62,647 research outputs found

    Dynamic Virtual Join Point Dispatch

    Get PDF
    Conceptually, join points are points in the execution of a program and advice is late-bound to them. We propose the notion of virtual join points that makes this concept explicit not only at a conceptual, but also at implementation level. In current implementations of aspect-oriented languages, binding is performed early, at deploy-time, and only a limited residual dispatch is executed. Current implementations fall in the categories of modifying the application code, modifying the meta-level of an application, or interacting with the application by means of events—the latter two already realizing virtual join points to some degree. We provide an implementation of an aspect-oriented execution environment that supports truly virtual join points and discuss how this approach also favors optimizations in the execution environment

    Supporting active database learning and training through interactive multimedia

    Get PDF
    The learning objectives of a database course include aspects from conceptual and theoretical knowledge to practical development and implementation skills. We present an interactive educational multimedia system based on the virtual apprenticeship model for the knowledge- and skills-oriented Web-based education of database course students. Combining knowledge learning and skills training in an integrated environment is a central aspect of our system. We show that tool-mediated independent learning and training in an authentic setting is an alternative to traditional classroom-based approaches

    Supporting dynamic aspect-oriented features

    Get PDF
    Aspect-oriented programming techniques extend object-oriented programming with new methods to modularize concerns that otherwise would be non-modular. For example, logging concerns are typically scattered across a system but using aspect-oriented techniques they can be localized into a single high-level module. These techniques typically take modular high-level code and statically transform it into non-modular intermediate code. The contribution of this work is the design and implementation of a flexible and dynamic intermediate-language (IL) model. The main motivation for the design of this IL model is to support a variety of dynamic aspect-oriented language constructs that are proposed in recent literature such as CaeserJ\u27s deploy, history-based pointcuts, and control flow constructs. Our IL model provides a higher level of abstraction compared to traditional object-oriented ILs as a compilation target for such constructs, which makes it easier to provide efficient implementations of these constructs. We demonstrate these benefits by providing an industrial strength implementation for our IL model, by showing translation strategies from dynamic source-level constructs to our improved IL, and by analyzing the performance of the resulting IL code. Our evaluation using the SPEC JVM98 and Java Grande benchmarks shows that the overhead of supporting a dynamic deployment model can be reduced to as little as ~1.5%, when compared to the unmodified VM

    Early aspects: aspect-oriented requirements engineering and architecture design

    Get PDF
    This paper reports on the third Early Aspects: Aspect-Oriented Requirements Engineering and Architecture Design Workshop, which has been held in Lancaster, UK, on March 21, 2004. The workshop included a presentation session and working sessions in which the particular topics on early aspects were discussed. The primary goal of the workshop was to focus on challenges to defining methodical software development processes for aspects from early on in the software life cycle and explore the potential of proposed methods and techniques to scale up to industrial applications

    Reviews

    Get PDF
    Brian Clegg, Mining The Internet — Information Gathering and Research on the Net, Kogan Page: London, 1999. ISBN: 0–7494–3025–7. Paperback, 147 pages, £9.99

    The Visualization of Historical Structures and Data in a 3D Virtual City

    Get PDF
    Google Earth is a powerful tool that allows users to navigate through 3D representations of many cities and places all over the world. Google Earth has a huge collection of 3D models and it only continues to grow as users all over the world continue to contribute new models. As new buildings are built new models are also created. But what happens when a new building replaces another? The same thing that happens in reality also happens in Google Earth. Old models are replaced with new models. While Google Earth shows the most current data, many users would also benefit from being able to view historical data. Google Earth has acknowledged this with the ability to view historical images with the manipulation of a time slider. However, this feature does not apply to 3D models of buildings, which remain in the environment even when viewing a time before their existence. I would like to build upon this concept by proposing a system that stores 3D models of historical buildings that have been demolished and replaced by new developments. People may want to view the old cities that they grew up in which have undergone huge developments over the years. Old neighborhoods may be completely transformed with new road and buildings. In addition to being able to view historical buildings, users may want to view statistics of a given area. Users can view such data in their raw format but using 3D visualizations of statistical data allows for a greater understanding and appreciation of historical changes. I propose to enhance the visualization of the 3D world by allowing users to graphically view statistical data such as population, ethnic groups, education, crime, and income. With this feature users will not only be able to see physical changes in the environment, but also statistical changes over time

    AOSD Ontology 1.0 - Public Ontology of Aspect-Orientation

    Get PDF
    This report presents a Common Foundation for Aspect-Oriented Software Development. A Common Foundation is required to enable effective communication and to enable integration of activities within the Network of Excellence. This Common Foundation is realized by developing an ontology, i.e. the shared meaning of terms and concepts in the domain of AOSD. In the first part of this report, we describe the definitions of an initial set of common AOSD terms. There is general agreement on these definitions. In the second part, we describe the Common Foundation task in detail
    corecore