8 research outputs found

    View-invariant gait recognition exploiting spatio-temporal information and a dissimilarity metric

    Get PDF
    In gait recognition, when subjects do not follow a known walking trajectory, the comparison against a database may be rendered impossible. Some proposed solutions rely on learning and mapping the appearance of silhouettes along various views, with some limitations caused for instance by appearance changes (e.g. coats or bags). The present paper discusses this problem and proposes a novel solution for automatic viewing angle identification, using minimal information computed from the walking person silhouettes, while being robust against appearance changes. The proposed method is more efficient and provides improved results when compared to the available alternatives. Moreover, unlike most state-of-the- art methods, it does not require a training stage. The paper also discusses the use of a dissimilarity metric for the recognition stage. Dissimilarity metrics have shown interesting results in several recognition systems. This paper also attests the strength of a dissimilarity-based approach for gait recognition.info:eu-repo/semantics/acceptedVersio

    Sparse error gait image: a new representation for gait recognition

    Get PDF
    The performance of a gait recognition system is very much related to the usage of efficient feature representation and recognition modules. The first extracts features from an input image sequence to represent a user's distinctive gait pattern. The recognition module then compares the features of a probe user with those registered in the gallery database. This paper presents a novel gait feature representation, called Sparse Error Gait Image (SEGI), derived from the application of Robust Principal Component Analysis (RPCA) to Gait Energy Images (GEI). GEIs obtained from the same user at different instants always present some differences. Applying RPCA results in low-rank and sparse error components, the former capturing the commonalities and encompassing the small differences between input GEIs, while the larger differences are captured by the sparse error component. The proposed SEGI representation exploits the latter for recognition purposes. This paper also proposes two simple approaches for the recognition module, to exploit the SEGI, based on the computation of a Euclidean norm or the Euclidean distance. Using these simple recognition methods and the proposed SEGI representation gait recognition, results equivalent to the state-of-the-art are obtained

    Gait recognition using normalized shadows

    Get PDF
    WOS:000426986000189 (Nº de Acesso Web of Science)Surveillance of public spaces is often conducted with the help of cameras placed at elevated positions. Recently, drones with high resolution cameras have made it possible to perform overhead surveillance of critical spaces. However, images obtained in these conditions may not contain enough body features to allow conventional biometric recognition. This paper introduces a novel gait recognition system which uses the shadows cast by users, when available. It includes two main contributions: (i) a method for shadow segmentation, which analyzes the orientation of the silhouette contour to identify the feet position along time, in order to separate the body and shadow silhouettes connected at such positions; (ii) a method that normalizes the segmented shadow silhouettes, by applying a transformation derived from optimizing the low rank textures of a gait texture image, to compensate for changes in view and shadow orientation. The normalized shadow silhouettes can then undergo a gait recognition algorithm, which in this paper relies on the computation of a gait energy image, combined with linear discriminant analysis for user recognition. The proposed system outperforms the available state-of-the-art, being robust to changes in acquisition viewpoints.info:eu-repo/semantics/acceptedVersio

    Estimation and validation of temporal gait features using a markerless 2D video system

    Get PDF
    Background and Objective: Estimation of temporal gait features, such as stance time, swing time and gait cycle time, can be used for clinical evaluations of various patient groups having gait pathologies, such as Parkinson’s diseases, neuropathy, hemiplegia and diplegia. Most clinical laboratories employ an optoelectronic motion capture system to acquire such features. However, the operation of these systems requires specially trained operators, a controlled environment and attaching reflective markers to the patient’s body. To allow the estimation of the same features in a daily life setting, this paper presents a novel vision based system whose operation does not require the presence of skilled technicians or markers and uses a single 2D camera. Method: The proposed system takes as input a 2D video, computes the silhouettes of the walking person, and then estimates key biomedical gait indicators, such as the initial foot contact with the ground and the toe off instants, from which several other temporal gait features can be derived. Results: The proposed system is tested on two datasets: (i) a public gait dataset made available by CASIA, which contains 20 users, with 4 sequences per user; and (ii) a dataset acquired simultaneously by a marker-based optoelectronic motion capture system and a simple 2D video camera, containing 10 users, with 5 sequences per user. For the CASIA gait dataset A the relevant temporal biomedical gait indicators were manually annotated, and the proposed automated video analysis system achieved an accuracy of 99% on their identification. It was able to obtain accurate estimations even on segmented silhouettes where, the state-of-the-art markerless 2D video based systems fail. For the second database, the temporal features obtained by the proposed system achieved an average intra-class correlation coefficient of 0.86, when compared to the "gold standard" optoelectronic motion capture system. Conclusions: The proposed markerless 2D video based system can be used to evaluate patients’ gait without requiring the usage of complex laboratory settings and without the need for physical attachment of sensors/markers to the patients. The good accuracy of the results obtained suggests that the proposed system can be used as an alternative to the optoelectronic motion capture system in non-laboratory environments, which can be enable more regular clinical evaluations.info:eu-repo/semantics/acceptedVersio

    View-invariant gait recognition system using a gait energy image decomposition method

    Get PDF
    Gait recognition systems can capture biometrical information from a distance and without the user's active cooperation, making them suitable for surveillance environments. However, there are two challenges for gait recognition that need to be solved, namely when: (i) the walking direction is unknown and/or (ii) the subject's appearance changes significantly due to different clothes being worn or items being carried. This study discusses the problem of gait recognition in unconstrained environments and proposes a new system to tackle recognition when facing the two listed challenges. The system automatically identifies the walking direction using a perceptual hash (PHash) computed over the leg region of the gait energy image (GEI) and then compares it against the PHash values of different walking directions stored in the database. Robustness against appearance changes are obtained by decomposing the GEI into sections and selecting those sections unaltered by appearance changes for comparison against a database containing GEI sections for the identified walking direction. The proposed recognition method then recognises the user using a majority decision voting. The proposed view-invariant gait recognition system is computationally inexpensive and outperforms the state-of-the-art in terms of recognition performance.info:eu-repo/semantics/acceptedVersio

    Gait recognition in the wild using shadow silhouettes

    Get PDF
    Gait recognition systems allow identification of users relying on features acquired from their body movement while walking. This paper discusses the main factors affecting the gait features that can be acquired from a 2D video sequence, proposing a taxonomy to classify them across four dimensions. It also explores the possibility of obtaining users’ gait features from the shadow silhouettes by proposing a novel gait recognition system. The system includes novel methods for: (i) shadow segmentation, (ii) walking direction identification, and (iii) shadow silhouette rectification. The shadow segmentation is performed by fitting a line through the feet positions of the user obtained from the gait texture image (GTI). The direction of the fitted line is then used to identify the walking direction of the user. Finally, the shadow silhouettes thus obtained are rectified to compensate for the distortions and deformations resulting from the acquisition setup, using the proposed four-point correspondence method. The paper additionally presents a new database, consisting of 21 users moving along two walking directions, to test the proposed gait recognition system. Results show that the performance of the proposed system is equivalent to that of the state-of-the-art in a constrained setting, but performing equivalently well in the wild, where most state-of-the-art methods fail. The results also highlight the advantages of using rectified shadow silhouettes over body silhouettes under certain conditions.info:eu-repo/semantics/acceptedVersio
    corecore