7,564 research outputs found

    Spatio-Temporal Action Detection with Cascade Proposal and Location Anticipation

    Full text link
    In this work, we address the problem of spatio-temporal action detection in temporally untrimmed videos. It is an important and challenging task as finding accurate human actions in both temporal and spatial space is important for analyzing large-scale video data. To tackle this problem, we propose a cascade proposal and location anticipation (CPLA) model for frame-level action detection. There are several salient points of our model: (1) a cascade region proposal network (casRPN) is adopted for action proposal generation and shows better localization accuracy compared with single region proposal network (RPN); (2) action spatio-temporal consistencies are exploited via a location anticipation network (LAN) and thus frame-level action detection is not conducted independently. Frame-level detections are then linked by solving an linking score maximization problem, and temporally trimmed into spatio-temporal action tubes. We demonstrate the effectiveness of our model on the challenging UCF101 and LIRIS-HARL datasets, both achieving state-of-the-art performance.Comment: Accepted at BMVC 2017 (oral

    Learning Human Motion Models for Long-term Predictions

    Full text link
    We propose a new architecture for the learning of predictive spatio-temporal motion models from data alone. Our approach, dubbed the Dropout Autoencoder LSTM, is capable of synthesizing natural looking motion sequences over long time horizons without catastrophic drift or motion degradation. The model consists of two components, a 3-layer recurrent neural network to model temporal aspects and a novel auto-encoder that is trained to implicitly recover the spatial structure of the human skeleton via randomly removing information about joints during training time. This Dropout Autoencoder (D-AE) is then used to filter each predicted pose of the LSTM, reducing accumulation of error and hence drift over time. Furthermore, we propose new evaluation protocols to assess the quality of synthetic motion sequences even for which no ground truth data exists. The proposed protocols can be used to assess generated sequences of arbitrary length. Finally, we evaluate our proposed method on two of the largest motion-capture datasets available to date and show that our model outperforms the state-of-the-art on a variety of actions, including cyclic and acyclic motion, and that it can produce natural looking sequences over longer time horizons than previous methods

    Video streaming

    Get PDF
    B
    corecore