implementation. Whereas, for example, Dalvik contains offsets for certain pieces of data,

such as the method table, these offsets were not needed for the current implementation.

Thus, this data was excluded to simplify the headers. A future implementation might need

more information in the headers, so this format is subject to change, especially considering

that the current header version does not store any annotation information. Figure 6.1 shows

a text representation of an example class file header.

10

1

2

3

Class2

4 4

0 5 11

Figure 6.1: An example class file header. A header appears at the beginning of each class
file to provide the virtual machine with relevant information. In the actual class files, the
headers are encoded in binary.

The first item in the header is a two-byte unique number to identify the type of the
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class. Because the first eight types (0-7) are reserved for primitives and the ninth type

(8) is reserved to denote arrays, this piece of data must be an integer greater than eight.

Each class must have a value unique from every other class used in the program. After

the unique identifier, the header contains three additional two-byte values indicating the

number of classes in the class table, the number of fields in the field table, and the number

of methods in the method table, respectively. The class table follows these values and is

formatted as a series of strings indicating the names of the other classes that the current

class references. Each string is encoded in binary by character and is terminated by a null

character (‘\0’). After the class table is the field table which consists of a list of two-byte

values, each representing one field in the class. Each value indicates the type of the given

field. The values are in order by field number (so field number 0 is the first value in the field

table and is of the type expressed by that value). Finally, the last item in the header is the

method table. This table is represented as a series of four-byte values, each indicating the

instruction number where a method starts. Like the field table, the order in the method

table indicates the method number. If the class contains a main method, it must be the

first method in the class. Also, if the class contains initialization code to be run during

object creation, then the first method must begin after the initialization instructions. For

example, if the object has three instructions to be executed upon object creation, then

the first number in the method table should be 3 to indicate that the first method starts

at instruction 3 and, thus, that the first three instructions in the class are initialization

instructions.

After the header comes the actual instructions for the class. Each instruction is 16

bytes and follows the format described in Chapter 3. Each method, and the initialization

instructions, must end with a return instruction so that the VM knows where each method

terminates. Text representations of example class files can be seen in Appendix B. The
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binary encoding (as a hexdump produced by the xxd UNIX/Linux command) of one of

these examples is also included.

6.2 Scala Code

6.2.1 Assembler

To avoid having to write class files directly in binary, I wrote an assembler that takes the files

as shown in Appendix B and encodes them in binary. The main method for the assembler

is listed in Appendix A.2, but this method simply passes the filename to the textToBinary

method in the object MyClass (Appendix A.3). This method contains the logic to read in

the data from the text representation of a class and produce the binary encodings for all

of the information. A very useful data structure for both encoding instruction names to

binary and decoding the binary to the actual functions to execute is the instrList list in

the InstructionList.scala file (Appendix A.1). This variable is a list of 3-tuples, each of

which contains the name of a bytecode instruction, the binary encoding of that instruction,

and the Scala function to execute for that instruction. Using the nameToHex method, which

returns a map from instruction name to binary encoding, the assembler can easily find

the binary encoding for each instruction. Similarly, the hexToFunc method returns a map

from binary encoding to function so that the VM can easily determine how to execute each

bytecode instruction.

6.2.2 Class and Object Representation

Because the bytecode instructions can be contained in multiple class files, each class needs to

be represented in the VM. This task is accomplished by having a Scala class named MyClass

(Appendix A.3), which contains the name, type number, class table, field table, method
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table, and list of instructions associated with that class. Objects are represented using the

Scala class named MyObject (Appendix A.4). This class contains a variable that stores a

reference to the MyClass object to indicate the type of the object. The MyObject class also

contains an array that is used to store the fields of that object. When the obj-create

instruction is executed, a MyObject object is created, and if the first method in the method

table does not begin at instruction zero (indicating that the class has initialization code),

then a context shift occurs to run the initialization instructions.

6.2.3 Interpreter

The interpreter is used to run the programs written in this bytecode. The implementation

is actually a hybrid interpreter and JIT compiler in that the bytecode instructions are

generally interpreted one by one, but the VM also compiles certain sets of instructions to

OpenCL kernels at runtime (see Section 6.3 for more information on the OpenCL part of

the implementation). For simplicity, I will henceforth refer to the hybrid interpreter/JIT

compiler as “the interpreter.”

Machine State

The state for the virtual machine is represented by the Scala class MachineState (Appendix

A.5). The state keeps track of all of the classes used in the current program, the current class

and object (possibly null for static methods) in context, the current instruction number,

the current list of instructions, the current set of variables and their types, and the variable

location to which to store the return value upon a method return. The state also has a call

stack which stores all of the aforementioned data for previous stack frames (i.e., when a

context shift occurs, the stack frame shifts to allocate a new set of variables, so the call stack

stores the variables and other data from the previous frames so that they can be available
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upon returning). The MachineState class also contains methods to handle method calls,

method returns, and jumps to different instructions.

Bytecode Program Execution

The main method for the interpreter is in the Scala object Interpreter (Appendix A.5).

When running the interpreter, the only command-line argument is the name of the compiled

class file that contains the main bytecode method to execute. This class is loaded into the

VM using the fromBinary method in the MyClass object (Appendix A.3). The other classes

used in this code, as referenced in the class tables, are then loaded. The machine state is set

up by providing it with the set of classes as well as identifying the class that contains the

main method. Finally, the bytecode instructions are executed, branching and performing

method calls and returns where appropriate, until the main method returns. At that time,

the program execution is finished and the interpreter program terminates. The logic for

each bytecode instruction is contained in the InstructionList object (Appendix A.1).

The only exception to the one-by-one execution of instructions is when code is compiled to

run on the GPU, which is covered in the next section.

6.3 OpenCL

In the current version of the interpreter, most of the bytecode instructions are executed

sequentially on the CPU. However, parallel GPU execution is also implemented for a specific

situation. Because the focus of this project was on the design of the bytecode and VM,

and not to study complex program analysis techniques, I was limited in my ability to

implement general purpose, heterogeneous program execution. In order to demonstrate

that the bytecode can indeed be used to run heterogeneous code, the current VM is able
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to perform operations involving two arrays and store the results into a third array. Data

parallel operations are well suited for a GPU, so this demonstration of GPU execution is

applicable to real situations in heterogeneous computing.

6.3.1 The Annotation File

GPU execution applies to a block of bytecode instructions, so this block must be preceded

by an annotation instruction so that the VM knows about the potential optimization. The

annotation instruction specifies the type of the annotation and provides the address in the

annotation file where that annotation begins. In the current implementation, the address

is simply the line number of the first line of data for that annotation in the annotation file.

Like the class file headers, the format of the GPU execution annotation is subject to

change based on the information that future versions of the VM require. For the current

implementation of the GPU execution annotation, the annotation file first contains the

number of lines that this annotation uses in the annotation file. The next line is the

number of bytecode instructions that are replaced by this annotation so the VM knows how

to continue program execution after the GPU code. Next is the number of input arrays on

which to perform the operations, followed by the length of these arrays (the arrays must

be the same length). The next line contains a space separated list indicating the variables

where the input arrays are stored as well as the variable in which to store the output array.

Finally, any remaining lines are valid OpenCL code to perform, with the assumption that

the output array will be named out, the input arrays will be named a,b,c,..., and the

global ID of the process will be named i. For an example annotation file, see Figure 6.2.

One of the major assumptions in this project is that the compiler can perform complex

code analysis to generate informative annotations. Thus, while it may at first seem strange
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out[i] = a[i] + b[i];

Figure 6.2: An example annotation file that the virtual machine uses to obtain optimization
information. This file is accessed using the annotation instruction, and the format of this
file depends on the annotations used, as each annotation type has its own format.

to include OpenCL code within the annotation file itself, the decision makes more sense

after considering that the compiler could theoretically generate this code by analysing the

bytecode.

6.3.2 Executing Annotations

When the interpreter executes an annotation instruction, it determines the type of the

annotation and calls the appropriate function in the AnnotationDecoder object (Appendix

A.6). The function then extracts the annotation information from the annotation file and

calls the correct function in the AnnotationRunner object (Appendix A.6). Since the

heterogeneous aspect of the current implementation is primarily concerned with running

code on the GPU, the AnnotationRunner object creates an OpenCL context that contains

a GPU device. Then, when a method is called to actually run code on the GPU (such as

the dataParallelTwoInt method), the appropriate OpenCL variables are initialized and

filled with the correct data from the VM variables. The actual code for the OpenCL kernel

is then written to a file. This kernel contains references to OpenCL variables, as well as

other necessary code like identifying the global ID for the process. The OpenCL code

from the annotation file is also inserted into this kernel. An example of an OpenCL kernel
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generated by this process is shown in Figure 6.3. Finally, the OpenCL kernel is compiled

and executed, and the resulting output array is stored in the appropriate variable as defined

in the annotation file.

__kernel void my_kernel_0(__global const int* a, __global const int* b,

__global int* out, int n) {

int i = get_global_id(0);

if(i >= n)

return;

out[i] = a[i] + b[i];

}

Figure 6.3: An example OpenCL kernel generated by the virtual machine based on a byte-
code annotation.

An example class file that executes code on the GPU can be seen in Appendix B.2.

Important to note is the annotation instruction that comes right before a block of code that

is looped over the arrays. This block of code is then skipped when the VM finishes the

GPU execution.
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Conclusion and Future Work

In this thesis, I have presented a bytecode and virtual machine design that prioritizes

optimization in a heterogeneous environment. By storing annotations with the bytecode,

the JIT compiler can make runtime optimization decisions, taking into account the devices

available in the computer. This design provides code portability to different architectures

and different combinations of devices, and because many optimization decisions are made

at runtime, the application can adapt to the hardware and provide optimizations specific

for each platform. For example, consider a data parallel block of code that is well suited for

a GPU. In a computer with a powerful GPU, this code will likely perform best if executed

on that GPU; however, if a computer does not contain an efficient GPU, the code can be

reoptimized to run on the CPU to provide the best performance for the given system.

The field of heterogeneous computing is in a state of constant, rapid evolution. In

order to incorporate new advances in this field, the annotation format for this bytecode is

extremely flexible and designed for annotations to be added over time. New annotations

can be formatted in a way that best organizes the information within, and because most

annotations only provide optimization information, code compiled with new annotations is

40
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backwards compatible with older VMs. Preserving backwards compatibility is important for

many applications, but this requirement should not limit future advances in optimizability.

I have also developed an initial implementation for a virtual machine to run programs

that are compiled to this bytecode. The VM is written in Scala and uses the JavaCL

bindings for OpenCL to run code on a GPU. The implementation is a hybrid interpreter/JIT

compiler in that a program is mostly interpreted, but certain code segments will be compiled

at runtime to OpenCL kernels for GPU execution. While very high-level and not intended

for real world use, this VM implementation serves as a demonstration that this bytecode

is implementable and that code can be recompiled at runtime to run on a GPU and, thus,

other devices that might be present in a heterogeneous environment. Furthermore, because

the implementation is written in Scala, which compiles to the JVM, this initial VM can

be run on any system with Java and the appropriate OpenCL drivers installed, providing

platform independence for this bytecode.

In the future, I plan to implement more annotations in the VM. I want to focus on ways

to make more general code compile for GPU execution. Along with implementing more

annotations, I will likely need to restructure the class file headers to include annotation

information and also develop a way to associate annotation data with specific fields and

methods within a class. Because operations that involve moving data to different devices

are computationally expensive, I will also work on implementing the annotations that flag

immutability and functional immutability. In some cases, immutability information is easily

obtained, so including methods to detect immutability in an assembler or compiler may be

a relatively easy task and a good place to begin working on the program analysis portion

of the bytecode design. I also plan to design more annotations to add to the bytecode to

improve optimization potential and determine what types of information should be stored

with these annotations. Currently, none of the annotations have a strictly defined structure
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for information, so formalizing the representation of annotation data is another important

step.

Heterogeneous computing in quickly becoming increasingly important as many manu-

facturers develop more varieties of devices. As specialized hardware becomes more common

in computers, we need a simple, highly adaptable, and platform independent way to pro-

gram for a wide range of devices. The bytecode and virtual machine design presented in

this thesis is a first step towards meeting these goals.



Bibliography

[1] David F. Bacon. Virtualization in the age of heterogeneous machines. In Proceedings

of the 7th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution

Environments, VEE ’11, pages 1–2, New York, NY, USA, 2011. ACM.

[2] Dan Bornstein. Dalvik VM internals. In Google I/O Developer Conference, 2008.

[3] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kiel-

stra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-oriented

approach to non-uniform cluster computing. SIGPLAN Not., 40:519–538, October

2005.

[4] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam C. Sreedhar, and Sam

Midkiff. Escape analysis for Java. SIGPLAN Not., 34:1–19, October 1999.

[5] Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large

clusters. Commun. ACM, 51:107–113, January 2008.

[6] Joseph A. Fisher. Very long instruction word architectures and the ELI-512. In Pro-

ceedings of the 10th Annual International Symposium on Computer Architecture, ISCA

’83, pages 140–150, New York, NY, USA, 1983. ACM.

43



44

[7] Vishakha Gupta, Ada Gavrilovska, Karsten Schwan, Harshvardhan Kharche, Niraj To-

lia, Vanish Talwar, and Parthasarathy Ranganathan. GViM: GPU-accelerated virtual

machines. In Proceedings of the 3rd ACM Workshop on System-level Virtualization for

High Performance Computing, HPCVirt ’09, pages 17–24, New York, NY, USA, 2009.

ACM.

[8] Chuntao Hong, Dehao Chen, Wenguang Chen, Weimin Zheng, and Haibo Lin. MapCG:

writing parallel program portable between CPU and GPU. In Proceedings of the 19th

International Conference on Parallel Architectures and Compilation Techniques, PACT

’10, pages 217–226, New York, NY, USA, 2010. ACM.

[9] Chandra Krintz and Brad Calder. Using annotations to reduce dynamic optimization

time. In Proceedings of the ACM SIGPLAN 2001 Conference on Programming Lan-

guage Design and Implementation, PLDI ’01, pages 156–167, New York, NY, USA,

2001. ACM.

[10] Mingjie Lin. The amorphous FPGA architecture. In Proceedings of the 16th Inter-

national ACM/SIGDA Symposium on Field Programmable Gate Arrays, FPGA ’08,

pages 191–200, New York, NY, USA, 2008. ACM.

[11] Tim Lindholm and Frank Yellin. Java Virtual Machine Specification. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA, 2nd edition, 1999.

[12] Stefan Marr, Michael Haupt, and Theo D’Hondt. Intermediate language design of

high-level language virtual machines: towards comprehensive concurrency support. In

Proceedings of the Third Workshop on Virtual Machines and Intermediate Languages,

VMIL ’09, pages 3:1–3:2, New York, NY, USA, 2009. ACM.



45

[13] Steve Meloan. The Java HotSpot performance engine: An in-depth look. Technical

report, Oracle’s Sun Developer Network, 1999.

[14] Greg Morrisett, Karl Crary, Neal Glew, and David Walker. Stack-based typed assembly

language. J. Funct. Program., 12:43–88, January 2002.

[15] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From system F to typed

assembly language. ACM Trans. Program. Lang. Syst., 21:527–568, May 1999.

[16] Aaftab Munshi. The OpenCL Specification. Khronos OpenCL Working Group, 2011.

[17] Dorit Nuzman and Richard Henderson. Multi-platform auto-vectorization. In Proceed-

ings of the International Symposium on Code Generation and Optimization, CGO ’06,

pages 281–294, Washington, DC, USA, 2006. IEEE Computer Society.

[18] Dorit Nuzman, Ira Rosen, and Ayal Zaks. Auto-vectorization of interleaved data for

simd. In Proceedings of the 2006 ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI ’06, pages 132–143, New York, NY, USA,

2006. ACM.

[19] Martin Odersky, Lex Spoon, and Bill Venners. Programming in Scala: A Compre-

hensive Step-by-Step Guide, 2nd Edition. Artima Incorporation, USA, 2nd edition,

2011.

[20] Mark Peercy, Mark Segal, and Derek Gerstmann. A performance-oriented data parallel

virtual machine for GPUs. In ACM SIGGRAPH 2006 Sketches, SIGGRAPH ’06, New

York, NY, USA, 2006. ACM.

[21] Gang Ren, PengWu, and David Padua. Optimizing data permutations for simd devices.

In Proceedings of the 2006 ACM SIGPLAN Conference on Programming Language



46

Design and Implementation, PLDI ’06, pages 118–131, New York, NY, USA, 2006.

ACM.

[22] Mooly Sagiv, Thomas Reps, and Reinhard Wilhelm. Parametric shape analysis via

3-valued logic. ACM Trans. Program. Lang. Syst., 24:217–298, May 2002.

[23] Yunhe Shi, Kevin Casey, M. Anton Ertl, and David Gregg. Virtual machine showdown:

Stack versus registers. ACM Trans. Archit. Code Optim., 4:2:1–2:36, January 2008.

[24] Raja Vallée-Rai, Patrick Lam, Clark Verbrugge, Patrice Pominville, and Feng Qian.

Soot (poster session): a Java bytecode optimization and annotation framework. In

Addendum to the 2000 Proceedings of the Conference on Object-Oriented Programming,

Systems, Languages, and Applications (Addendum), OOPSLA ’00, pages 113–114, New

York, NY, USA, 2000. ACM.

[25] Todd Veldhuizen. Expression templates, pages 475–487. SIGS Publications, Inc., New

York, NY, USA, 1996.



Appendix A

Implementation Code

A.1 InstructionList

package interpreter

object InstructionList {

val state = new MachineState()

private val instrList =

List(

//annotation instruction

("annot",0x0000,annot _),

//variable instructions

("init-var",0x0001,initVar _),

("set-var",0x0002,setVar _),

("set-field",0x0003,setField _),

("get-field",0x0004,getField _),

("obj-create",0x0005,objCreate _),

("typecast",0x0006,typecast _),

("init-var-lit",0x0011,initVarLit _),

("set-var-lit",0x0012,setVarLit _),

("set-field-lit",0x0013,setFieldLit _),

//unary and binary math operations

("not-int",0x1400,notInt _),

47
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("neg-int",0x1401,negInt _),

("add-int",0x1402,addInt _),

("sub-int",0x1403,subInt _),

("mul-int",0x1404,mulInt _),

("div-int",0x1405,divInt _),

("rem-int",0x1406,remInt _),

("and-int",0x1407,andInt _),

( "or-int",0x1408,orInt _),

("xor-int",0x1409,xorInt _),

("add-int-lit",0x1412,addIntLit _),

("sub-int-lit",0x1413,subIntLit _),

("mul-int-lit",0x1414,mulIntLit _),

("div-int-lit",0x1415,divIntLit _),

("rem-int-lit",0x1416,remIntLit _),

("and-int-lit",0x1417,andIntLit _),

( "or-int-lit",0x1418,orIntLit _),

("xor-int-lit",0x1419,xorIntLit _),

//Array instructions

("new-array",0x2000,arrayNew _),

("new-array-lit",0x2010, arrayNewLit _),

("array-len",0x2001,arrayLength _),

("array-put",0x2002,arrayPut _),

("array-get",0x2003,arrayGet _),

//Control structures

("goto-var",0x3000,gotoVar _),

("if-eq-var",0x3001,ifEqVar _),

("if-ne-var",0x3002,ifNeVar _),

("if-lt-var",0x3003,ifLtVar _),

("if-le-var",0x3004,ifLeVar _),

("if-gt-var",0x3005,ifGtVar _),

("if-ge-var",0x3006,ifGeVar _),

( "invoke",0x3007,invoke _),

("invoke-static",0x3008,invokeStatic _),

("return",0x3009,myReturn _),

("return-void",0x300A,myReturnVoid _),

("throw",0x300B,myThrow _),

( "goto-lit",0x3010,gotoLit _),

("if-eq-lit",0x3011,ifEqLit _),

("if-ne-lit",0x3012,ifNeLit _),

("if-lt-lit",0x3013,ifLtLit _),

("if-le-lit",0x3014,ifLeLit _),
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("if-gt-lit",0x3015,ifGtLit _),

("if-ge-lit",0x3016,ifGeLit _)

)

def nameToHex = instrList.map( t => (t._1,t._2)).toMap

def hexToFunc = instrList.map( t => (t._2,t._3)).toMap

//for testing purposes

def hexToName = instrList.map( t => (t._2,t._1)).toMap

//annotation instruction

def annot(a: Instruction) = {

val loc = Utilities.buildLong(a.field1,a.field2,

a.field3,a.field4).toInt

val annotType = a.annot

annotType match {

case 0 => AnnotationDecoder.dataParallelInt(loc)

case _ =>

}

}

//variable instructions

def initVar(a: Instruction) = {

val dest = a.field1.toInt

val varType = a.field2.toShort

Utilities.varsPadTo(dest+1, state)

state.curTypes(dest) = varType

val src = a.field3.toInt

state.curVars(dest) = state.curVars(src)

}

def setVar(a: Instruction) = {

val dest = a.field1.toInt

val src = a.field2.toInt

if(state.curTypes(dest) != state.curTypes(src))

println("!!! ERROR - set-var type mismatch")

state.curVars(dest) = state.curVars(src)

}

def setField(a: Instruction) = {

val obj = state.curVars(a.field1.toInt).asInstanceOf[MyObject]

val fieldNum = a.field2.toInt

val src = a.field3.toInt

obj.fields(fieldNum) = state.curVars(src)

}

def getField(a: Instruction) = {
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val obj = state.curVars(a.field1.toInt).asInstanceOf[MyObject]

val fieldNum = a.field2.toInt

val dest = a.field3.toInt

state.curVars(dest) = obj.fields(fieldNum)

}

def objCreate(a: Instruction) = {

val dest = a.field1.toInt

val cls = state.classes(a.field2.toShort)

val obj = new MyObject(cls)

Utilities.varsPadTo(dest+1, state)

state.curVars(dest) = obj

state.curTypes(dest) = cls.myType

if(cls.methodTable(0) > 0)

state.methodCall(cls, obj, -1, 0, 0, 0, 0)

}

def typecast(a: Instruction) = {

//TODO

}

def initVarLit(a: Instruction) = {

val dest = a.field1.toInt

val varType = a.field2.toShort

Utilities.varsPadTo(dest+1, state)

state.curTypes(dest) = varType

val lit = Utilities.buildLong(a.field3, a.field4, a.field5,

a.field6)

state.curVars(dest) = Utilities.litToType(varType,lit)

}

def setVarLit(a: Instruction) = {

val dest = a.field1.toInt

val lit = Utilities.buildLong(a.field2, a.field3, a.field4,

a.field5)

state.curVars(dest) =

Utilities.litToType(state.curTypes(dest),lit)

}

def setFieldLit(a: Instruction) = {

val obj = state.curVars(a.field1.toInt).asInstanceOf[MyObject]

val fieldNum = a.field2.toInt

val lit = Utilities.buildLong(a.field3, a.field4, a.field5,

a.field6)

val varType = obj.fieldTypes(fieldNum)

obj.fields(fieldNum) = Utilities.litToType(varType,lit)

}

//math int

def notInt(a: Instruction) = {
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val dest = a.field1.toInt

val src = a.field2.toInt

state.curVars(dest) = ~state.curVars(src).asInstanceOf[Int]

}

def negInt(a: Instruction) = {

val dest = a.field1.toInt

val src = a.field2.toInt

state.curVars(dest) = -state.curVars(src).asInstanceOf[Int]

}

def addInt(a: Instruction) = {

val dest = a.field1.toInt

val src1 = a.field2.toInt

val src2 = a.field3.toInt

state.curVars(dest) = state.curVars(src1).asInstanceOf[Int] +

state.curVars(src2).asInstanceOf[Int]

}

def subInt(a: Instruction) = {

val dest = a.field1.toInt

val src1 = a.field2.toInt

val src2 = a.field3.toInt

state.curVars(dest) = state.curVars(src1).asInstanceOf[Int] -

state.curVars(src2).asInstanceOf[Int]

}

def mulInt(a: Instruction) = {

val dest = a.field1.toInt

val src1 = a.field2.toInt

val src2 = a.field3.toInt

state.curVars(dest) = state.curVars(src1).asInstanceOf[Int] *

state.curVars(src2).asInstanceOf[Int]

}

def divInt(a: Instruction) = {

val dest = a.field1.toInt

val src1 = a.field2.toInt

val src2 = a.field3.toInt

state.curVars(dest) = state.curVars(src1).asInstanceOf[Int] /

state.curVars(src2).asInstanceOf[Int]

}

def remInt(a: Instruction) = {

val dest = a.field1.toInt

val src1 = a.field2.toInt

val src2 = a.field3.toInt

state.curVars(dest) = state.curVars(src1).asInstanceOf[Int] %

state.curVars(src2).asInstanceOf[Int]

}

def andInt(a: Instruction) = {
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val dest = a.field1.toInt

val src1 = a.field2.toInt

val src2 = a.field3.toInt

state.curVars(dest) = state.curVars(src1).asInstanceOf[Int] &

state.curVars(src2).asInstanceOf[Int]

}

def orInt(a: Instruction) = {

val dest = a.field1.toInt

val src1 = a.field2.toInt

val src2 = a.field3.toInt

state.curVars(dest) = state.curVars(src1).asInstanceOf[Int] |

state.curVars(src2).asInstanceOf[Int]

}

def xorInt(a: Instruction) = {

val dest = a.field1.toInt

val src1 = a.field2.toInt

val src2 = a.field3.toInt

state.curVars(dest) = state.curVars(src1).asInstanceOf[Int] ^

state.curVars(src2).asInstanceOf[Int]

}

//math int literal

def addIntLit(a: Instruction) = {

val dest = a.field1.toInt

val src = a.field2.toInt

val lit = Utilities.buildInt(a.field3, a.field4)

state.curVars(dest) = state.curVars(src).asInstanceOf[Int] + lit

}

def subIntLit(a: Instruction) = {

val dest = a.field1.toInt

val src = a.field2.toInt

val lit = Utilities.buildInt(a.field3, a.field4)

state.curVars(dest) = state.curVars(src).asInstanceOf[Int] - lit

}

def mulIntLit(a: Instruction) = {

val dest = a.field1.toInt

val src = a.field2.toInt

val lit = Utilities.buildInt(a.field3, a.field4)

state.curVars(dest) = state.curVars(src).asInstanceOf[Int] * lit

}

def divIntLit(a: Instruction) = {

val dest = a.field1.toInt

val src = a.field2.toInt

val lit = Utilities.buildInt(a.field3, a.field4)

state.curVars(dest) = state.curVars(src).asInstanceOf[Int] / lit
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}

def remIntLit(a: Instruction) = {

val dest = a.field1.toInt

val src = a.field2.toInt

val lit = Utilities.buildInt(a.field3, a.field4)

state.curVars(dest) = state.curVars(src).asInstanceOf[Int] % lit

}

def andIntLit(a: Instruction) = {

val dest = a.field1.toInt

val src = a.field2.toInt

val lit = Utilities.buildInt(a.field3, a.field4)

state.curVars(dest) = state.curVars(src).asInstanceOf[Int] & lit

}

def orIntLit(a: Instruction) = {

val dest = a.field1.toInt

val src = a.field2.toInt

val lit = Utilities.buildInt(a.field3, a.field4)

state.curVars(dest) = state.curVars(src).asInstanceOf[Int] | lit

}

def xorIntLit(a: Instruction) = {

val dest = a.field1.toInt

val src = a.field2.toInt

val lit = Utilities.buildInt(a.field3, a.field4)

state.curVars(dest) = state.curVars(src).asInstanceOf[Int] ^ lit

}

//array instructions

def arrayNew(a: Instruction) = {

val dest = a.field1.toInt

val arrType = a.field2.toShort

val size = state.curVars(a.field3.toInt).asInstanceOf[Int]

Utilities.varsPadTo(dest+1,state)

state.curTypes(dest) = 8

state.curVars(dest) = Utilities.makeArray(arrType, size)

}

def arrayNewLit(a: Instruction) = {

val dest = a.field1.toInt

val arrType = a.field2.toShort

val size = Utilities.buildInt(a.field3, a.field4)

Utilities.varsPadTo(dest+1,state)

state.curTypes(dest) = 8

state.curVars(dest) = Utilities.makeArray(arrType, size)

}
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def arrayLength(a: Instruction) = {

val dest = a.field1.toInt

val src = a.field2.toInt

state.curVars(dest) =

state.curVars(src).asInstanceOf[Array[Any]].length

}

def arrayPut(a: Instruction) = {

val srctmp = state.curVars(a.field1.toInt)

val arrtmp = state.curVars(a.field2.toInt)

val loc = state.curVars(a.field3.toInt).asInstanceOf[Int]

if(arrtmp.isInstanceOf[Array[Boolean]])

arrtmp.asInstanceOf[Array[Boolean]](loc) =

srctmp.asInstanceOf[Boolean]

else if(arrtmp.isInstanceOf[Array[Byte]])

arrtmp.asInstanceOf[Array[Byte]](loc) =

srctmp.asInstanceOf[Byte]

else if(arrtmp.isInstanceOf[Array[Char]])

arrtmp.asInstanceOf[Array[Char]](loc) =

srctmp.asInstanceOf[Char]

else if(arrtmp.isInstanceOf[Array[Short]])

arrtmp.asInstanceOf[Array[Short]](loc) =

srctmp.asInstanceOf[Short]

else if(arrtmp.isInstanceOf[Array[Int]])

arrtmp.asInstanceOf[Array[Int]](loc) =

srctmp.asInstanceOf[Int]

else if(arrtmp.isInstanceOf[Array[Long]])

arrtmp.asInstanceOf[Array[Long]](loc) =

srctmp.asInstanceOf[Long]

else if(arrtmp.isInstanceOf[Array[Float]])

arrtmp.asInstanceOf[Array[Float]](loc) =

srctmp.asInstanceOf[Float]

else if(arrtmp.isInstanceOf[Array[Double]])

arrtmp.asInstanceOf[Array[Double]](loc) =

srctmp.asInstanceOf[Double]

else

arrtmp.asInstanceOf[Array[MyObject]](loc) =

srctmp.asInstanceOf[MyObject]

}

def arrayGet(a: Instruction) = {

val dest = a.field1.toInt

val arrtmp = state.curVars(a.field2.toInt)

val arr =
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if(arrtmp.isInstanceOf[Array[Boolean]])

arrtmp.asInstanceOf[Array[Boolean]]

else if(arrtmp.isInstanceOf[Array[Byte]])

arrtmp.asInstanceOf[Array[Byte]]

else if(arrtmp.isInstanceOf[Array[Char]])

arrtmp.asInstanceOf[Array[Char]]

else if(arrtmp.isInstanceOf[Array[Short]])

arrtmp.asInstanceOf[Array[Short]]

else if(arrtmp.isInstanceOf[Array[Int]])

arrtmp.asInstanceOf[Array[Int]]

else if(arrtmp.isInstanceOf[Array[Long]])

arrtmp.asInstanceOf[Array[Long]]

else if(arrtmp.isInstanceOf[Array[Float]])

arrtmp.asInstanceOf[Array[Float]]

else if(arrtmp.isInstanceOf[Array[Double]])

arrtmp.asInstanceOf[Array[Double]]

else

arrtmp.asInstanceOf[Array[MyObject]]

val loc = state.curVars(a.field3.toInt).asInstanceOf[Int]

state.curVars(dest) = arr(loc)

}

//control structures

def gotoVar(a: Instruction) = {

val dest = state.curVars(a.field1.toInt)

state.jump(dest.asInstanceOf[Int])

}

def ifEqVar(a: Instruction) = {

val src1 = a.field1.toInt

val src2 = a.field2.toInt

val dest = state.curVars(a.field3.toInt)

val var1 = state.curVars(src1).asInstanceOf[Long]

val var2 = state.curVars(src2).asInstanceOf[Long]

if(var1 == var2) state.jump(dest.asInstanceOf[Int])

}

def ifNeVar(a: Instruction) = {

val src1 = a.field1.toInt

val src2 = a.field2.toInt

val dest = state.curVars(a.field3.toInt)

val var1 = state.curVars(src1).asInstanceOf[Long]

val var2 = state.curVars(src2).asInstanceOf[Long]

if(var1 != var2) state.jump(dest.asInstanceOf[Int])

}
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def ifLtVar(a: Instruction) = {

val src1 = a.field1.toInt

val src2 = a.field2.toInt

val dest = state.curVars(a.field3.toInt)

val var1 = state.curVars(src1).asInstanceOf[Long]

val var2 = state.curVars(src2).asInstanceOf[Long]

if(var1 < var2) state.jump(dest.asInstanceOf[Int])

}

def ifLeVar(a: Instruction) = {

val src1 = a.field1.toInt

val src2 = a.field2.toInt

val dest = state.curVars(a.field3.toInt)

val var1 = state.curVars(src1).asInstanceOf[Long]

val var2 = state.curVars(src2).asInstanceOf[Long]

if(var1 <= var2) state.jump(dest.asInstanceOf[Int])

}

def ifGtVar(a: Instruction) = {

val src1 = a.field1.toInt

val src2 = a.field2.toInt

val dest = state.curVars(a.field3.toInt)

val var1 = state.curVars(src1).asInstanceOf[Long]

val var2 = state.curVars(src2).asInstanceOf[Long]

if(var1 > var2) state.jump(dest.asInstanceOf[Int])

}

def ifGeVar(a: Instruction) = {

val src1 = a.field1.toInt

val src2 = a.field2.toInt

val dest = state.curVars(a.field3.toInt)

val var1 = state.curVars(src1).asInstanceOf[Long]

val var2 = state.curVars(src2).asInstanceOf[Long]

if(var1 >= var2) state.jump(dest.asInstanceOf[Int])

}

def invoke(a: Instruction) = {

val obj = state.curVars(a.field1.toInt).asInstanceOf[MyObject]

val cls = state.classes(state.curTypes(a.field1.toShort))

val methodNo = a.field2.toInt

state.methodCall(cls, obj, methodNo, a.field3.toInt,

a.field4.toInt, a.field5.toInt, a.field6.toInt)

}

def invokeStatic(a: Instruction) = {

val obj = null

val cls = state.classes(a.field1.toShort)

val methodNo = a.field2.toInt

state.methodCall(cls, obj, methodNo, a.field3.toInt,

a.field4.toInt, a.field5.toInt, a.field6.toInt)
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}

def myReturn(a: Instruction) = {

state.methodReturn(a.field1.toInt, a.field2.toShort)

}

def myReturnVoid(a: Instruction) = {

state.methodReturn(-1,-1)

}

def myThrow(a: Instruction) = {

//TODO

}

//control structures literal

def gotoLit(a: Instruction) = {

val dest = Utilities.buildLong(a.field1, a.field2, a.field3,

a.field4)

state.jump(dest.toInt)

}

def ifEqLit(a: Instruction) = {

val src1 = a.field1.toInt

val src2 = a.field2.toInt

val dest = Utilities.buildLong(a.field3, a.field4, a.field5,

a.field6)

val var1 = state.curVars(src1)

val var2 = state.curVars(src2)

if(var1 == var2) state.jump(dest.toInt)

}

def ifNeLit(a: Instruction) = {

val src1 = a.field1.toInt

val src2 = a.field2.toInt

val dest = Utilities.buildLong(a.field3, a.field4, a.field5,

a.field6)

val var1 = state.curVars(src1)

val var2 = state.curVars(src2)

if(var1 != var2) state.jump(dest.toInt)

}

def ifLtLit(a: Instruction) = {

val src1 = a.field1.toInt

val src2 = a.field2.toInt

val dest = Utilities.buildLong(a.field3, a.field4, a.field5,

a.field6)

val var1 = state.curVars(src1).asInstanceOf[Long]

val var2 = state.curVars(src2).asInstanceOf[Long]

if(var1 < var2) state.jump(dest.toInt)

}

def ifLeLit(a: Instruction) = {
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val src1 = a.field1.toInt

val src2 = a.field2.toInt

val dest = Utilities.buildLong(a.field3, a.field4, a.field5,

a.field6)

val var1 = state.curVars(src1).asInstanceOf[Long]

val var2 = state.curVars(src2).asInstanceOf[Long]

if(var1 <= var2) state.jump(dest.toInt)

}

def ifGtLit(a: Instruction) = {

val src1 = a.field1.toInt

val src2 = a.field2.toInt

val dest = Utilities.buildLong(a.field3, a.field4, a.field5,

a.field6)

val var1 = state.curVars(src1).asInstanceOf[Long]

val var2 = state.curVars(src2).asInstanceOf[Long]

if(var1 > var2) state.jump(dest.toInt)

}

def ifGeLit(a: Instruction) = {

val src1 = a.field1.toInt

val src2 = a.field2.toInt

val dest = Utilities.buildLong(a.field3, a.field4, a.field5,

a.field6)

val var1 = state.curVars(src1).asInstanceOf[Long]

val var2 = state.curVars(src2).asInstanceOf[Long]

if(var1 >= var2) state.jump(dest.toInt)

}

}

object Utilities {

def buildInt(a: Long, b: Long): Int =

((a << 2*8) | b).toInt

def buildLong(a: Long, b: Long, c: Long, d: Long): Long =

(a << 6*8) | (b << 4*8) | (c << 2*8) | d

def litToType(varType: Short, lit: Long) =

varType match {

case 0 => if(lit == 0) false else true

case 1 => lit.toByte

case 2 => lit.toChar

case 3 => lit.toShort

case 4 => lit.toInt

case 5 => lit.toLong

case 6 => lit.toFloat

case 7 => lit.toDouble

case _ => println("ERROR: type not recognized " +
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"for literal assignment")

}

def makeArray(arrType: Short, size: Int) =

arrType match {

case 0 => new Array[Boolean](size)

case 1 => new Array[Byte](size)

case 2 => new Array[Char](size)

case 3 => new Array[Short](size)

case 4 => new Array[Int](size)

case 5 => new Array[Long](size)

case 6 => new Array[Float](size)

case 7 => new Array[Double](size)

case _ => new Array[MyObject](size)

}

def varsPadTo(amt: Int, s: MachineState) {

if(amt > s.curVars.length) {

for(i <- 0 until amt - s.curVars.length) {

s.curVars += 0

s.curTypes += 0.toShort

}

}

}

}

A.2 Assembler

package interpreter

object Assembler {

//filename must be name of class followed by .het

//(e.g. for the class "HelloWorld",

//the filename should be "HelloWorld.het")

def main(args: Array[String]): Unit = {

if(args.length != 1) {

println("Usage: Assembler infilename")

sys.exit(1)

}

MyClass.textToBinary(args(0))

}

}
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A.3 MyClass

package interpreter

import java.io.RandomAccessFile

object MyClass {

//filename must be name of class followed by .bytecode

//(e.g. for the class "HelloWorld",

//the filename should be "HelloWorld.bytecode")

def fromBinary(filename: String) = {

val file = new RandomAccessFile(filename, "r")

val n = filename.substring(0,filename.length-9)

val t = file.readShort

val c = new Array[String](file.readShort)

val f = new Array[Short](file.readShort)

val m = new Array[Int](file.readShort)

var tmp = ""

for(i <- 0 until c.length) {

var tmp = "" + file.readChar

while(tmp.charAt(tmp.length-1) != ’\0’) {

tmp += file.readChar

}

c(i) = tmp.substring(0,tmp.length-1)

}

for(i <- 0 until f.length) {

f(i) = file.readShort

}

for(i <- 0 until m.length) {

m(i) = file.readInt

}

var instrList = collection.mutable.Buffer[Instruction]()

try {

while(true) {

instrList += new Instruction(

file.readLong(),file.readLong())

}

}

catch {

case e: java.io.EOFException =>

}

new MyClass(n,t,c,f,m,instrList)

}
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//filename must be name of class followed by .het

//(e.g. for the class "HelloWorld",

//the filename should be "HelloWorld.het")

def textToBinary(filename: String) = {

val file = scala.io.Source.fromFile(filename).getLines

val n = filename.substring(0,filename.length-4)+".bytecode"

val t = file.next.toShort

val c = new Array[String](file.next.toInt)

val f = new Array[Short](file.next.toInt)

val m = new Array[Int](file.next.toInt)

var temp = file.next

var tmp = temp.split(" ")//file.next.split(" ")

for(i <- 0 until c.length) {

c(i) = tmp(i)

}

tmp = file.next.split(" ")

for(i <- 0 until f.length) {

f(i) = tmp(i).toShort

}

tmp = file.next.split(" ")

for(i <- 0 until m.length) {

m(i) = tmp(i).toInt

}

val outfile = new RandomAccessFile(n, "rw")

outfile.writeShort(t) //type

outfile.writeShort(c.length) //size of class list

outfile.writeShort(f.length) //size of field table

outfile.writeShort(m.length) //size of method table

c.foreach{a =>

a.foreach(outfile.writeChar(_))

outfile.writeChar(’\0’)

}

f.foreach(outfile.writeShort(_))

m.foreach(outfile.writeInt(_))

val instrs = InstructionList.nameToHex

while(file.hasNext) {

val l = file.next.split(" ")
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for(i <- 0 until l.length) {

if(i == 0) outfile.writeShort(instrs(l(i)))

else outfile.writeShort(l(i).toShort)

}

}

outfile.close

}

}

class MyClass(val name: String, val myType: Short,

val classTable: Array[String], val fieldTable: Array[Short],

val methodTable: Array[Int],

val instrs: scala.collection.mutable.Buffer[Instruction])

A.4 MyObject

package interpreter

class MyObject(val myType: MyClass) {

val fields = new Array[Any](myType.fieldTable.length)

val fieldTypes = myType.fieldTable

}

A.5 Interpreter

package interpreter

import scala.collection.mutable

object Interpreter {

def main(args: Array[String]): Unit = {

if(args.length != 1) {

println("Usage: Interpreter filename")

sys.exit(1)

}

val filename = args(0)

val mainClass = MyClass.fromBinary(filename)

val classes = mutable.HashMap((mainClass.myType,mainClass))

loadClasses(mainClass, classes)

InstructionList.state.setup(mainClass, classes)

execute()

}
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def loadClasses(c: MyClass, col: mutable.HashMap[Short,MyClass]) {

val tmp =

c.classTable.map(a => MyClass.fromBinary(a + ".bytecode"))

tmp.foreach{a =>

if(!col.contains(a.myType)) {

col += ((a.myType,a))

loadClasses(a,col)

}

}

}

//executes the set of instructions

//prints machine state (first 10 vars only) after each

//instruction finishes executing

def execute() {

println("Begin Program Exection\n")

val instrs = InstructionList.hexToFunc

val state = InstructionList.state

while(state.keepRunning) {

val num = state.curInstrNum

val i = state.getCurInstr

instrs(i.opcode)(i)

state.nextInstr()

printState(state, num)

}

println("End Program Exection")

}

def printState(state: MachineState, num: Int) {

var numVars = 11

println("After Instruction "+num+" in class "+state.curClass.name)

println("VarNum\tValue\tType")

val times = if(state.curVars.length > numVars) numVars

else state.curVars.length

for(i <- 0 until times)

println(i+"\t"+state.curVars(i)+"\t"+state.curTypes(i))

println()

}

}

class MachineState {

var instrUpdated = false

var keepRunning = true
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var classes: mutable.HashMap[Short,MyClass] = null

var curClass: MyClass = null

var curObj: MyObject = null

var curInstrNum = 0

var curInstrList: mutable.Buffer[Instruction] = null

var curVars = mutable.Buffer[Any]()

var curTypes = mutable.Buffer[Short]()

var retLoc: Int = -1

//curClass, curObj, curInstr, curInstrList, curVars, curTypes, retLoc

val callStack =

mutable.Stack[(MyClass,MyObject,Int,mutable.Buffer[Instruction],

mutable.Buffer[Any],mutable.Buffer[Short],Int)]()

def getCurInstr = curInstrList(curInstrNum)

def setup(c: MyClass, cList: mutable.HashMap[Short,MyClass]) {

classes = cList

curClass = c

curInstrNum = c.methodTable(0)

curInstrList = c.instrs

}

def methodCall(c: MyClass, o: MyObject, methNum: Int,

arg1: Int, arg2: Int, arg3: Int, arg4: Int) {

Utilities.varsPadTo((arg1 max arg2 max arg3 max arg4)+1, this)

val tmpVars = mutable.Buffer[Any](o,curVars(arg1),curVars(arg2),

curVars(arg3),curVars(arg4))

val tmpTypes =

mutable.Buffer[Short](c.myType,curTypes(arg1),

curTypes(arg2),curTypes(arg3),curTypes(arg4))

callStack.push((curClass,curObj,curInstrNum,curInstrList,

curVars,curTypes,retLoc))

curClass = c

curObj = o

curInstrNum = if(methNum == -1) 0 else c.methodTable(methNum)

instrUpdated = true

curInstrList = c.instrs

curVars = tmpVars
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curTypes = tmpTypes

retLoc = arg4

}

def methodReturn(varLoc: Int, retType: Short) {

if(callStack.isEmpty) {

keepRunning = false

}

else if(varLoc == -1) {

val popped = callStack.pop

curClass = popped._1

curObj = popped._2

curInstrNum = popped._3

curInstrList = popped._4

curVars = popped._5

curTypes = popped._6

retLoc = popped._7

}

else {

val tmp = curVars(varLoc)

val tmpRetLoc = retLoc

val popped = callStack.pop

curClass = popped._1

curObj = popped._2

curInstrNum = popped._3

curInstrList = popped._4

curVars = popped._5

curTypes = popped._6

retLoc = popped._7

Utilities.varsPadTo(tmpRetLoc+1, this)

curVars(tmpRetLoc) = tmp

curTypes(tmpRetLoc) = retType

}

}

def nextInstr() {

if(!instrUpdated) curInstrNum += 1

instrUpdated = false

}

def jump(num: Int) {

instrUpdated = true
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curInstrNum = num

}

}

class Instruction(a: Long, b: Long) {

def opcode = ((a >>> 6*8) & 0xffff).toInt

def field1 = ((a >>> 4*8) & 0xffff)

def field2 = ((a >>> 2*8) & 0xffff)

def field3 = ((a >>> 0*8) & 0xffff)

def field4 = ((b >>> 6*8) & 0xffff)

def field5 = ((b >>> 4*8) & 0xffff)

def field6 = ((b >>> 2*8) & 0xffff)

def annot = ((b >>> 0*8) & 0xffff)

}

A.6 Annotations

package interpreter

import com.nativelibs4java.opencl._

import com.nativelibs4java.opencl.util._

import com.nativelibs4java.util._

import org.bridj.Pointer

import org.bridj.Pointer._

import java.lang.Math._

import java.io.File

import java.io.PrintWriter

object AnnotationRunner {

val context = JavaCL.createBestContext(CLPlatform.DeviceFeature.GPU)

val queue = context.createDefaultQueue()

val state = InstructionList.state

var kernelNum = 0

def dataParallelTwoInt(arr1: Array[Int], arr2: Array[Int],

code: String) = {

println("Running Annotation on")

context.getDevices().foreach(println _)

val n = arr1.length

val aPtr = allocateInts(n)

val bPtr = allocateInts(n)

for(i <- 0 until n) {
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aPtr.set(i, arr1(i))

bPtr.set(i, arr2(i))

}

val a = context.createIntBuffer(CLMem.Usage.Input, aPtr, true)

val b = context.createIntBuffer(CLMem.Usage.Input, bPtr, true)

val out = context.createIntBuffer(CLMem.Usage.Output,n)

val funcName = """my_kernel_"""+kernelNum

val fileName = "myKernel"+kernelNum+".cl"

kernelNum += 1

val line = """__kernel void """+funcName+

"""(__global const int* a, __global const int* b,"""+

""" __global int* out, int n) {

int i = get_global_id(0);

if(i >= n)

return;

""" + code + "\n}"

val pw = new PrintWriter(fileName)

pw.println(line)

pw.close

val src = IOUtils.readText(new File(fileName))

val program = context.createProgram(src)

val myKernel = program.createKernel(funcName)

myKernel.setArgs(a,b,out,n: java.lang.Integer)

val addEvt = myKernel.enqueueNDRange(queue, Array.fill(1)(n))

val outPtr = out.read(queue, addEvt)

val ret = new Array[Int](n)

for(i <- 0 until n)

ret(i) = outPtr.get(i)

ret

}

}

object AnnotationDecoder {

val file = scala.io.Source.fromFile("annotFile.txt").getLines.toArray

val state = InstructionList.state

def dataParallelInt(loc: Int) {
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println("Decoding Annotation")

val numLines = file(loc).toInt

val bytecodeLines = file(loc+1).toInt

val numArrays = file(loc+2).toInt

val arrLen = file(loc+3).toInt

val arrVars = file(loc+4).split(" ").map(_.toInt)

var code = ""

for(i <- loc+5 until numLines)

code += file(i)

if(numArrays == 2) {

val a = state.curVars(arrVars(0)).asInstanceOf[Array[Int]]

val b = state.curVars(arrVars(1)).asInstanceOf[Array[Int]]

val dest = arrVars(2)

state.curVars(dest) =

AnnotationRunner.dataParallelTwoInt(a, b, code)

state.jump(state.curInstrNum+bytecodeLines+1)

}

}

}



Appendix B

Example Class Files

B.1 CPU Only Execution

B.1.1 Class 1

10

1

2

3

Class2

4 4

0 5 11

invoke-static 10 1 0 0 0 1 0

invoke-static 10 2 0 0 0 3 0

obj-create 4 11 0 0 0 0 0

invoke 4 0 0 0 0 5 0

return-void 0 0 0 0 0 0 0

init-var-lit 0 4 0 0 0 0 0

init-var-lit 1 4 0 0 0 5 0

if-eq-lit 0 1 0 0 0 10 0

add-int-lit 0 0 0 1 0 0 0

goto-lit 0 0 0 7 0 0 0

return 0 4 0 0 0 0 0

init-var-lit 0 4 0 0 0 6 0

init-var-lit 1 4 0 0 0 1 0

if-eq-lit 0 1 0 0 0 16 0

sub-int-lit 0 0 0 1 0 0 0

69
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goto-lit 0 0 0 13 0 0 0

return 0 4 0 0 0 0 0

B.1.2 Class 2

11

0

1

1

4

2

set-field-lit 0 0 0 0 0 8 0

return-void 0 0 0 0 0 0 0

init-var-lit 1 4 0 0 0 0 0

get-field 0 0 1 0 0 0 0

add-int-lit 1 1 0 2 0 0 0

return 1 4 0 0 0 0 0

Class 2 Binary (Hexdump)

0000000: 000b 0000 0001 0001 0004 0000 0002 0013 ................

0000010: 0000 0000 0000 0000 0000 0008 0000 300a ..............0.

0000020: 0000 0000 0000 0000 0000 0000 0000 0011 ................

0000030: 0001 0004 0000 0000 0000 0000 0000 0004 ................

0000040: 0000 0000 0001 0000 0000 0000 0000 1412 ................

0000050: 0001 0001 0000 0002 0000 0000 0000 3009 ..............0.

0000060: 0001 0004 0000 0000 0000 0000 0000 ..............

B.2 GPU Execution

12

0

1

2

4

0 14

invoke-static 12 1 0 0 0 10 0

init-var-lit 1 4 0 0 0 0 0

init-var-lit 2 4 0 0 0 1 0

init-var-lit 3 4 0 0 0 2 0

init-var-lit 4 4 0 0 0 47 0

init-var-lit 5 4 0 0 0 48 0

init-var-lit 6 4 0 0 0 49 0
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array-get 1 10 1 0 0 0 0

array-get 2 10 2 0 0 0 0

array-get 3 10 3 0 0 0 0

array-get 4 10 4 0 0 0 0

array-get 5 10 5 0 0 0 0

array-get 6 10 6 0 0 0 0

return-void 0 0 0 0 0 0 0

new-array-lit 1 4 0 50 0 0 0

new-array-lit 2 4 0 50 0 0 0

new-array-lit 3 4 0 50 0 0 0

init-var-lit 4 4 0 0 0 0 0

init-var-lit 5 4 0 0 0 50 0

init-var-lit 6 4 0 0 0 0 0

init-var-lit 7 4 0 0 0 0 0

if-eq-lit 4 5 0 0 0 27 0

array-put 4 1 4 0 0 0 0

add-int-lit 4 4 0 1 0 0 0

array-put 4 2 6 0 0 0 0

add-int-lit 6 6 0 1 0 0 0

goto-lit 0 0 0 21 0 0 0

set-var-lit 4 0 0 0 0 0 0

annot 0 0 0 0 0 0 0

if-eq-lit 4 5 0 0 0 36 0

array-get 6 1 4 0 0 0 0

array-get 7 2 4 0 0 0 0

add-int 6 6 7 0 0 0 0

array-put 6 3 4 0 0 0 0

add-int-lit 4 4 0 1 0 0 0

goto-lit 0 0 0 29 0 0 0

return 3 8 0 0 0 0 0


	Trinity University
	Digital Commons @ Trinity
	4-20-2012

	The Design and Implementation of a Bytecode for Optimization on Heterogeneous Systems
	Kerry A. Seitz
	Recommended Citation


	main.dvi

