766 research outputs found

    Virtual Elements for the Navier-Stokes problem on polygonal meshes

    Get PDF
    A family of Virtual Element Methods for the 2D Navier-Stokes equations is proposed and analysed. The schemes provide a discrete velocity field which is point-wise divergence-free. A rigorous error analysis is developed, showing that the methods are stable and optimally convergent. Several numerical tests are presented, confirming the theoretical predictions. A comparison with some mixed finite elements is also performed

    An advection-robust Hybrid High-Order method for the Oseen problem

    Get PDF
    In this work, we study advection-robust Hybrid High-Order discretizations of the Oseen equations. For a given integer k≥0k\ge 0, the discrete velocity unknowns are vector-valued polynomials of total degree ≤k\le k on mesh elements and faces, while the pressure unknowns are discontinuous polynomials of total degree ≤k\le k on the mesh. From the discrete unknowns, three relevant quantities are reconstructed inside each element: a velocity of total degree ≤(k+1)\le(k+1), a discrete advective derivative, and a discrete divergence. These reconstructions are used to formulate the discretizations of the viscous, advective, and velocity-pressure coupling terms, respectively. Well-posedness is ensured through appropriate high-order stabilization terms. We prove energy error estimates that are advection-robust for the velocity, and show that each mesh element TT of diameter hTh_T contributes to the discretization error with an O(hTk+1)\mathcal{O}(h_T^{k+1})-term in the diffusion-dominated regime, an O(hTk+12)\mathcal{O}(h_T^{k+\frac12})-term in the advection-dominated regime, and scales with intermediate powers of hTh_T in between. Numerical results complete the exposition

    p- and hp- virtual elements for the Stokes problem

    Full text link
    We analyse the p- and hp-versions of the virtual element method (VEM) for the the Stokes problem on a polygonal domain. The key tool in the analysis is the existence of a bijection between Poisson-like and Stokes-like VE spaces for the velocities. This allows us to re-interpret the standard VEM for Stokes as a VEM, where the test and trial discrete velocities are sought in Poisson-like VE spaces. The upside of this fact is that we inherit from [7] an explicit analysis of best interpolation results in VE spaces, as well as stabilization estimates that are explicit in terms of the degree of accuracy of the method. We prove exponential convergence of the hp-VEM for Stokes problems with regular right-hand sides. We corroborate the theoretical estimates with numerical tests for both the p- and hp-versions of the method

    Divergence-preserving reconstructions on polygons and a really pressure-robust virtual element method for the Stokes problem

    Get PDF
    Non divergence-free discretisations for the incompressible Stokes problem may suffer from a lack of pressure-robustness characterised by large discretisations errors due to irrotational forces in the momentum balance. This paper argues that also divergence-free virtual element methods (VEM) on polygonal meshes are not really pressure-robust as long as the right-hand side is not discretised in a careful manner. To be able to evaluate the right-hand side for the testfunctions, some explicit interpolation of the virtual testfunctions is needed that can be evaluated pointwise everywhere. The standard discretisation via an L2 -bestapproximation does not preserve the divergence and so destroys the orthogonality between divergence-free testfunctions and possibly eminent gradient forces in the right-hand side. To repair this orthogonality and restore pressure-robustness another divergence-preserving reconstruction is suggested based on Raviart--Thomas approximations on local subtriangulations of the polygons. All findings are proven theoretically and are demonstrated numerically in two dimensions. The construction is also interesting for hybrid high-order methods on polygonal or polyhedral meshes
    • …
    corecore