94 research outputs found

    Unsupervised video summarization framework using keyframe extraction and video skimming

    Full text link
    Video is one of the robust sources of information and the consumption of online and offline videos has reached an unprecedented level in the last few years. A fundamental challenge of extracting information from videos is a viewer has to go through the complete video to understand the context, as opposed to an image where the viewer can extract information from a single frame. Apart from context understanding, it almost impossible to create a universal summarized video for everyone, as everyone has their own bias of keyframe, e.g; In a soccer game, a coach person might consider those frames which consist of information on player placement, techniques, etc; however, a person with less knowledge about a soccer game, will focus more on frames which consist of goals and score-board. Therefore, if we were to tackle problem video summarization through a supervised learning path, it will require extensive personalized labeling of data. In this paper, we attempt to solve video summarization through unsupervised learning by employing traditional vision-based algorithmic methodologies for accurate feature extraction from video frames. We have also proposed a deep learning-based feature extraction followed by multiple clustering methods to find an effective way of summarizing a video by interesting key-frame extraction. We have compared the performance of these approaches on the SumMe dataset and showcased that using deep learning-based feature extraction has been proven to perform better in case of dynamic viewpoint videos.Comment: 5 pages, 3 figures. Technical Repor

    Co-Regularized Deep Representations for Video Summarization

    Full text link
    Compact keyframe-based video summaries are a popular way of generating viewership on video sharing platforms. Yet, creating relevant and compelling summaries for arbitrarily long videos with a small number of keyframes is a challenging task. We propose a comprehensive keyframe-based summarization framework combining deep convolutional neural networks and restricted Boltzmann machines. An original co-regularization scheme is used to discover meaningful subject-scene associations. The resulting multimodal representations are then used to select highly-relevant keyframes. A comprehensive user study is conducted comparing our proposed method to a variety of schemes, including the summarization currently in use by one of the most popular video sharing websites. The results show that our method consistently outperforms the baseline schemes for any given amount of keyframes both in terms of attractiveness and informativeness. The lead is even more significant for smaller summaries.Comment: Video summarization, deep convolutional neural networks, co-regularized restricted Boltzmann machine

    VSCAN: An Enhanced Video Summarization using Density-based Spatial Clustering

    Full text link
    In this paper, we present VSCAN, a novel approach for generating static video summaries. This approach is based on a modified DBSCAN clustering algorithm to summarize the video content utilizing both color and texture features of the video frames. The paper also introduces an enhanced evaluation method that depends on color and texture features. Video Summaries generated by VSCAN are compared with summaries generated by other approaches found in the literature and those created by users. Experimental results indicate that the video summaries generated by VSCAN have a higher quality than those generated by other approaches.Comment: arXiv admin note: substantial text overlap with arXiv:1401.3590 by other authors without attributio

    Video browsing interfaces and applications: a review

    Get PDF
    We present a comprehensive review of the state of the art in video browsing and retrieval systems, with special emphasis on interfaces and applications. There has been a significant increase in activity (e.g., storage, retrieval, and sharing) employing video data in the past decade, both for personal and professional use. The ever-growing amount of video content available for human consumption and the inherent characteristics of video data—which, if presented in its raw format, is rather unwieldy and costly—have become driving forces for the development of more effective solutions to present video contents and allow rich user interaction. As a result, there are many contemporary research efforts toward developing better video browsing solutions, which we summarize. We review more than 40 different video browsing and retrieval interfaces and classify them into three groups: applications that use video-player-like interaction, video retrieval applications, and browsing solutions based on video surrogates. For each category, we present a summary of existing work, highlight the technical aspects of each solution, and compare them against each other
    • …
    corecore