309 research outputs found

    Video summarisation: A conceptual framework and survey of the state of the art

    Get PDF
    This is the post-print (final draft post-refereeing) version of the article. Copyright @ 2007 Elsevier Inc.Video summaries provide condensed and succinct representations of the content of a video stream through a combination of still images, video segments, graphical representations and textual descriptors. This paper presents a conceptual framework for video summarisation derived from the research literature and used as a means for surveying the research literature. The framework distinguishes between video summarisation techniques (the methods used to process content from a source video stream to achieve a summarisation of that stream) and video summaries (outputs of video summarisation techniques). Video summarisation techniques are considered within three broad categories: internal (analyse information sourced directly from the video stream), external (analyse information not sourced directly from the video stream) and hybrid (analyse a combination of internal and external information). Video summaries are considered as a function of the type of content they are derived from (object, event, perception or feature based) and the functionality offered to the user for their consumption (interactive or static, personalised or generic). It is argued that video summarisation would benefit from greater incorporation of external information, particularly user based information that is unobtrusively sourced, in order to overcome longstanding challenges such as the semantic gap and providing video summaries that have greater relevance to individual users

    Dublin City University at the TRECVid 2008 BBC rushes summarisation task

    Get PDF
    We describe the video summarisation systems submitted by Dublin City University to the TRECVid 2008 BBC Rushes Summarisation task. We introduce a new approach to re- dundant video summarisation based on principal component analysis and linear discriminant analysis. The resulting low dimensional representation of each shot offers a simple way to compare and select representative shots of the original video. The final summary is constructed as a dynamic sto- ryboard. Both types of summaries were evaluated and the results are discussed

    Automatic generation of effective video summaries

    Get PDF
    As the popularity of video as an information medium rises, the amount of video content that we produce and archive keeps growing. This creates a demand for shorter representations of videos in order to assist the task of video retrieval. The traditional solution is to let humans watch these videos and write textual summaries based on what they saw. This summarisation process, however, is time-consuming. Moreover, a lot of useful audio-visual information contained in the original video can be lost. Video summarisation aims to turn a full-length video into a more concise version that preserves as much information as possible. The problem of video summarisation is to minimise the trade-off between how concise and how representative a summary is. There are also usability concerns that need to be addressed in a video summarisation scheme. To solve these problems, this research aims to create an automatic video summarisation framework that combines and improves on existing video summarisation techniques, with the focus on practicality and user satisfaction. We also investigate the need for different summarisation strategies in different kinds of videos, for example news, sports, or TV series. Finally, we develop a video summarisation system based on the framework, which is validated by subjective and objective evaluation. The evaluation results shows that the proposed framework is effective for creating video skims, producing high user satisfaction rate and having reasonably low computing requirement. We also demonstrate that the techniques presented in this research can be used for visualising video summaries in the form web pages showing various useful information, both from the video itself and from external sources

    ELVIS: Entertainment-led video summaries

    Get PDF
    © ACM, 2010. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Transactions on Multimedia Computing, Communications, and Applications, 6(3): Article no. 17 (2010) http://doi.acm.org/10.1145/1823746.1823751Video summaries present the user with a condensed and succinct representation of the content of a video stream. Usually this is achieved by attaching degrees of importance to low-level image, audio and text features. However, video content elicits strong and measurable physiological responses in the user, which are potentially rich indicators of what video content is memorable to or emotionally engaging for an individual user. This article proposes a technique that exploits such physiological responses to a given video stream by a given user to produce Entertainment-Led VIdeo Summaries (ELVIS). ELVIS is made up of five analysis phases which correspond to the analyses of five physiological response measures: electro-dermal response (EDR), heart rate (HR), blood volume pulse (BVP), respiration rate (RR), and respiration amplitude (RA). Through these analyses, the temporal locations of the most entertaining video subsegments, as they occur within the video stream as a whole, are automatically identified. The effectiveness of the ELVIS technique is verified through a statistical analysis of data collected during a set of user trials. Our results show that ELVIS is more consistent than RANDOM, EDR, HR, BVP, RR and RA selections in identifying the most entertaining video subsegments for content in the comedy, horror/comedy, and horror genres. Subjective user reports also reveal that ELVIS video summaries are comparatively easy to understand, enjoyable, and informative

    Analysing user physiological responses for affective video summarisation

    Get PDF
    This is the post-print version of the final paper published in Displays. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2009 Elsevier B.V.Video summarisation techniques aim to abstract the most significant content from a video stream. This is typically achieved by processing low-level image, audio and text features which are still quite disparate from the high-level semantics that end users identify with (the ‘semantic gap’). Physiological responses are potentially rich indicators of memorable or emotionally engaging video content for a given user. Consequently, we investigate whether they may serve as a suitable basis for a video summarisation technique by analysing a range of user physiological response measures, specifically electro-dermal response (EDR), respiration amplitude (RA), respiration rate (RR), blood volume pulse (BVP) and heart rate (HR), in response to a range of video content in a variety of genres including horror, comedy, drama, sci-fi and action. We present an analysis framework for processing the user responses to specific sub-segments within a video stream based on percent rank value normalisation. The application of the analysis framework reveals that users respond significantly to the most entertaining video sub-segments in a range of content domains. Specifically, horror content seems to elicit significant EDR, RA, RR and BVP responses, and comedy content elicits comparatively lower levels of EDR, but does seem to elicit significant RA, RR, BVP and HR responses. Drama content seems to elicit less significant physiological responses in general, and both sci-fi and action content seem to elicit significant EDR responses. We discuss the implications this may have for future affective video summarisation approaches

    Activity-driven content adaptation for effective video summarisation

    Get PDF
    In this paper, we present a novel method for content adaptation and video summarization fully implemented in compressed-domain. Firstly, summarization of generic videos is modeled as the process of extracted human objects under various activities/events. Accordingly, frames are classified into five categories via fuzzy decision including shot changes (cut and gradual transitions), motion activities (camera motion and object motion) and others by using two inter-frame measurements. Secondly, human objects are detected using Haar-like features. With the detected human objects and attained frame categories, activity levels for each frame are determined to adapt with video contents. Continuous frames belonging to same category are grouped to form one activity entry as content of interest (COI) which will convert the original video into a series of activities. An overall adjustable quota is used to control the size of generated summarization for efficient streaming purpose. Upon this quota, the frames selected for summarization are determined by evenly sampling the accumulated activity levels for content adaptation. Quantitative evaluations have proved the effectiveness and efficiency of our proposed approach, which provides a more flexible and general solution for this topic as domain-specific tasks such as accurate recognition of objects can be avoided

    An interactive and multi-level framework for summarising user generated videos

    Get PDF
    We present an interactive and multi-level abstraction framework for user-generated video (UGV) summarisation, allowing a user the flexibility to select a summarisation criterion out of a number of methods provided by the system. First, a given raw video is segmented into shots, and each shot is further decomposed into sub-shots in line with the change in dominant camera motion. Secondly, principal component analysis (PCA) is applied to the colour representation of the collection of sub-shots, and a content map is created using the first few components. Each sub-shot is represented with a ``footprint'' on the content map, which reveals its content significance (coverage) and the most dynamic segment. The final stage of abstraction is devised in a user-assisted manner whereby a user is able to specify a desired summary length, with options to interactively perform abstraction at different granularity of visual comprehension. The results obtained show the potential benefit in significantly alleviating the burden of laborious user intervention associated with conventional video editing/browsing
    corecore