696 research outputs found

    Towards automated visual surveillance using gait for identity recognition and tracking across multiple non-intersecting cameras

    No full text
    Despite the fact that personal privacy has become a major concern, surveillance technology is now becoming ubiquitous in modern society. This is mainly due to the increasing number of crimes as well as the essential necessity to provide secure and safer environment. Recent research studies have confirmed now the possibility of recognizing people by the way they walk i.e. gait. The aim of this research study is to investigate the use of gait for people detection as well as identification across different cameras. We present a new approach for people tracking and identification between different non-intersecting un-calibrated stationary cameras based on gait analysis. A vision-based markerless extraction method is being deployed for the derivation of gait kinematics as well as anthropometric measurements in order to produce a gait signature. The novelty of our approach is motivated by the recent research in biometrics and forensic analysis using gait. The experimental results affirmed the robustness of our approach to successfully detect walking people as well as its potency to extract gait features for different camera viewpoints achieving an identity recognition rate of 73.6 % processed for 2270 video sequences. Furthermore, experimental results confirmed the potential of the proposed method for identity tracking in real surveillance systems to recognize walking individuals across different views with an average recognition rate of 92.5 % for cross-camera matching for two different non-overlapping views.<br/

    Covariate conscious approach for Gait recognition based upon Zernike moment invariants

    Full text link
    Gait recognition i.e. identification of an individual from his/her walking pattern is an emerging field. While existing gait recognition techniques perform satisfactorily in normal walking conditions, there performance tend to suffer drastically with variations in clothing and carrying conditions. In this work, we propose a novel covariate cognizant framework to deal with the presence of such covariates. We describe gait motion by forming a single 2D spatio-temporal template from video sequence, called Average Energy Silhouette image (AESI). Zernike moment invariants (ZMIs) are then computed to screen the parts of AESI infected with covariates. Following this, features are extracted from Spatial Distribution of Oriented Gradients (SDOGs) and novel Mean of Directional Pixels (MDPs) methods. The obtained features are fused together to form the final well-endowed feature set. Experimental evaluation of the proposed framework on three publicly available datasets i.e. CASIA dataset B, OU-ISIR Treadmill dataset B and USF Human-ID challenge dataset with recently published gait recognition approaches, prove its superior performance.Comment: 11 page

    Silhouette-based gait recognition using Procrustes shape analysis and elliptic Fourier descriptors

    Get PDF
    This paper presents a gait recognition method which combines spatio-temporal motion characteristics, statistical and physical parameters (referred to as STM-SPP) of a human subject for its classification by analysing shape of the subject's silhouette contours using Procrustes shape analysis (PSA) and elliptic Fourier descriptors (EFDs). STM-SPP uses spatio-temporal gait characteristics and physical parameters of human body to resolve similar dissimilarity scores between probe and gallery sequences obtained by PSA. A part-based shape analysis using EFDs is also introduced to achieve robustness against carrying conditions. The classification results by PSA and EFDs are combined, resolving tie in ranking using contour matching based on Hu moments. Experimental results show STM-SPP outperforms several silhouette-based gait recognition methods

    Learning optimised representations for view-invariant gait recognition

    Get PDF
    Gait recognition can be performed without subject cooperation under harsh conditions, thus it is an important tool in forensic gait analysis, security control, and other commercial applications. One critical issue that prevents gait recognition systems from being widely accepted is the performance drop when the camera viewpoint varies between the registered templates and the query data. In this paper, we explore the potential of combining feature optimisers and representations learned by convolutional neural networks (CNN) to achieve efficient view-invariant gait recognition. The experimental results indicate that CNN learns highly discriminative representations across moderate view variations, and these representations can be further improved using view-invariant feature selectors, achieving a high matching accuracy across views

    Heel strike detection based on human walking movement for surveillance analysis

    Get PDF
    Heel strike detection is an important cue for human gait recognition and detection in visual surveillance since the heel strike position can be used to derive the gait periodicity, stride and step length. We propose a novel method for heel strike detection using a gait trajectory model, which is robust to occlusion, camera view, and low resolution. When a person walks, the movement of the head is conspicuous and sinusoidal. The highest point of the trajectory of the head occurs when the feet cross (stance) and the lowest point is when the gait stride is the largest (heel strike). Our gait trajectory model is constructed from trajectory data using non-linear optimisation. Then, the key frames in which the heel strikes take place are calculated. A Region Of Interest (ROI) is extracted using the silhouette image of the key frame as a filter. For candidate detection, Gradient Descent is applied to detect maxima which are considered to be the time of the heel strikes. For candidate verification, two filtering methods are used to reconstruct the 3D position of a heel strike using the given camera projection matrix. The contribution of this research is the first use of the gait trajectory in the heel strike position estimation process and we contend that it is a new approach for basic analysis in surveillance imagery
    • ā€¦
    corecore