6 research outputs found

    Full Reference Video Quality Model for UHD HEVC Encoded Sequences

    No full text
    International audienceDespite its relative robustness, subjective video quality evaluation is a time-consuming and costly process. Alternatives are required therefore to simplify visual quality estimation, particularly in the case of new video formats. This paper presents an analysis of full reference quality metrics focused on Ultra High Definition sequences, encoded with H.265/High Efficiency Video Coding. After evaluating the individual performance of three objective video quality metrics - structural similarity, gradient difference, and motion distortion - an optimal combination is defined, to be weighted by three perceptibility criteria, considering luminance, motion, and texture masks, in uniform and selective perception contexts. Performances at each step are compared by correlation, to subjective scores of each sequence given by Subjective Assessment Methodology of Video Quality session. A close correlation to subjective quality measurements is measured applying three indicators

    Predicting Multiple Target Tracking Performance for Applications on Video Sequences

    Get PDF
    This dissertation presents a framework to predict the performance of multiple target tracking (MTT) techniques. The framework is based on the mathematical descriptors of point processes, the probability generating functional (p.g.fl). It is shown that conceptually the p.g.fls of MTT techniques can be interpreted as a transform that can be marginalized to an expression that encodes all the information regarding the likelihood model as well as the underlying assumptions present in a given tracking technique. In order to use this approach for tracker performance prediction in video sequences, a framework that combines video quality assessment concepts and the marginalized transform is introduced. The multiple hypothesis tracker (MHT), Joint Probabilistic Data Association (JPDA), Markov Chain Monte Carlo (MCMC) data association, and the Probability Hypothesis Density filter (PHD) are used as a test cases. We introduce their transforms and perform a numerical comparison to predict their performance under identical conditions. We also introduce the concepts that present the base for estimation in general and for applications in computer vision

    Perceptual Video Quality Assessment and Enhancement

    Get PDF
    With the rapid development of network visual communication technologies, digital video has become ubiquitous and indispensable in our everyday lives. Video acquisition, communication, and processing systems introduce various types of distortions, which may have major impact on perceived video quality by human observers. Effective and efficient objective video quality assessment (VQA) methods that can predict perceptual video quality are highly desirable in modern visual communication systems for performance evaluation, quality control and resource allocation purposes. Moreover, perceptual VQA measures may also be employed to optimize a wide variety of video processing algorithms and systems for best perceptual quality. This thesis exploits several novel ideas in the areas of video quality assessment and enhancement. Firstly, by considering a video signal as a 3D volume image, we propose a 3D structural similarity (SSIM) based full-reference (FR) VQA approach, which also incorporates local information content and local distortion-based pooling methods. Secondly, a reduced-reference (RR) VQA scheme is developed by tracing the evolvement of local phase structures over time in the complex wavelet domain. Furthermore, we propose a quality-aware video system which combines spatial and temporal quality measures with a robust video watermarking technique, such that RR-VQA can be performed without transmitting RR features via an ancillary lossless channel. Finally, a novel strategy for enhancing video denoising algorithms, namely poly-view fusion, is developed by examining a video sequence as a 3D volume image from multiple (front, side, top) views. This leads to significant and consistent gain in terms of both peak signal-to-noise ratio (PSNR) and SSIM performance, especially at high noise levels
    corecore