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ABSTRACT

PREDICTING MULTIPLE TARGET TRACKING PERFORMANCE
FOR APPLICATIONS ON VIDEO SEQUENCES

Juan E. Tapiero Bernal, B.S., M.Sc.
Marquette University

This dissertation presents a framework to predict the performance of multiple target
tracking (MTT) techniques. The framework is based on the mathematical descriptors of
point processes, the probability generating functional (p.g.fl). It is shown that conceptually
the p.g.fls of MTT techniques can be interpreted as a transform that can be marginalized to
an expression that encodes all the information regarding the likelihood model as well as the
underlying assumptions present in a given tracking technique. In order to use this approach
for tracker performance prediction in video sequences, a framework that combines video
quality assessment concepts and the marginalized transform is introduced. The multiple
hypothesis tracker (MHT), Joint Probabilistic Data Association (JPDA), Markov Chain
Monte Carlo (MCMC) data association, and the Probability Hypothesis Density filter (PHD)
are used as a test cases. We introduce their transforms and perform a numerical comparison
to predict their performance under identical conditions. We also introduce the concepts that
present the base for estimation in general and for applications in computer vision.
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CHAPTER 1

Introduction

Solutions to the problem of multiple target tracking are comprised of many

techniques and algorithms that generalize the single target tracking and state estimation for

more complex tracking scenarios. Since a unified theory for single target tracking and

estimation does not exist, this set of techniques has a growing number of elements that

contribute to the solutions of the problem of multiple target tracking under different

assumptions and approaches which likely involve Bayesian probabilities. Today, most used

techniques can be classified in one of four frameworks:

1 Extension of the Bayesian framework for single target tracking [1]. Classical examples

are multiple hypothesis tracking, joint probabilistic data association (JPDA) filter, and

Markov Chain Monte Carlo framework.

2 Random finite sets framework [2]. Examples include Probability Hypothesis Density

filters, Cardinalized Probability Hypothesis Density filters, and Multi-Bernoulli filters.

3 Point processes framework [3]. Examples include the intensity filter.

4 Heuristic implementations such as the nearest neighbor (NN) standard filter [4].

There are more examples in each of the four frameworks and the number keeps growing.

Much of the new developments represent small variations with some conceptual progress on

solving the problem of data association.
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Computer vision and specifically pedestrian detection is one of the most widely

investigated problems in which multiple target tracking is applied since it has an impact on

practical matters such as robotics, surveillance, video game industry and sports broadcasting

[5], and with the available computation of the day offers great experimenting flexibility and

ways to evaluate different algorithms, and video sequences perse are self-contained and do

not require extra information or structures.

There is not a structured approach to select the appropriate estimation technique to

be applied on a video sequence, but different techniques can be tested and compared

through existing metrics of characteristics such as tracking accuracy and robustness [6] [7]

[8] [9] [10]. The choice of the technique to be used on any given application is usually made

on an ad-hoc basis following from targeted research based on the knowledge the designer has

of certain techniques, or benchmarking using the formerly mentioned metrics applied to the

results of multiple target tracking problem at hand [11] [12] [13]. The main questions are,

could there be something about the problem than can point us towards the selection of one

of the techniques as being preferable over all the others? Can the performance of the

selected technique be predicted?

1.1 Objectives and Scope

This work aims to answer the posed question in the specific case of predicting the

performance of Multiple Target tracking techniques for video sequences. For this it is

important to introduce several sets of concepts introduce tracking techniques and that show

the fundamental relationship between them and how knowledge about the objective video

quality mixed with this fundamental relationships can be used as a framework for
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performance prediction.

Given the large number of possible techniques thus the impossibility (in terms of time

frame) of showing the details of all of them, we focus on four of the multiple target tracking

techniques dubbed as the classics. Two of them are considered the original multiple target

tracking techniques of the bayesian framework: multiple hypothesis tracker and joint

probabilistic data association. The third selected technique is the Markov Chain Monte

Carlo data association filter which extends on the classic JPDA for an unknown number of

targets. Finally, one of the first filters that was introduced with the birth of the random

finite sets framework, the probability hypothesis density (PHD) filter.

It is important also to note that the labelling and re-identification of targets is not

taken in account, since it usually does not depend on probabilistic techniques to create the

labels or multiple sensors (or cameras in this case), but on heuristic or added optimization

structures. Another way of limiting the scope comes from the assumption that throughout

the implementations and experiments the motion and measurement models are the mean of

a Gaussian distribution.

1.2 Dissertation Contributions

Given the objective and questions posed, the main contributions of this dissertation

are:

1 A new conceptualization of probability generating functionals for multiple target

tracking as a marginalized tracking transform that encodes all the information

contained within the measurements.

2 The introduction of a framework that uses concepts from visual quality assessment and
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the newly introduced marginalized tracking transform to obtain a quantity called the

tracker quality assessment to be used for multiple target tracking performance

prediction.

3 Extensive testing of the introduced transformation and tracker quality assessment

framework using different assumptions for the tracking techniques and different video

sequences. Introducing a numerical analysis of what these new quantities mean for

predicting multiple target tracking performance, both the marginalized transform and

the tracker quality assessment framework.

1.3 Dissertation Outline

The second chapter has two main objectives, first it presents the general principles of

bayesian estimation and then it presents all the pertinent concepts about modeling for

computer vision applications. It is an extension of the introduction to present the general

concepts of target tracking and estimation. Finally, the introduction of measurement models

and techniques for detection of pedestrian on videos.

Chapter 3 presents the theoretical aspects of the general multiple target tracking as

an extension of the single target problem, aiming to introduce a set of assumptions that

change the way in which is problem is approached. Here we try for the most part to

maintain a Bayesian way to present the different concepts and the techniques pertinent for

this work, developing a framework that includes multiple hypothesis tracking, joint

probabilistic data association filter and Markov Chain Monte Carlo data association. The

basics of the probability hypothesis density filter are also discussed superficially.

Chapter 4 firstly introduces the general principles of point processes and then extends
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this to probability generating functionals, introducing then their relationship with target

tracking and presenting the representation of the different single target and most

importantly multiple target tracking techniques in terms of probability generating

functionals. A key contribution here comes from introducing the probability generating

functional for the Markov Chain Monte Carlo data association framework. Finally, it

presents the concepts that are used in this work to develop a marginalized tracker transform

by re-interpreting the probability generating functionals.

Chapter 5 has a review of the subject of visual quality assessment for images and

videos. In this chapter we introduce the framework that connects the Multiple Target

Tracking transform concepts with visual quality assessment to obtain a quantity called:

tracker quality assessment. This quantity is the key to predict tracker performance on videos.

Chapter 6 wraps up the work by describing the experiments performed and results

obtained. It introduces too the implementations for the marginalized transform and analysis

of their meaning, finally application and ways in which performance on videos can be

predicted. Finally in Chapter 7 with this in hand, we make concluding remarks and point all

the ways to improve and perform future research.
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CHAPTER 2

Bayesian Estimation

This chapter introduces the general concepts that form the estimation framework and

that are extended for the main subject of this dissertation and can be built upon to obtain a

mathematically exact solution for the multiple target tracking problem. It also has a second

purpose in the introduction of a proposed motion model for pedestrian tracking in computer

vision applications, one of the contributions of this work.

2.1 Bayesian Inference

Bayesian inference is a theoretical, yet practical framework for reasoning, decision

making and estimation under uncertainty. The historical roots of the theory lie in the late

18th and early 19th century with Thomas Bayes and Pierre-Simon de Laplace [14]. Bayesian

inference was not a popular approach for decision making until the last half of the 20th

century and did not develop as a single, homogeneous scientific activity. It has, however,

been employed in many different domains. The Bayesian approach to filtering is not new

(e.g., see Ho and Lee [14]; Jazwinski [15] ; Stratonovich [16]). The Kalman filter can be

derived from the mean least-squares point of view or from a Bayesian perspective (see

Kalman [17]). As computations became faster and more accessible, state estimators with a

higher computational cost were developed. From these estimators we can consider three

categories. First, the class of different extended Kalman filter (EKF) variants that provide

estimates of the state variables and a measure of the mean least-square state estimation
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error. In this category we can include the estimators that approximate the probability

density function of the variable with a mixture of probability density functions. This was

proposed by Sorenson and Alspach [18] by using a mixture of Gaussians. We might also

consider grid based filters that evaluate the pdf using a series of nodes chosen to cover the

entire state space. This set of nodes, each with an associated weight, are used as a discrete

approximation of the posterior pdf or as base for continuous approximations for this pdf, for

example using splines [19]. The last category of filters includes those that use monte carlo

methods. Their origins can be traced to Handschin [20] and Mayne and Handschin [21].

Gordon et al [22] employ sequential monte carlo methods as set of points that approximate

the posterior pdf. The objective of Bayesian estimation (in our application) is to estimate

the state vector in a recursive form based on the discrete-time observations.

A scientific hypothesis is typically represented as a pdf of the observed data. This pdf

depends on certain unknown quantities or parameters, denoted by θ. In the Bayesian

paradigm, the knowledge of the model parameters is expressed through a pdf, known as the

prior density function, p(θ). When new data y is obtained, the information contained in the

prior pdf and its relation with the model parameters is known as the “likelihood” function,

and is represented by p(y|θ). The information contained in the prior pdf and the likelihood

function can be combined to obtain a new pdf, known as the posterior pdf and denoted by

p(θ|y). The posterior pdf is the objective of the Bayesian inference process. Bayes theorem

is an elemental identity in probability theory (more information on this and basic

probability theory can be found in [23]). According to Bayes, the posterior probability is

proportional to the product of the priori by the likelihood,

p(θ|y) =
p(θ)p(y|θ)∫
p(θ)p(y|θ)dθ .

In theory, one can always obtain the posterior distribution, but with the complex systems
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and models the necessary analytical calculation are typically intractable. In recent years, the

research community realized that obtaining samples of the posterior could be an applicable

and adequate option.

There are several reasons to use Bayesian methods and their applications are present

in several different fields. Many investigations into the use of Bayesian methods have been

reported [24] [25] [26] [22] [27] [28] [29]. It is evident that if one wants to make a consistent

decision in the presence of uncertainty, an excellent approach is to use Bayesian methods.

2.2 Single Target Bayesian Estimation

2.2.1 Continuous-Discrete Probabilistic Dynamical Systems

Probabilistic dynamical systems are a sequence of continuous probability density

functions p(x(tk)|y1:k), where x(tk) is the state vector, yk is the observations vector, the

index t = tk represents an instant of time when a observation is obtained and the subscript

1 : k represents the set of observation at all instants up to and including tk. The state

variable x(t) evolves over time. In most of the applications, the difference between p(•|y1:k)

and p(•|y1:k−1) is due to the incorporation of a new observation. The following processes are

of special interest:

Prediction: p(x(t+ dt)|y1:k), dt 6= 0, where p(•|y1:k) can be computed for all time

t > tk. The best prediction of x(t) before new information arrives is through

p(•|y1:k−1).

Smoothing: p(x(t)|y1:T ), 0 < t < tT . In this case, the distribution can be calculated for

all times t ∈ [0, tT ] if the observations up to the instance yT have been observed.
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Estimation: p(x(tk)|y1:k) (Sequential estimation). Here we estimate the variable x(tk)

at the time instance tk when the observation yk has been obtained.

For this work, we consider dynamical systems that are represented in a state space

form. A state space model is defined by the state equation,

dx(t)

dt
= f(x(t),u(t), t) + σ(x(t), t)w(t), (2.2.1)

and the measurement equation,

yk = h(x(tk), tk,v(tk)) (2.2.2)

where yk is the observations vector at tk, x(t) is the state vector, h is the measurement

function (vector of functions), f is the state function (also known as the drift function), u(t)

is the vector of inputs or control actions, w(t) is a stochastic noise process, v(tk) is a random

noise sequence, t is time, and tk represents the instant an observation is obtained. The usual

assumptions are that the analytical representation of the functions and distributions of both

noises are known. The objective of Bayesian estimation is to estimate x(tk) in a recursive

form based on the observations yk, obtaining the posterior distribution p(x(tk)|y1:k).

State variables x and measurements y are directly related to the different probability

density functions that represent the system when it is treated as a set of stochastic processes,

and that are ultimately used for Bayesian estimation. In general, it can be said that

x ∼ p(x(tk)|x(tk−1))

y ∼ p(yk|x(tk)),

where p(x(tk)|x(tk−1)) is known as the transition density. There are two final definitions and
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assumptions that are key to Bayesian estimation and inference. First, the Markov

assumption which states that the values in any state x(t) are only influenced by the values

of the state x(t− dt) that directly preceded it. This implies that the past is independent of

the future. In a continuous-discrete setting, we have

p(x(t0:k)) =
k∏
i=1

p(x(ti)|x(ti−1))p(x(t0)). (2.2.3)

We also have the conditional independence of observations that states that the observation,

yk, given the state, x(tk), is conditionally independent from the observation and state

history, or

p(y1:k) =
k∏
i=1

p(yi)

p(y1:k|x(t0:k)) =
k∏
i=1

p(yi|x(ti)). (2.2.4)

2.2.2 Recursive Estimation

The well-known set of Bayesian filters are based on a general structure. Each filter

differs under different assumptions. The main objective in each case is to estimate the state

of a system using observations, where the state evolves in the presence of noise and

observations are made sequentially in the presence of noise. The notation is as follows: x(t)

is the state being estimated, and yk indicates the observed data. The problem consists of

estimating the state x(t0:k), k = 1, 2, ... based on the sequence of observations

y1:k, k = 2, 3, .... In this derivation, the Markov assumption and conditional independence of

observations assumption apply.

The set of posterior distributions can be represented using the Bayes theorem as
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p(x(t0:k)|y1:k) =
p(y1:k|x(t0:k))p(x(t0:k))

p(y1:k)
. (2.2.5)

In a practical setting all the information needed to compute p(x(tk)|y1:k) is not known or

cannot be obtained in real-time, so using the assumptions from Eqns. (2.2.3) and (2.2.4), we

begin by rewriting Eq. (2.2.5) as

p(x(t0:k)|y1:k) =
k∏
i=1

p(yi|x(ti))p(x(ti)|x(ti−1))p(x(t0))

p(yi)
. (2.2.6)

Eq. (2.2.6) can be expanded sequentially to obtain an expression for p(x(tk)|y1:k) by

induction. We can rewrite Eq. (2.2.6) as

p(x(t0:k)|y1:k) =
k∏
i=2

p(yi|x(ti))p(x(ti)|x(ti−1))

p(yi)

p(y1|x(t1))p(x(t1)|x(t0))p(x(t0))

p(y1)
(2.2.7)

Integrating both sides of Eq. (2.2.7) with respect to x(t0) yields

p(x(t1:k)|y1:k) =
k∏
i=2

p(yi|x(ti))p(x(ti)|x(ti−1))

p(yi)

p(y1|x(t1))p(x(t1))

p(y1)︸ ︷︷ ︸
=p(x(t1)|y1) by Bayes

, (2.2.8)

since

∫
p(x0:k)dx(t0) =

k∏
i=2

p(x(ti)|x(ti−1))

∫
p(x(t1)|x(t0))p(x(t0))dx(t0)︸ ︷︷ ︸

p(x(t1))

= p(x(t1:k)).

Continuing for i = 2 we have
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p(x(t1:k)|y1:k) =
k∏
i=3

p(yi|x(ti))p(x(ti)|x(ti−1))

p(yi)

p(y2|x(t2))p(x(t2)|x(t1))p(x(t1)|y1)

p(y2)︸ ︷︷ ︸
p(x(t1:2)|y1:2)

. (2.2.9)

Integrating with respect to x(t1) in Eq. (2.2.9) yields

p(x(t2:k)|y1:k) =
k∏
i=3

p(yi|x(ti))p(x(ti)|x(ti−1))

p(yi)

p(y2|x(t2))p(x(t2)|y1)

p(y2)︸ ︷︷ ︸
p(x(t2)|y1:2)

, (2.2.10)

since

p(x(t2)|y1) =

∫
p(x(t2)|x(t1))p(x(t1)|y1)dx(t1). (2.2.11)

After expanding for the kth instant and integrating sequentially for x(tk−1), we obtain

p(x(tk)|y1:k) =
p(yk|x(tk))p(x(tk)|y1:k−1)

p(y1:k)
, (2.2.12)

where

p(x(tk)|y1:k−1) =

∫
p(x(tk)|x(tk−1))p(x(tk−1)|y1:k−1)dx(tk−1) (2.2.13)

Eq. (2.2.12) is the general form of the recursive Bayesian filter. The likelihood function

p(yk|x(tk)) represents the pdf of the observations and depends on the noise of the sensor.

The posterior pdf before a new observation is incorporated is given by p(x(tk)|y1:k−1).

Eq. (2.2.13) is known as the Chapman-Kolmogorov equation.
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Recursive Estimation Algorithm

After incorporating all the elements that form the Bayesian recursive filter, we have

an algorithm that is a recursive process starting with p(x(t0)), the pdf associated with x(t)

prior to any observations. The recursive algorithm is divided in two main steps, prediction

and update, that are applied when each observation yk is obtained.

The prediction step is where the pdf prior to an observation, given by p(x(tk)|y1:k−1)

in Eq. (2.2.13) is calculated. The continuous nature of the system is significant since a

stochastic differential equation has to be solved. Theoretically, there are several ways to

proceed. Due to the complexity of the models of the system, most of the methods are in

general computationally intractable and not suitable for practical applications.

First Method : Propagate the transition density function p(x(tk)|x(tk−1)) across the interval

tk−1 < t < tk by integrating the stochastic differential equation that represent the state x(t)

from time tk−1 < t < tk. Using this result, calculate p(x(tk)|y1:k−1) using Eq. (2.2.13). This

method is typically computationally intractable, but can be approximated under some

assumptions [30].

Second Method : Solve the boundary problem of finding p(x(tk)|y1:k−1) starting from the

distribution p(x(tk−1)|y1:k−1) and solving the partial differential equation across the interval

tk−1 < t < tk. It is necessary to use numerical approximations in most cases.

For the update step, we compute the posterior pdf using Bayes theorem to

incorporate the observation pdf where,

p(x(tk)|yk) ∝ p(yk|x(tk))p(x(tk)|y1:k−1)
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As mentioned before, this is a general form of the Bayesian estimation. This exact structure

will not be readily apparent in most filters, even though, in general, the prediction and

update form is followed.

2.3 Motion Models for Tracking on Video

The literature related to pedestrian tracking typically describes a set of simple motion

models to model the different possible maneuvers [5]. The most widely used motion models

are the constant velocity or linear motion model and the constant acceleration model. For

maneuvering targets more realistic models might include the coordinated turn [31] [32] and

models with higher orders of dynamic description (for example see [27]) that model the

forces acting in the objects to obtain a more detailed representation of the expected motion.

Given the nature of the motion models in the pixel world, it is necessary to describe

the relationship between the pixel world and the real 3D world. For this purpose, there is a

set of practical tools that allow the change of coordinate systems and projections derived

from information about the camera and its position in the scene.

2.3.1 Projective Space

The projective space Pn of dimension n, is the quotient (the quotient space is the set

of equivalence classes) space of Rn+1 \ {0n+1} defined by the following equivalence relation:

[x1, . . . , xn+1]t ∼ [x′1, . . . , x
′
n+1]t ⇔ ∃λ 6= 0, [x1, . . . , xn+1]t = λ[x′1, . . . , x

′
n+1]t

The points of Pn that satisfy xn+1 6= 0 have an equivalent in the Euclidian space Rn,
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[ x1
xn+1

, . . . , xn
xn+1

]t. The points that satisfy xn+1 = 0 do not have and Euclidean equivalent and

are called the points at infinity.

b
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Figure 2.1: Projective space

2.3.2 The Pinhole Camera Model

The pinhole camera model allows us to describe the process of the acquisition of an

image by the projection of the 3D points to a set of 2D points situated on the retinal plane.

Let C be the optical center of the camera. The projection of a 3D point M is the

intersection of the optic ray CM with the retinal plane as you can see in Figure 2.2.

b

pinhole virtual
image

image
plane

Figure 2.2: The pinhole camera model

Let M = [x y z]t be a point of the Euclidean 3D space and m = [u v]t its projection.
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Let M̃ = [x y z 1]t and m̃ = [u v 1] be the corresponding points in homogeneous coordinates.

In order to formalize the projection process we write:

PM̃ = m̃

where P is a 3× 4 projection matrix.

2.3.3 Decomposition of the Projection Matrix

In this part we define two coordinate frames: one linked to the scene (which we can

choose) and the other linked to the camera. The origin of the camera reference frame is the

center of the camera and its axes are the axes of the retinal plane and the optical axis (this

is the axis that passes from the camera center and is normal to the retinal plane). This can

be seen in Figure 2.1.

It can be shown that the projection matrix P is decomposed as follows:

P = K [R|T]

where: K is a 3× 3 matrix that contains the intrinsic parameters of the camera (these are

the parameters that depend only on the internal configuration of the camera). This matrix

describes the reference frame of the retinal plane. We can write it

K =


fu γ u0

0 fv v0

0 0 1


where fu and fv are the focal distances expressed in pixels. [u0 v0] are the coordinates of the

principal point, i.e. the intersection point of the retinal plane with the optical axis. Finally γ

is called skew parameter and is 0 for most normal cameras. The matrix [R|T] represents the
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pose of the camera in the scene reference frame. This rigid transformation allows us to

transform the 3D points of the scene reference frame to the camera reference frame. The

matrix R ∈ <3×3 rotation matrix and T ∈ <3×1 is a translation vector. The quantities R

and T are the extrinsic parameters of the camera.

Note that the projection matrix depends on 11 parameters: 5 intrinsic parameters and 6

extrinsic parameters (3 for rotation and 3 for translation). The process of calibration of a

camera consists of estimating the intrinsic and/or extrinsic parameters.

2.4 Pedestrian Measurement Models

It is important to note that an exact measurement model is not possible in practice

since the way in which observations are obtained on videos since these observations are the

result of image processing techniques applied to each frame. Depending on the application

there are several ways in which observations can be obtained given that feature extraction

and detection is a field of research by itself that applies classical signal processing

techniques, such as digital filters, or machine learning techniques such as support vector

machines and convolutional neural networks, to obtain useful information from images. In

the case concerning estimation and tracking we are only concerned with the output given by

these techniques.

The output of an object detector (example of usual objects are faces, pedestrians,

cars) usually gives a bounding box that can be used on tracking schemes that are being

performed on the pixel world. From this then we can obtain direct measurement of the

centroid of the object (or objects) being tracked and also its relative size in the image, in the

case of pedestrians for example we have a similar visual output to the one shown in Figure
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Image Plane

Figure 2.3: Measurement visualization

2.3. For a tracking application where the centroid position and speed are being estimated

Eq. (2.2.2) can represented by a linear vector equation on the pixel world

y = Hx (2.4.1)

with

H =

1 0 0 0

0 0 1 0

 and x =



rx

ṙx

ry

ṙy


,

this can be transformed to world coordinates (if necessary) using the matrices and

techniques described earlier in this chapter.



19

CHAPTER 3

Multi-target Tracking Techniques

This chapter presents general representations of multiple target tracking (MTT)

techniques from the general Bayesian representation point of view. This subject is

introduced with the aim of relating the techniques that are studied in this work with the

classical estimation framework that was introduced in Chapter 2, but extended for the

sequential MTT problem. The discussion here is focused on describing a concise set of the

solutions coming from the Bayesian and probabilistic point of view that apply further

modification and assumptions to the procedure shown in general representation. Since there

are a wide variety of MTT techniques that take a Bayesian approach [2], describing the

mathematical details and assumptions is beyond the scope of this work. We focus on four

representative solutions: Multiple Hypothesis Tracking, Joint Probabilistic Data

Association, Markov Chain Monte Carlo for tracking and Probability Hypothesis Density

filter. These techniques are describe throughout the next sections and the rest of the chapter

but are not the only ones in existence, more details of the techniques described here and

many more can be found in [2][32][33][34][35]. It is important to note that the presentation

for the Multiple Hypothesis Tracker and Joint Probabilistic Data Association borrows

elements and structure of the one given in [35].
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3.1 General Bayesian Formulation

Let us start by introducing a really general representation of multiple target state

spaces and measurement spaces. In chapter 2 single target state space models were

introduced and represented by Eq. 2.2.1, now we can generalize that definition for multiple

targets (focusing on a sequential point of view, important for real time implementations)

assuming that they have the same representation and also that a given instant of time can

be present (or exist) or not. Then we can assume a general state space represented by S

where all target x(t) move. At any given instant of time the total number of target N̄(t) is

unknown. We can designate a region, R, which defines the boundary of the tracking

problem. Given this region we can then add an additional state φ to the target state space S

that denotes if a target is not inside the defined boundary R, then S+ = S ∪ {φ} and this is

true for each target, giving us a joint state space S = S+ × · · · × S+ where the product is

taken N̄(t). With all this in mind we can represent the set of target at any given time t > 0

taking in account that new targets can be born

X(t) = {x1(t),x2(t), ...,xn′(t)} ∪ {b1, ..., bν} (3.1.1)

where x(t)1···n′ are the target that persist from the last instant of time and b1···ν are the new

“born” targets.

For the measurement representation we have the representation from Eq. 2.2.2. We

can extend this to a set of M̄ measurements that in general can be produced from the

targets in the set X or by false alarms (clutter in the environment) or wrong measurements.

This set can be represented as
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Y k = {y1,k, ...,yM̄,k} (3.1.2)

The objective of multiple target Bayesian estimation in this case is to estimate the

contents of the set X(t) recursively, based on the set of observations Y k, using the joint

transition density for the state p(X(tk)|X(tk−1)) and the joint likelihood function

p(Y k|X(tk)). We have also the assumptions that are key to Bayesian estimation and

inference described for MTT. First, the Markov assumption which states that the values in

any set of states X(t) are only influenced by the values of the set of states X(t− dt) that

directly preceded it. This implies that the past is independent of the future. In a

continuous-discrete setting, we have

p(X(t0:k)) =
k∏
i=1

p(X(ti)|X(ti−1))p(X(t0)). (3.1.3)

We also have the conditional independence of the set of observations that states that

the observation set, Y k, given the state, X(tk), is conditionally independent from the

observation and state history, or

p(Y 1:k) =
k∏
i=1

p(Y i)

p(Y 1:k|X(t0:k)) =
k∏
i=1

p(Y i|X(ti)). (3.1.4)

Finally the estimation process ideally follows the same procedure as the single target

but with the use of the joint densities given the state at time step tk−1, Bayes theorem is

used to determine the joint posterior density at time tk. It is achieved in two steps: Given
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the motion model and the Bayesian joint posterior density p(X(tk−1)|Y k−1) at time tk−1, a

time-updated joint density is obtained using the Chapman-Kolmogorov equation:

p(X(tk)|Y k−1) =

∫
p(X(tk)|X(tk−1))p(X(tk−1)|Y k−1)dX(tk−1) (3.1.5)

The observation set Y k is used to update (weight) the density produced by the time-update

step to determine the final joint posterior density at time tk:

p(X(tk)|Y k) =
p(Y k|X(tk))p(X(tk)|Y 1:k−1)

p(Y 1:k)
, (3.1.6)

The joint posterior density function p(X(tk)|Y k) encapsulates everything about the

set of target states, based on the current set of observations and a priori information. The

calculations needed to obtain the exact posterior of this unified estimation are even more

unrealistic than in the single object case and the different algorithms that have been designed

to do it need some extra assumptions that facilitate implementations of sequential solutions.

3.1.1 Assumptions for Classical MTT techniques

In general there is a group of assumptions that change in between techniques and

define the approach taken to solve the MTT problem:

DA.1 A measurement can originate from at most one target or from clutter.

DA.2 A target can generate at most one measurement at every time step.

DA.1a A measurement can originate from one target, multiple targets or from clutter.

DA.2a A target can generate zero or multiple measurements at every time step.

These assumptions are the way in which different algorithms manage the problem of

data association between measurements and targets (defined in chapter 1). Also target
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identity in the sense that targets can be superposed or not to manage occlusions

(represented on assumption DA.1a), but not in the identity of targets (labeling) from

instant of time to instant of time. Labeling is usually an added feature to each technique but

it is not part of the classical implementation, at least in their probabilistic formulation.

These assumptions will be useful to describe the different techniques and their relationships.

3.2 Non-Strictly Bayesian Solutions to the MTT problem

There have been many techniques used in the literature to solve the MTT problem in

a recursive way that can be based on heuristics or probabilistic assumption and auxiliary

structures. For example a general filter that was proposed and has been widely used is the

Nearest neighbor standard filter [33], that has many variants including probabilistic nearest

neighbor, suboptimal nearest neighbor, and global nearest neighbor (GNN) [32]. The main

idea is to use a validation gate to find out if the measurements correspond to the right target

and in some occasions to test for track survival. This gate usually has a Gaussian shape

with the covariance given by the innovation of the measurements (difference between

measurements, y, and predicted measurements ŷ), all the variations depend on the way the

validation is performed. This gating process is also used as a measurement preprocessing for

other MTT techniques [36] [32] to have the measurements ready for the data association

assumptions (see figure 3.1). These algorithms usually only have a limited performance

restricted to widely spaced target and rely heavily on extra heuristics [34].
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ŷ1,k
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Figure 3.1: 2D example of gating (Nearest Neighbor approach) for measurement and data
association

3.3 Multiple Hypotheses Tracker

The Multi Hypothesis Tracker (MHT) is a method for calculating the probabilities of

various data association hypothesis. It maintains several hypotheses for each target at each

instant of time. In order to do this, this techniques enumerates all possible associations over

time. As each measurement is obtained, it is classified according to its probability of origin:

coming from a previously known target, or from a false measurement, or from a new target.

The estimation of each possible hypothesis is done through the Kalman filter (for Gaussian

transition densities as introduced in the original literature [37]). With the gathering of more

information (or measurements), the probabilities of joint hypotheses are calculated

sequentially using all the supposed known information about the system such as density of

unknown target, probability of detection, and density of false targets, this general technique

is usually regarded as a hypotheses oriented or Measurement-to-target (M → T ) data

association [35].

This evaluation process then is a deterministic and exhaustive way of enumerating all

the possible associations, this branching techniques allows correlation of a measurement with
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its source based on past, present and future data. This makes this technique computationally

exponential in both time and memory. To keep the number of hypotheses reasonable and

the algorithm computationally tractable, a number of techniques have been developed to

eliminate unlikely hypotheses and to combine hypotheses with similar target estimates. The

most common techniques are clustering (part of the original work by Reid [38]) and k-best

hypotheses generation (the most widely used based on Murty’s work [39]) [32].

The general process of the algorithm can be then divided in 4 steps (two more than

the unified and theoretical tracking described in Eq. 3.1.6) including all the association

processes. First as we mentioned, it works as a branching process meaning that it recursively

maintains a hypothesis tree that expands each instant of time with a new set of hypotheses:

1. All the hypotheses on the latest leaf (or initial leaf for k = 1) are predicted according

to their transition model (Common Prediction step).

2. New hypotheses are generated from the leaf hypotheses of the hypothesis tree

(hypothesis generation).

3. The probabilities of the new hypotheses are calculated (hypothesis evaluation) and the

ones with low probability are discarded (pruning).

4. The surviving hypotheses are updated according to the data association of the new

hypothesis (Common Update step).

In order to introduce a formal presentation of the process described above we should

introduce a new set to represent the hypothesis and probability of association. For the

hypothesis set we have
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Λh
tk

=
{
λhti
}
ti=1:k

(3.3.1)

this represents a hypothesis h at time step tk, that is formed by the set of association events

λhtk up to time step tk. The association events λhtk are finally formed by measurement to

target associations indicating which measurement originate from which states at time step tk,

λhtk =
{
rqtk
}q=1:Q̄(tk)

. (3.3.2)

The association event rqtk in this case represents the measurement-to-target

association and it is a discrete variable taking a value between 0 and N̄(t) indicating if the

measurement yk is a false measurement or by which target it is caused.

The algorithm also maintains a set of target trackers for each state being estimated

(Equation 3.1.1) but restricted to the hypothesis leafs, and alone side the hypothesis set Λh
tk

.

Given this, we can represent the state as xhn(tk) of the N̄h(tk) targets in the hypothesis. To

further simplify the process, target dynamics are assumed independent, then the target

states in a hypothesis h can be simplified as a product of independent probability density

functions (where p(h) represents the parent hypothesis)

p(Xh(tk)|Xp(h)(tk−1)) =

N̄h(t)∏
n=1

p(xh(tk)|xp(h)(tk−1)), (3.3.3)

and then the prediction can be done independently for each target using Eq. (2.2.13)

(Chapman-Kolmogorov equation).
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The process of hypothesis generation consist of creating a new set of hypotheses{
Λh
tk

}h=1:H̄(tk)
from the previous time step by combining one hypothesis at time step tk−1

with an association event λhtk

Λh
tk

=
{

Λ
p(h)
tk−1

, λhtk

}
(3.3.4)

The association events represented in Eq. (3.3.2) consist on finding out which

measurement originate from clutter, from which target or from new targets (birthed or

spawned targets), this requires the enumeration of all possible association events that are

limited by the assumptions in section 3.1.1, more specifically for the classical implementation

of the MHT assumption DA.1 and DA.2.

To rank the different hypotheses or more specifically to do hypothesis evaluation, it is

necessary to define a weighting factor for each hypothesis. The importance of the hypothesis

Λh
tk

is expressed by the conditional probability density function p(Λh
tk
|y1:k). Taking in

account the definition of the hypothesis set and the acquisition of a new association 3.3.4 we

can use Bayes rule to rewrite p(Λh
tk
|y1:k) as:

p(Λh
tk
|y1:k) ∝ p(yk|Λh

tk
,y1:k−1)p(Λh

tk
|y1:k−1)

∝ p(yk|Λh
tk
,y1:k−1)p(λhtk ,Λ

p(h)
tk−1
|y1:k−1)

∝ p(yk|Λh
tk
,y1:k−1)p(λhtk |Λ

p(h)
tk−1

,y1:k−1)p(Λ
p(h)
tk−1
|y1:k−1) (3.3.5)

Each of the probability density in Eq. (3.3.5) has an interpretation:

· The pdf p(yk|Λh
tk
,y1:k−1) represents the probability of obtaining a group of
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measurements given all past associations. Here is where the distinction between

measurements originated from existing targets, from new targets or clutter is made.

The association event λhtk contains a set of Fk false elements and set of νk measurement

from new targets and the remaining measurements Q̄(tk)− Fk − νk come from existing

targets. Using the conditional independence of observations from Equation 2.2.4

p(yk|Λh
tk
,y1:k−1) =

∏
q:rqtk=0

pC
∏

q:rqtk>N̄
h(tk)

pB
∏

q:rqtk∈{1:N̄h(tk−1)}
p(yqk|Λh

tk
,y1:k−1) (3.3.6)

The first factor represents the false alarms and clutter measurement (with pdf pC), the

second factor represent the birth of new targets (with pdf pB) and finally the third

term represents the existing targets. The pdf p(yqk|Λh
tk
,y1:k−1) is required to calculate

Eq. (3.3.6), this represent the probability that a measurement is originated from a

target given all the measurements up to time step tk−1. This pdf can be

de-marginalized and represented in term of the association events and the known

densities (or supposed known), then we can rewrite it as

p(yqk|Λh
tk
,y1:k−1) =

∫
xr

q
tk (tk)

p(yqk,x
rqtk (tk)|Λh

tk
,y1:k−1)dxr

q
tk (tk)

=

∫
xr

q
tk (tk)

p(yqk|xr
q
tk (tk),Λ

h
tk
,y1:k−1)p(xr

q
tk (tk)|Λh

tk
,y1:k−1)dxr

q
tk (tk)

=

∫
xr

q
tk (tk)

p(yqk|xr
q
tk (tk))p(x

rqtk (tk)|y1:k−1)dxr
q
tk (tk) (3.3.7)

where p(yqk|xr
q
tk (tk)) is the observation model and p(xr

q
tk (tk)|y1:k−1) is the density

obtained from the Prediction step conditioned to the discrete association vector rqtk
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from the last instant of time.

· The pdf p(λhtk |Λ
p(h)
tk−1

,y1:k−1) represents the probability of an association event given all

the past measurements and data associations. Here is again the pdf of false alarms,

new measurements and track detection are taken into account. According to the MHT

literature [38] [34] [33] it can be represented as

p(λhtk |Λ
p(h)
tk−1

,y1:k−1) =
νk!Fk!

Q̄(tk)!
P (ν)P (F )

N̄(t)∏
n=1

(P det,n
k )1det,nk (1− P det,n

k )1−1det,nk

(P del,n
k )1del,nk (1− P del,n

k )1−1del,nk (3.3.8)

where P (ν) is the prior for the target birth density, P (F ) is the prior for false

measurements (clutter), both usually assumed to be poisson or uniformly distributed,

and in general 3.3.8 has a multinomial pdf form taking in account the probability of

detection P det,n
k and deletion P del,n

k (using their respective indicator functions) and are

assumed to be constant.

· The pdf p(Λ
p(h)
tk−1
|y1:k−1) simply represents the probability of the parent hypothesis

given all the previous measurements and it is available recursively (from the previous

instant of time).

After obtaining all the probabilities for the different hypothesis using the set of

equations formerly described, pruning is done by dismissing the hypotheses that obtained

low values, this in order to maintain the tractability of the process.

Finally, the Update simply consists on performing the basic Bayesian correction

Eq. (2.2.12) (approximated) to all the targets that survive the prunning, according to the
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measurement association event

p(xh,n(tk)|y1:k) ∝ p(yqk|xh,n(tk))p(x
h,n(tk)|y1:k−1) with q : rqtk ∈ λhtk = n (3.3.9)

which uses the measurement model and the target prediction in the usual manner.

3.3.1 Gaussian Approximation

The MHT algorithm just described can be simplified by approximating the posterior

of the joint target state, transition and likelihood models with Gaussian distributions (we

are going to the same assumption through out this work to facilitate implementation and

mathematical treatments). The approximation of the joint target state p(X(tk)|Y k) is done

by a factorial form where each factor is the marginal distribution p(xn(tk)|y1:k)

corresponding to a single target, then obtaining the representation

p(X(tk)|Y k) ≈
N̄(t)∏
n=1

p(xn(tk)|y1:k) ≈
N̄(t)∏
n=1

N (xn(tk)|µn(tk),Σ
n) (3.3.10)

where µn(tk) and Σn are mean and covariance of the nth target. The Gaussian assumption

of the transition and likelihood models reduces the prediction and udpate step to a regular

Kalman filter acting on each of the targets separately.

One last expression that represents the hypothesis evaluation in a simple fashion

comes naturally from the Gaussian assumption and from the assumption that new targets

and false measurements are uniformly distributed over the observation volume V , changing

Eq. (3.3.6) to
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p(yk|Λh
tk
,y1:k−1) = V −(Fk+νk)

∏
q:rqk∈{1:N̄h(tk−1)}

N (yqk|ȳ
rqk
k ,Sr

q
k) (3.3.11)

where ȳ
rqk
k is the predicted mean (using the measurement model) and Sr

q
k is the innovation

covariance (as calculated for the standard Kalman filter), all of this dependent of the

previous existence as determined by the association event rqk.

The implementation used in this work comes from the libraries presented by Antunes

et al. [40] mainly using java but that can be called from Matlab. It can be obtained from

multiplehypothesis.com.

3.4 Joint Probabilistic Data Association

The Joint Probabilistic Data Association is an extension of the PDA method, which

dealt with a single target in clutter, to the situation where there is a known number of

targets in clutter. When there are several targets in the same neighborhood, measurements

from one target can fall in the validation region of a neighboring target. This can happen

over several sampling times and acts as “persistent interference”. Since the PDA algorithm

models all the incorrect measurements as “random interference”, with independent uniform

spatial distributions, its performance can degrade significantly when the existence of a

neighboring target gives rise to interference that is not correctly modeled.

The probabilistic data association (PDA) approach avoids ambiguous decisions by

averaging over the different data association hypotheses. The PDA approach was originally

developed for tracking a single target under clutter [33] but was modified for application in

multitarget environments, referred to as the joint probabilistic data association (JPDA) [41].
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The JPDA algorithm is the best known example of the Bayesian data association paradigm.

The JPDA tackles uncertain data association conditions by allowing a target to be

updated by a weighted sum of all measurements (in its gate). The weights represent the

probability that the measurement originates from that target. As such, a measurement can

contribute to more than one track, and it contributes to this target with a certain weight.

Such associations are referred to as soft assignments as compared to the hard assignments of

the NN and MHT algorithms. In order to determine these weights, the probability that each

measurement originates from each target has to be calculated. To this end, in the most basic

setting, all possible hypotheses have to be enumerated at every time step. To construct

these hypotheses the assumptions DA1a and DA2a are made: a measurement can only

originate from a single target and a target cannot generate more than one measurement. To

limit the number of hypotheses, Murtys’ algorithm [39] can be used, as in the MHT, to only

generate hypotheses with considerable probabilities, by determining the k-best hypotheses in

polynomial time.

The assumption for the transition densities for the targets and target prediction for

the JPDA algorithm have a similar nature to the MHT, assuming independence in both

cases, but even simpler given that the number of targets is set and there is no need to

incorporate target death and birth. The difference and the problem for the JPDA arises

during the update stage, where usually we would have the equation

p(x(tk)|y1:k) ∝ p(yk|x(tk))p(x(tk)|y1:k−1) (3.4.1)

but this step cannot be performed independently for each target. The JPDA circumvents
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this problem by using a strategy where the data association uncertainty is solved by

updating each target’s state with a weighted set of measurements. These weights represent

an approximation of the posterior probability of the measurements coming from that target.

This technique is called a soft assignment and is based on a redefinition of the likelihood of

each target as a mixture

p(yk|x(tk)) =

Q∑
q=1

cq,ntk p(y1:k|xn(tk)) (3.4.2)

with cq,ntk = p(rqtk = n|y1:k) meaning the posterior probability that measurement yk is caused

by target n. The JPDA treats the data as joint association events that contain the

association of measurement to target, represented as λtk =
{
rqtk
}q=1:Q̄(tk)

(similar to the

MHT without the hypothesis consideration). Then the final representation for cq,ntk can be

given by

cq,ntk =
∑

λtk∈Λ
q,n

tk

p(λtk |y1:k) (3.4.3)

with Λq,n
tk

representing the joint association events that assign measurements to target,

Λq,n
tk

=
{
λtk : rqtk = n ∈ λtk

}
. In order to calculate the pdf in Eq. (3.4.3) we can use the

Markov assumption and Bayes theorem to obtain a marginalized representation that can be

numerically evaluated
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p(λtk |y1:k) ≈
∫
p(λtk |x(tk),yk)p(x(tk)|y1:k−1)dx(tk)

∝
∫
p(λtk |x(tk))p(yk|λtk ,x(tk))p(x(tk)|y1:k−1)dx(tk) (3.4.4)

Each of the probability densities in Eq. (3.4.4) has an interpretation:

· The pdf p(λtk |x(tk)) represents the probability of association event λtk given the

current state. The most common assumptions for this pdf are that all the assignments

have the same likelihood, meaning p(λtk |x(tk)) = constante [34], or that the clutter in

the environment is taken into account (false measurements) [35]. This yields

p(λhtk |Λ
p(h)
tk−1

,y1:k−1) =
Fk!

Q̄(tk)!
P (F )

N(t)∏
n=1

(P det,n
k )1nk (1− P det,n

k )1−1nk (3.4.5)

where P (F ) is the prior for false measurements (clutter) usually assumed to be Poisson

(parametric JPDA) or uniformly distributed (non-parametric JPDA).

· The pdf p(yk|λtk ,x(tk)) denotes the probability of obtaining the measurement yk

given the states x(tk) and the association events λtk . Here we make once again the

assumption that measurement originated from clutter and targets are independent,

having a set of F false alarms and set of Q(t)− F measurements, each coming from a

single target. Under this assumption, we see

p(yk|Λtk ,y1:k−1) =
∏

q:rtk=0

pC
∏

q:rqtk∈{1:N(tk)}

p(yqk|xr
q
tk (tk)) (3.4.6)

where pC is the pdf of clutter, usually assumed uniform in the observation volume.
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· The last pdf is simply the result of the prediction step done to each target

independently.

Having all the necessary representations for the pdfs in Eq. (3.4.4) and adding the

assumption that clutter probability in Eq. (3.4.6) has the mentioned uniform representation,

we can replace all the factors in Eq. (3.4.3), obtaining

cq,ntk ∝
∑

λtk∈Λ
q,n

tk

[
V −Fk

Fk!

Q̄(tk)!
P (F )

N(t)∏
n=1

(P det,n
k )1nk (1− P det,n

k )1−1nk

∏
q:rqtk∈{1:N(tk)}

∫
p(yqk|xr

q
tk (tk))p(x

rqtk (tk)|y1:k−1)dxr
q
tk (tk)

]
. (3.4.7)

The integral in the last part of this expression is simply the predicted likelihood and

its computation will result on the on innovation pdf. Evaluating Eq. (3.4.7) would be

intractable for a large number of measurements and targets given that it is necessary to

enumerate all possible association events assigning measurements to target. This can be

limited using a similar approach than the MHT (Murthy’s algorithm [42]) or gating [34].

Other important things to take in account for implementation purposes of this algorithm

are: all the joint association events are assumed independent over time, and it is assumed

that each measurement has the same probability of coming from any target.

3.4.1 Gaussian Approximation

The JPDA algorithm just described can be simplified by approximating the posterior

of the joint target state, transition and likelihood models with Gaussian distributions (we

are going to use the same assumption through out this work to facilitate implementation and
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mathematical treatments). The approximation of the joint target state p(X(tk)|Y k) is done

by a factorial form where each factor is the marginal distribution p(xn(tk)|y1:k)

corresponding to a single target, then obtaining the representation

p(xn(tk)|y1:k) ≈ N (xn(tk)|µn(tk),Σ
n) (3.4.8)

where µn(tk) and Σn are mean and covariance of the target n. The Gaussian assumption of

the transition and likelihood models reduces the prediction step to a regular Kalman filter

acting on each of the targets separately.

With this technique the difference comes at the moment of doing the update since it

is necessary to find the weights for each measurement to target before we can perform it. In

order to evaluate this, Eq. (3.4.7) can changed by

cq,ntk ∝
∑

λtk∈Λ
q,n

tk

[
V −Fk

Fk!

Q̄(tk)!
P (F )

N(t)∏
n=1

(P det,n
k )1nk (1− P det,n

k )1−1nk
∏

q:rqtk∈{1:N(tk)}

N (yqk|ȳ
rqk
k ,Sr

q
k)

]

where ȳ
rqk
k is the predicted mean (using the measurement model) and Sr

q
k is the innovation

covariance dependent of the previous existence as determined by the association event rqk,

and 1nk is a target indicator function. After having this, the update is done as a bank of

Kalman filters where there is an adapted innovation for each measurement.

The implementation for the Gaussian JPDA used in this work is a modification for

tracking on videos using the toolbox by Särkkä et al. [43].
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3.5 Markov Chain Monte Carlo Framework

Markov Chain Monte Carlo (MCMC) data association is an extension of the JPDA

approach to allow a varying number of targets. As we pointed out, the JPDA tackles

uncertain data association conditions by allowing a target to be updated by a weighted sum

of all measurements determined to be within a distance threshold. The weights represent the

probability that the measurement originates from that target. As such, a measurement can

contribute to more than one track, and it contributes to this target with a certain weight.

MCMC data association expands on this by considering the space of all possible

associations, where each association event has three possible moves: deletion, addition

(birth) or survival [44]. The weights are calculated similarly to the JPDA but Monte Carlo

methods (such as Metropolis-Hastings [28]) are used to integrate over the set and evaluate

the probability of each of the moves.

The solution set Λtk contains association event λtk histories over multiple steps or a

single step as stated on the original literature [44], as well as considering all possible

numbers of targets at each time step. The association event λtk contains a set of Q̄(tk) in

total, with Fk false elements and a set of νk measurement from new targets and the

remaining measurements Q̄(tk)− Fk − νk come from existing targets. In the presentation for

the JPDA we introduced the weights ctk that are calculated according to Eq. (3.4.7).

MCMC data association extends this to include the birth of new targets as seen on the

composition of the association events. In order to do this, the posterior of the the

association events is represented as
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p(λtk |y1:k) =

Fk∏
i=0

pC

νk∏
i=0

pB

Q̄(tk)−Fk−νk∏
i=0

p(yk|Λtk ,y1:k−1) (3.5.1)

where pC is the assumed clutter density, pB is the birth density, and p(yk|Λtk ,y1:k−1) is the

likelihood of the measurement given the past measurements and existing targets. The final

representation depends of the assumptions and in general has the same form than Eq. (3.4.7)

adding in this case the birth density.

p(λtk |y1:k) ∝ V −Fk
Fk!

Q̄(tk)!
P (F )(P det

k )1k(1− P det
k )1−1k

(P del
k )1delk (1− P del

k )1−1delk

∫
p(yk|x(tk))p(x(tk)|y1:k−1)dx(tk). (3.5.2)

The MCMC procedure then consists on using Eq. (3.5.3) to integrate and search the

space Λtk . This is achieved through the Monte Carlo integration technique known as

Metropolis-Hastings algorithm using Eq. (3.5.3) as the proposal sampling distribution to

evaluate the possible moves for each association event. This procedure features efficient

mechanisms to search over this large solution space in addition to birth and death moves to

add or remove targets (Section IV.A in [44]). For a general description of the

Metropolis-Hastings algorithm and Monte Carlo integration techniques see [28].

After introducing the MCMC data association it is important to point out that there

are other Monte Carlo methods that have been used as a solution for the problem of

multiple target tracking but with a batch processing approach. Important examples are the

reversible jump MCMC and the particle MCMC, both based on the standard MCMC

described above. Their description is outside the scope of this work since we focus on the
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sequential approaches, but details for multiple target tracking applications and parameter

estimation can be found in [45].

3.5.1 Gaussian Approximation

The effects of the Gaussian assumption for measurement and motion models is

identical to the effects within the JPDA technique. The approximation of the joint target

state p(X(tk)|Y k) is done by a factorial form where each factor is the marginal distribution

p(xn(tk)|y1:k) corresponding to a single target, then obtaining the representation

p(xn(tk)|y1:k) ≈ N (xn(tk)|µn(tk),Σ
n),

where µn(tk) and Σn are mean and covariance of the target n. The Gaussian assumption of

the transition and likelihood models reduces the prediction step to a regular Kalman filter

acting on each of the targets separately. Finally the proposal for the Monte Carlo search

methods is

p(λtk |y1:k) ∝ V −Fk
Fk!

Q̄(tk)!
P (F )(P det

k )1k(1− P det
k )1−1k

(P del
k )1delk (1− P del

k )1−1delk N (yk|ȳrkk ,Srk). (3.5.3)

The implementation for the Gaussian MCMC data association framework used in this

work is a modification for tracking on videos using the toolbox by Särkkä et al. [43].
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3.6 Probability Hypothesis Density Filter

This is one of a set of techniques based on the random finite sets framework. The

general multiple target tracking presented in Section 3.1 shows the general Bayesian

representation that is also used by the random finite sets framework, but the sets involved

are categorized as random finite sets. A random finite set is usually defined as sets composed

by random variables that at the same time have a random cardinality. It can be completely

described by a discrete distribution that characterizes the cardinality and probability density

functions that describe the points inside the set, conditional or not of the cardinality [2; 46].

The different techniques that arise from the random finite set framework come from

the way in which Eq. (3.1.6) is approximated to be tractable according to a recent field of

statistics known as finite set statistics (FISST) [2]. According to FISST the first moment of

a finite random set is known as the probability hypothesis density (PHD) and the filtering

technique resulting from this approximation has the following structure [47]:

• PHD time update: Given the process model, the predicted PHD,

Dk|k−1(x(tk)|Yk−1) =

born targets︷ ︸︸ ︷
γk(x(tk)) +

∫ existing targets︷ ︸︸ ︷
pS(x(tk−1)).fk|k−1(x(tk)|xt(k−1))

.Dk−1|k−1(x(tk−1)|Yk−1)dx(tk−1)

(3.6.1)

where,

– Dk|k−1 PHD of all the targets after prediction.

– γk(x(tk)): PHD of the new targets.

– pS(x(tk−1)): Probability of a target being detected.
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• PHD data update: Given a new set of measurements Yk, the updated PHD,

Dk|k(x(tk)|Yk) = (1− pD)Dk|k−1(x(tk)|Yk−1)

+
∑

yk∈Yk

pDDk(yk)

λcck(yk) + pDDk(yk)
Dk(x(tk)|yk)

(3.6.2)

where,

Dk(yk) =

∫
p(yk|x(tk))Dk|k−1(x(tk)|Yk−1)dx(tk) (3.6.3)

Dk(x(tk)|yk) =
p(yk|x(tk))Dk|k−1(x(tk)|Yk−1)

Dk(yk)
(3.6.4)

and,

– p(yk|xk): is the sensor likelihood function Ly(x(tk))

– λc: average number of false alarms per scan, which is assumed to be Poisson

distributed

– ck(yk): distribution of each of the false alarms

This technique makes use of the general assumptions in DA.1a and DA.2a, which

means that all the targets and measurements are processed at the same time without

performing a data association step. In order to extend this technique for labeling of the

targets it is necessary to have extra algorithms in order to manage target labeling. The

mathematical details related to the presented structure can be seen in the work by Vo et al.

[47; 2] and its presentation is outside the scope of this work.
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3.6.1 Gaussian Approximation

Under Gaussian assumptions the PHD filter is known as the Gaussian mixture

models PHD (GMMPHD) [47] and has been widely used in the literature [2; 5; 46; 48]. It

mainly consists on assuming that motion model, likelihood function, and birth density are

assumed Gaussian, and presents the following structure:

Initialize

At time tk = 0, the PHD Dk|k is initialized with a weighted sum of Jk Gaussians

Dk|k(x|Yk) =

Jk∑
j=1

w
[j]
k N (x;µ

[j]
k ,Σ

[j]
k )

These are distributed across the state space where each Gaussian term N (x;µ
[j]
k ,Σ

[j]
k ) has a

corresponding weight w
[j]
k , mean µ

[j]
k , and variance Σ

[j]
k . At k ≥ 1,

PHD Time Update The predicted PHD up to time k is a Gaussian mixture,

Dk|k−1(x) = DS,k|k−1(x) + γk(x)

where, DS,k|k−1(x) is predicted intensity of the existing (survived) objects in the FOV of the

sensor, given by,

DS,k|k−1(x) = pS

Jk−1∑
j=1

w
[j]
k−1N (x;µ

[j]
S,k|k−1,Σ

[j]
S,k|k−1)

with,

w
[j]
k|k−1 = pS.w

[j]
k−1; µ

[j]
S,k|k−1 = Fk−1µ

[j]
k−1;

Σ
[j]
S,k|k−1 = Qk−1 + Fk−1Σ

[j]
k−1F

T
k−1

and, γk(x) is the PHD representing the new incoming targets, given by,
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γk(x) =

Jγ,k∑
j=1

w
[j]
γ,kN (x;µ

[j]
γ,k,Σ

[j]
γ,k)

with,

w
[j]
k|k−1 = w

[j]
γ,k; µ

[j]
k|k−1 = µ

[j]
γ,k; Σ

[j]
k|k−1 = Σ

[j]
γ,k

PHD Data Update The PHD measurement update is a Gaussian mixture given by,

Dk|k(x) = (1− pD)Dk|k−1(x) +
∑
z∈Zk

DL,k(z|x)

where,

DL,k(z|x) =

Jk−1+Jγ,k∑
j=1

w
[j]
k|kN (x;µ

[j]
k|k,Σ

[j]
k|k)

with the standard Kalman filter update for each component of the mixture model,

w
[j]
k|k =

pDw
[j]
k|k−1f

[j]
k (z|x)

λcck(z) +

Jk−1+Jγ,k∑
l=1

w
(l)
k|k−1f

(l)
k (z|x)

f
[j]
k (z|x) = N (z;Hkµ

[j]
k|k−1, S

(i)
k );

µ
[j]
k|k = µ

[j]
k|k−1 +K

[j]
k [z −Hkµ

[j]
k|k−1]; Σ

[j]
k|k = [I −K(j)

k H
[j]
k ]Σ

[j]
k|k−1;

K
[j]
k = Σ

[j]
k|k−1[H

[j]
k ]T [S

(j)
k ]−1;S

[j]
k = Rk +H

[j]
k Σ

[j]
k|k−1[H

[j]
k ]T

Thus, there are Jk = (1 + |Yk|)(Jk−1 + Jγ,k) Gaussian components in the updated PHD with

(1 + |Yk|) components for each prediction term at time k and the Gaussian mixture is of the

form,

Dk|k(x) =

Jk∑
j=1

w
[j]
k|kN (x;µ

[j]
k ,Σ

[j]
k )
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The implementation in this work comes from Bryan Clarke1 that is based on the

seminal work [47].

1Found in http://www.mathworks.com/matlabcentral/fileexchange/

42769-gaussian-mixture-probability-hypothesis-density-filter--gm-phd-
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CHAPTER 4

Finite Point Processes and Multiple Target Tracking transform

Given the set of multiple target tracking techniques introduced in the previous chapter, it is

important to introduce the framework that is ultimately used to encompass all the

techniques, and can be used as the tool to extract the information content of the different

assumptions and elements of the techniques.

This chapter presents all the concepts for Finite processes and the representation of target

tracking concepts and techniques as probability generating functions and functionals. Finally

it presents the conceptualization of probability generating functionals as a MTT transform.

4.1 Introduction to Finite Point Process

Point processes are usually introduced in the framework of the theory of random

measures.

Let χ be a ‘nice’ topological space (more precisely, a complete, separable, metric space) A

typical choice for χ is Rd, d > 0. The space of sets of points or event space in χ is defined by

εχ = ∅ ∪
⋃
n≥1

χ(n), (4.1.1)

where χ(n) is the space of sets of size n ∈ N, that is

χ(n) =
{
{x1, . . . ,xn}|xi ∈ χ, i = 1, . . . , n

}
. All its elements are assumed to be locally finite

and each bounded subset of χ can contain only a finite number of points [49].
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Although a point process is regarded as a random (multi)set {xi}i ⊂ χ, it is

technically convenient to formally define it as a random measure ξ =
∑

i δxi .

Φ : (Ω,F ,P)→ (εχ, B(εχ)) (4.1.2)

where (Ω,F ,P) is an arbitrary probability space and B(εχ) denotes the Borel σ-algebra of

εχ. Hence, if Φ denotes the point process {φi}, we write Φ(A) for the number of points φi

that belong to a subset A ⊆ χ; similarly, for suitable functions f on χ,
∫
f dΦ =

∑
i f(φi).

Thus, let N = N(χ) be the class of all Borel measures µ on χ such that µ(A) is a

(finite) integer 0, 1, . . . for every relatively compact Borel set A; this coincides with the class

of all finite or countably infinite sums of the type
∑

i δxi , where xi ∈ χ and each compact

subset of χ contains only a finite number of xi, and we identify such a sum with the

(multi)set {xi}.

A point process on χ is a random element of N. If Φ is a point process on χ, there

exists a unique Borel measure ν on χ such that EΦ(A) = ν(A) for every Borel set A, and

more generally E
∫
h dΦ =

∫
h dν for every positive measurable function h. This measure ν

is called the intensity of Φ and it completely statistically describes it.

Another descriptor of the point process comes from the finite-dimensional

distributions (‘fidi’) of a random measure ξ that are the joint distributions, for all finite

families of bounded Borel sets A1, . . . , Ak of the random variables ξ(A1), . . . , ξ(Ak), that is

the image of the probability measure P, represented as PΦ [50].
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Figure 4.1: Example of a point process in 2D

4.1.1 Probability Generating Functional

The information about a point process can be encoded in an algebraic expression

(functional) similar to the manner done for continuous and discrete dynamical systems

(laplace and z-transforms), sequence of number and vectors (generating functions for

combinatorics analysis) and probability density functions (Probability generating functions).

Before introducing the mathematical definition of probability generating functionals it is

important to introduce the most commonly known concept of probability generating

functions that are also useful in the context of the research at hand.

Given a random variable X on the space (X,Bχ) the probability generating function

(p.g.f.) of X is the function defined, for each z ∈ R, as E[zX ].

G(z) = E[zX ] =
∞∑
x=0

p(x)zx (4.1.3)
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This of course can be extended to multiple dimensions where (z1, . . . , zn) ∈ Rn. In

order to introduce the general mathematical formulation of the probability generating

functional (p.g.fl.) it is important to introduce V (χ) the set of Bχ -measurable (test)

functions h : χ→ R such that 1− h(x) vanishes out of some bounded set and 0 ≤ h(x) ≤ 1

for each x ∈ χ, with this the p.g.fl. of a general point process Φ on the space χ is defined

for each h ∈ V (χ) [49], as

Ψ[h] ≡ ΨΦ[h] = E
[
exp

(∫
χ

log[h(x)]Φ(dx)

)]
(4.1.4)

Since the process Φ is defined to be finite on the set where 1− h(x) 6= 1 then it can be

written as

Ψ[h] ≡ ΨΦ[h] = E

[∏
i=1

h(xi)

]
(4.1.5)

where xi are the points such that Φ =
∑

i δxi , possibly having repetitions in the (multi)set

{xi}. In order to realize this expected value is important to remember the fidi of the point

process which allows us to rewrite the p.g.fl [51] as

Ψ[h] ≡
∑
n≥0

∫
χ(n)

n∏
i=1

h(xi)PΦ(d{x1, ...,xn}) (4.1.6)

=
∑
n≥0

1

n!

∫
χn

n∏
i=1

h(xi)pn(x1, · · · ,xn)dx1 · · · dxn (4.1.7)

where the final representation is obtained thanks to the combinatorics interpretation of a
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Janossy measure [51] applied to the fidi. This representation can then be extended to joint

point processes, where a new process Υ is introduced, with similar characteristics to Φ but

on space Y ∈ Rdy (in this application it can considered as the measurement space and it has

a mapping to the state space). Thus, Eq. (4.1.7) can be extended to the joint space and

defined on εχ × εΥ as the products of the random measures

ΨΦΥ[g, h] ≡
∑
m≥0

∑
n≥0

1

m!n!

∫
Υm

∫
χn

m∏
i=1

g(yi)
n∏
i=1

h(xi)

pΦΥ(y1, · · · ,ym,x1, · · · ,xn)dy1 · · · dymdx1 · · · dxn (4.1.8)

Marginalizing this p.g.fl with respect to one process results in the p.g.fl of the other process.

ΨΦΥ[1, h] = ΨΦ[h] and ΨΦΥ[g, 1] = ΨΥ[g] (4.1.9)

4.2 Point Processes and Target Tracking

At this point it is important to talk about the relationship of target tracking

(previous chapters) and the concepts introduced so far in this chapter to introduce the

fundamental conceptual connections that make up the most important contributions of this

work. First, it is important to note the big similarity between the general spaces described

in section 3.1 and earlier in section 4.1 (a third definition with similar characteristics comes

from the random finite sets framework [2], briefly mentioned in chapter 3 to introduce the

PHD filter). This similarity has prompted a body of research [2] [52] [3] [53] on the subject

of finding a framework that encompasses all the MTT techniques and gives space to the
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birth of newer and theoretically grounded techniques.

The theory of Point Processes has been used for statistical analysis of data in many

applications, for instance [54] [50] [2] [49], but it started being linked with the classical MTT

techniques through the early developments of random finite sets statistics [55] [2] and finally

through the work by Streit et al. [53][56] [52]

4.2.1 Application of the P.G.FLs for Tracking

The expressions and theory just presented has only been around for a short period of

time, and so far it has been only used to do tracking with the JPDA [56]. It has also been

used a framework to show the closed form solution for the PHD filter and the introduction

of the intensity filter [52].

4.2.2 Information Encoding and Generating Functions

A generating function is an algebraic tool for encoding combinatorial data. With this

in mind we can claim that given the p.g.f and p.g.fls encode all the combinational

information of the finite point process they represents. If it is assumed for example that a

tracking technique is a finite point process, then its p.g.fl representation encodes all the

information pertinent to target and measurement existence and the set of assumption

encoded with the technique.
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4.3 Probability Generating Functionals and Generating Functions for Target

Tracking

This section is an application of the p.g.fs and p.g.fls to target tracking in general as

described in the work by Streit et al. [53] and it is included for completeness of the

presentation but not as an original work of the author.

4.3.1 Target Detection

In the general literature missed detections are represented as a binary decision that

translate into the p.g.f of a binomial distribution. The difference comes from the

interpretation of the coefficient on the p.g.f that will depend on the probability of detection

PD
k (x) of an object known to be present at state x ∈ χ at an instant of time tk. Then the

coefficient a(x) is the probability of miss detection 1− PD
k (x) and b(x) is the previously

mentioned probability of detection, obtaining the p.g.f

GBMD
M |x (z) ≡ a(x) + b(x)z (4.3.1)

This can be modified to the detection of extended targets but it is not part of the

applications described in this work (details in [53]).

4.3.2 Clutter Models

As was mentioned in the chapter 3 the common assumption for clutter in the tracking

environment is a poisson distribution of objects in the scenario. The effect of clutter is seen
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in the space of the measurement Y and are represented as a Poisson point process [3]

ΨPPP
C [g] = exp

(
−Λ + Λ

∫
Y

g(y)pΛ(y)dy

)
(4.3.2)

where Λ is mean number of clutter points in Y and pΛ(y) is the normalized intensity

function. For tracking application these functions are usually assumed constant in the

window of observation.

4.3.3 Bayes-Markov Filters with Miss Detection

The Bayes-Markov p.g.fl encodes all the information presented in the single target

tracking general bayesian. Presenting the usual bayesian prediction-update form represented

on the target/measurement existence plane.

ΨBM [g, h] ≡
∫
S

∫
Y

h(x)g(y)µ(x)p(y|x)dydx (4.3.3)

If ΨBM [g, h] is used as the argument in Eq. (4.3.1) the combinatorics representation of

taking in account miss detection probabilities, obtaining

ΨBMD[g, h] ≡
∫
S

h(x)µ(x)GBMD
M |x

(∫
Y

g(y)p(y|x)dy

)
dx (4.3.4)

=

∫
S

h(x)µ(x)

(
a(x) + b(x)

∫
Y

g(y)p(y|x)dy

)
dx. (4.3.5)

The different coefficients represent the probability of a target state µ(x), likelihood of
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the measurements p(y|x), probability of detection b(x) and probability of miss-detection

a(x). ΨData
BMD[g, h] has the same representation but it uses a given birth density instead of

µ(x). When evaluated under Gaussian assumption, it presents the structure of the a

standard Kalman filter with miss detection, sometimes called the Probabilistic Data

Association filter when clutter is added in the assumptions.

4.3.4 JPDA

This is an extension of the Bayes-Markov filter with miss detection for a known

number of targets n, and taking in account the probability of having false alarms from

clutter in the environment (section 4.3.2)

Ψ
JPDA

[g, h1, . . . , hn] = ΨPPP
C [g]

n∏
i=1

ΨBMD(i)[g, hi]. (4.3.6)

In this case there are as many target existence functionals h as targets. This means

that each of the has its own state space and can only produce one measurement and have

the need of performing data association (implying the assumption described in chapter 2 for

this technique).

4.3.5 MHT and MCMC framework

MCMC is really similar in nature to the JIPDA introduced in [53] but it has not been

explicitly introduced before though it was briefly mentioned in the discussion of [56]. It

presents an extension of the JPDA for an unknown number of targets, where existing targets

and birthed targets are taking in account. The way in which the JPDA is extended is by
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using the p.g.f for the number of targets

GN [z] = 1− χ+ χz (4.3.7)

where χ represents the updated probability of target existence. Using ΨBMD as an argument

for Eq. (4.3.7) and superposing existing targets, birthed targets and clutter, the p.g.fl for the

MCMC looks like

Ψ
MCMC

[g, h1, . . . , hn+m] = ΨPPP
C [g]

n∏
i=1

[
1− χi + χiΨBMD(i)[g, hi]

]
×

m∏
j=1

[
1− γj + γjΨ

Data
BMD(j)[g, hi]

]
.

(4.3.8)

where χi is the probability of existence, and γj is the probability of birth from acquired data

respectively. For the MHT we have the same expression as introduced by Streit et al. [53]

Ψ
MHT

[g, h1, . . . , hn+m] = ΨPPP
C [g]

n∏
i=1

[
1− χi + χiΨBMD(i)[g, hi]

]
×

m∏
j=1

[
1− γj + γjΨ

Data
BMD(j)[g, hn+j]

]
(4.3.9)

again χi is the probability of existence, and γj is the probability of birth from acquired data

respectively. The difference comes from the way in which the values for χ and γ are

calculated. In the case of the MHT both birth and existence are evaluated with the

hypothesis evaluation equations introduced in chapter 3, and for the MCMC are evaluated

depending the Monte Carlo Jumps for the equations presented in chapter 3.
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4.3.6 PHD

This was the first technique introduced through the use of the point process

framework [52] besides its original random finite sets origins introduced in chapter 3, where

it was shown that the PHD filter is the intensity of a Poisson point process. The p.g.fl then

represent the superposition of the clutter p.g.fl and the p.g.fl of a Poisson point process for

the number of targets with the Bayes-Markov filter as its argument

Ψ
PHD

[g, h] = ΨPPP
C [g]ΨPPP

N

[
ΨBMD[g, h]

]
(4.3.10)

One of the main differences with the other techniques described so far with point process

framework, comes from the fact that there is only one target existence functional h since it is

assumed that all targets move in one unique state space, which in practice allows to have

several measurements per target.

4.4 Probability Generating Functional as the Multiple Target Transform

The idea of a Multiple Target transform comes from the fact that a generating function is an

algebraic tool for encoding combinatorial data [57]. With this in mind, we can claim that

the given p.g.fs and p.g.fls encode all the combinational information of the finite point

process they represent. If it is assumed that a tracking technique is a joint finite point

process [53], then its p.g.fl representation encodes all the information pertinent to target and

measurement existence and the set of assumptions encoded within the technique. It is also a

fact that the test functions in which a p.g.fl is evaluated are complex numbers (like any

classical transform), that in this case represent a space of “existence” for each target (on a
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Table 4.1: MTT marginalized transforms

Technique Marginalization

JPDA ΨPPP
C [g]ΨBMD[g]n

MHT ΨPPP
C [g] (1− χ+ χΨBMD[g])n

(
1− γ + γiΨ

Data
BMD[g]

)m
MCMC ΨPPP

C [g] (1− χ+ χΨBMD[g])n
(
1− γ + γiΨ

Data
BMD[g]

)m
PHD ΨPPP

C [g]ΨPPP
N

[
ΨBMD[g]

]
z-transform for example it represents a discrete time delay). This means that if a target

exists there is a complex number representing its existence and the same occurs for

measurements.

As described in Section 4.2.1, in order to use p.g.fl’s for the estimation of the state of the

targets it is necessary to evaluate all these complex variables (that vary on dimension too) as

can be seen in [56], which is the equivalent of finding the inverse transform for classical

techniques. In our case, the objective is to predict the performance of the technique, so

therefore we want to avoid performing all the estimation process. Here is where our use of

the concepts from p.g.fl’s gives us some insight on how we can achieve a new simplified

representation for this purpose.

4.4.1 Marginalized Transform

Given that the p.g.fl for the techniques represent the point precesses of joint spaces,

target(s) and measurements, the introduction of this simplified representation comes from

the use of Eq. (4.1.9), assuming targets existence where there are measurements present.

The obtained expressions can be seen in Table 4.1.

Since we marginalized over target existence this represents all the information encoded on

each measurement including much more than only the likelihood, giving us a measure of the
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amount of information that can be perceived for a set of measurements on a given instant of

time.
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CHAPTER 5

Tracker Quality Assessment and Prediction

This chapter gives a summary of the concepts and work done on image quality and video

quality assessment in the literature. It also introduces the frameworks that uses the formerly

introduced MTT transform to obtain a quantity that will be used as a tracker quality

assessment.

5.1 Background on Image/Video Quality Assessment

In general, the field of image and video processing focuses on signals that are meant

for human consumption, including images and videos presented over the Internet. Before an

image or video is transmitted to a human observer, it may undergo many stages of

processing that can introduce distortions that reduce the quality of the final display. For

example, camera devices can potentially introduce distortions into an image or video due to

the recording devices optics, sensor noise, color calibration, exposure control, and motion.

Following its acquisition, the image or video may be processed further by a compression

algorithm that reduces the bandwidth requirements for storage or transmission. These

compression algorithms are predominantly designed to maximize savings in bandwidth by

allowing certain distortions to affect the signal. Similarly, bit errors, which can occur while

an image is being transmitted over a channel or (infrequently) when it is stored, also tend to

present distortions. Additionally, the display device that renders the final output may cause

distortions, such as low reproduction resolution or bad calibration. At each stage of
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processing, the level of distortion that occurs mainly depends on economics and/or physical

limitations of the camera devices.

Research in objective image quality assessment seeks to design quantitative measures

with the capability to automatically predict perceived image quality. Once developed, an

objective image quality metric can be applied to an extensive range of practical uses. These

applications include image acquisition, compression, communication, displaying, printing,

restoration, enhancement, analysis, and watermarking. To accomplish this, an objective

image quality metric can incorporate the following three processes: (i) active monitoring and

adjustment of image quality, (ii) optimization of algorithms and parameter settings of image

processing systems, and (iii) benchmarking of image processing systems and algorithms [58].

To summarize, objective quality measurement of images offers an algorithmic

determination of image and video quality instead of relying on subjective human

observations. The aim of research in this area of quality assessment (QA) is to develop

algorithms whose quality prediction aligns with subjective assessments from human

observers [59].

5.2 Objective Quality Methods

There are two classifications of objective quality methods: psychophysical and

engineering approaches. Psychophysical metrics attempt to model the human visual system

(HVS) by incorporating aspects like contrast and orientation sensitivity, frequency

selectivity, spatial and temporal pattern, masking, and color perception. Although these

metrics can correct a variety of video degradations, the computations are typically

demanding. The engineering approach utilizes simplified metrics based on the extraction
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and analysis of certain features and artifacts in a video. This approach does not necessarily

neglect the attributes of the HVS, for it still considers psychophysical factors. However, the

engineering metrics are based on analysis of video content and distortion instead of human

visual modeling.

In order to create an objective quality method that can generate a mean opinion

score, a set of features or quality-related parameters of the image or video are gathered.

These objective quality methods are further classified by the degree of reference information

available from the original image or video. The categories of objective quality methods

include full reference (FR), reduced reference (RR), and no reference (NR), with the criteria

for each indicated as follows [60]:

• FR methods: The entirety of the original image or video is available as a reference.

Thus, FR methods compare the distorted image or video with the original.

• RR methods: Requires the provision of representative features about texture or other

characteristics of the original image or video, rather than access to the complete

original. Consequently, the input for RR methods is the comparison of the reduced

information from the original image or video with the analogous information from the

corresponding distorted image or video.

• NR methods: Access to the original image or video is not required. Instead, the

comparison is based upon certain artifacts relating to the pixel domain of an image or

video, the information embedded in the bitstream of the image or video format, or a

hybrid of both.
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5.3 Analysis of the Decoded Video

Due to the fact that video quality metrics analyze the decoded video in distinct ways,

they can be divided into three classes: data metrics, picture metrics, and packet- and

bitstream-based metrics.

5.3.1 Data Metrics

In this class, the fidelity of the video signal is assessed without modeling any element

of the HVS. Commonly used data metrics in video quality evaluation are mean square error

(MSE) and its logarithmic representation peak signal-to-noise ratio (PSNR), as they are

simple to understand and implement. However, these metrics generally do not yield an

objective quality measure that corresponds well with the perceptions of a human observer

for a variety of coding and transmission parameters. This disparity can be explained by the

fact that data metrics compare the reference and test data while neglecting the concept of

what the data actually represents. By not considering HVS characteristics, these metrics

demonstrate the differences between them and the HVS regarding sensitivities to distortion

types and properties. Furthermore, the MSE/PSNR does not take into account the specific

location that distortion appears in a frame, which can be important in evaluating video

quality.

Bit error rate (BER) and packet loss rate (PLR) are data metrics used for videos

transmitted over the Internet. When using BER and PLR, the same problem that appears

in the MSE/PSNR approach occurs because they do not account for the content of the

packet and its influence on visual quality. BER and PLR assign the same visual importance

to all packets, which does not adequately provide for video delivery. Consequently, they
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effectively measure the percentage of incorrect bits or lost packets, but they cannot evaluate

perceived video quality.

5.3.2 Picture Metrics

To address the problems that arise while using data metrics, various objective video

quality metrics attempt to predict the perceived video quality. In order to do this, they

consider information about the video content and distortion types, typically by analyzing

the visual information within the video data. These metrics are called picture metrics [61].

Depending on the approach employed in the metric design, picture metrics are divided into

two classes: (i) a vision modeling approach and (ii) an engineering approach [59]. A more

recent classification was described by Chikkerur et al. [62] which separated picture metrics

into perceptual (HVS) oriented and natural vision characteristics oriented metrics.

Perceptual oriented metrics utilize a visual modeling approach, and can be divided again

into two categories: (i) a pixel domain approach and (ii) a multi-scale approach. Conversely,

natural visual characteristics oriented metrics apply an engineering approach. Instead of

using fundamental vision modeling, natural visual characteristics oriented metrics are based

predominantly on extracting and analyzing certain features or artifacts in the video [58].

According to Chikkerur [62], they are divided into natural visual statistics and natural visual

features based methods.

Human Visual System Modelling Oriented Metrics

Introducing HVS mechanisms into a quality metrics promotes a better correlation

between subjective and objective video quality evaluation. However, the HVS is more
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complex, so quality metrics typically incorporate only the most important HVS

characteristics. Therefore, a visual modeling approach attempts to generate a better

prediction of the perceived video quality by modeling the various features of human vision.

For example, the human eye detects video contrast through the relative variation of

luminance, so a quality model imitates this sensitivity through a spatiotemporal contrast

sensitivity function (CSF) [63]. Quality evaluation procedures frequently employ the use of a

mechanism that masks properties of the image or video content. When distortion appears in

textured regions of an image as opposed to smooth regions, distortion visibility decreases.

High levels of movement in a video also decrease the visibility of impairments.

Several of the objective image and video quality assessment approaches that are

described in the literature employ a common error sensitivity-based philosophy [59]. The

objective of this philosophy is to quantify the strength of the errors between the reference

and the distorted signals in a perceptually meaningful way. In the first step of the

assessment, various pre-processing procedures are implemented, including registration, color

space transformation, light adaptation, and calibration for display devices. The second step

focuses on channel decomposition which can be achieved by filtering or using a transform

such as the discrete wavelet transform (DWT) or the discrete cosine transform (DCT).

Following these transform processes, a CSF is implemented in order to estimate frequency

responses of the HVS. After this, error normalization and masking are applied. Typically

during this step the cross-channel masking of a visual channel by the contents of another is

neglected. Lastly, this technique combines error signals from different channels into a single

distortion value. To accomplish this, spatial pooling and temporal pooling across each video

frame are employed. Further information about the error sensitivity-based framework can be

seen in Wang, et al. [59] and Wang, et al. [64].
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To quantify the visual integrity of natural images, Chandler and Hemami [65]

describe a wavelet-based visual signal-to-noise ratio (VSNR). The VSNR is derived from

near-threshold and supra-threshold properties of human vision. The complete VSNR

calculation procedure is provided in [65]. In order to perform a visual quality assessment

(VQA) application, as demonstrated in [62], the VSNR is applied frame-by-frame on the

luminance component of the video. The resulting overall VSNR index of the video is

calculated as the average of the frame level VSNR scores. Even though the authors of VSNR

had not proposed such an extension, the same VSNR score calculation method was applied

to videos in the present experiments.

Recently, Seshadrinathan and Bovik [66] [67] generated a MOtion-based Video

Integrity Evaluation (MOVIE) index. Essentially, the MOVIE is a FR VQA algorithm that

incorporates both spatial and temporal aspects of distortion assessment. To accomplish this,

it utilizes a spatio-temporally localized, multi-scale decomposition of the reference and test

videos using a family of spatio-temporal Gabor filters (three scales with 35 filters at each

scale). Thus, MOVIE consists of two components: spatial MOVIE (SMOVIE), and temporal

MOVIE (TMOVIE). The spatial MOVIE index quantifies spatial distortions in the video,

whereas temporal MOVIE measures temporal distortions in the video by computing and

using motion information from the reference video explicitly.

An objective video quality metric called foveated mean square error (FMSE) was

reported by Rimac-Drlje, et al. [68]. The FMSE is founded on the MSE approach and

assigns different weighted values to the errors at different points on the frame due to the

assumption that the human eye focuses on a pixel at the center of the frame. The authors

accounted for the decline in human eye contrast sensitivity when eccentricity on the retina

rises and when retinal image velocity rises. Additionally, they implemented the
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foveation-based contrast sensitivity to acquire foveation-based sensitivity for scenes with

motion.

In a framework proposed by Barkowsky et al. [69], the authors added temporal

distortion awareness to standard VQA algorithms. This technique utilizes motion estimation

to track image areas over time. In order to evaluate the appearance of new image areas and

the display time of objects, motion vectors and the motion prediction error are determined

and assessed. Furthermore, this framework allows for a more exact judgment of degradations

that attach to and remain with moving objects.

Zhao et al. [70] presented an innovative FR video quality metric called perceptual

quality index (PQI). In this metric, multiple visual properties are utilized to mimic

subjective evaluation on impaired videos. So as to detect and quantify perceptible

distortions in both spatial and temporal channels, PQI employs visual performance

information in foveal and extra-foveal vision and a spatial-temporal just noticeable difference

(JND) model. In each channel, visual errors are summed and quality degradation over time

is collected in order to model the visual persistence and recency effects. A final perceptual

quality score is computed by transforming and fusing the intensities of spatial and temporal

noises into quality scales.

Engineering Approach Oriented Metrics

The engineering approach to video quality metrics is characterized by the extraction

and analysis of certain features such as structural elements and artifacts such as blockiness

or blur in the video. Engineering metrics, also described as the top-down approach, evaluate

the strength of video features in order to approximate the overall quality. Although the
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engineering approach differs from fundamental vision modeling, it does not neglect the HVS,

as it often accounts for psychophysical vision effects. The main distinction of the engineering

approach is that its conceptual foundation lies in image content and distortion analysis.

To assess image quality, Wang et al. [71] designed a structural similarity (SSIM)

index, that uses structural distortion as an estimate of the perceived visual distortion. In

order to determine structural distortion, SSIM utilizes means, variances, and the covariance

of original and distorted sequences. The benefit of SSIM indices is that they are calculated

only for properly selected blocks instead of the whole frame, which lessens computational

costs while still providing reliable experimental results.

Different extensions of the SSIM indices are designed for still images and then

extended to the video. An example is the multi-scale SSIM (MS-SSIM) index for still images

described by Zhou, et al. [72]. The MS-SSIM considers the dependence of image detail

perceivability on sampling density of the image signal, the distance from the image plane to

the observer, and the perceptual capacity of the observers visual system. In order to apply

MS-SSIM to VQA, the MS-SSIM is implemented in the luminance component of each frame

of the video. To obtain the overall MS-SSIM index for the video, the individual frame level

quality scores are averaged.

Speed SSIM index is an additional VQA extension of the SSIM paradigm. This

application pairs SSIM with statistical models of visual speed perception, as proposed by

Zhou and Li [73]. In any particular video sequence speed, SSIM accounts for three types of

motion fields (i) absolute motion, (ii) background motion, and (iii) relative motion, and a

model of human visual speed perception [74]. This results in a calculation of perceived video

quality.
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Finally, Mittal et al. [75] propose a natural scene statistic-based distortion-generic

blind/no-reference image quality assessment (IQA) model that operates in the spatial

domain. Their model (called blind/referenceless image spatial quality evaluator

(BRISQUE)) does not compute distortion-specific features, such as ringing, blur, or

blocking, but instead uses scene statistics of locally normalized luminance coefficients to

quantify possible losses of naturalness in the image due to the presence of distortions,

thereby leading to a measure of quality.

5.3.3 Packet and Bitstream−based Metrics

The delivery of video over IP networks has been provided in a growing number of

services (specifically IPTV). Therefore, the development of VQA metrics that consider the

impact of network losses on video quality became imperative. To do this, it is important to

determine the amount of video information lost in some packets in their transmission

through the network. With little or no decoding, packet and bitstream-based metrics

extricate certain parameters from the transport stream and the bitstream. As compared to

the metrics that utilize fully decoded video, the packet and bitstream-based metrics result in

lower bandwidth and processing requirements. One of these metrics is the V-Factor

described by Winkler [76], and other examples are included by Versheure, et al. [77].

However, packet and bitstream-based metrics are limited because they are tailored to

specific codecs and network protocols. Details about quality of sevice (QoS) and quality of

experience (QoE) techniques for IPTV are included for instance by Krej [78].



68

5.4 Tracker Quality Assessment

The challenge now is to connect the methods of VQA with the multiple target

tracking techniques using video. The chosen techniques must assess the video sequences at

the pixel level where the tracking is performed and measurements are obtained.

Given the big variety of VQA methods introduced in the previous sections, finding

the appropriate technique to use as part of our tracker quality assessment framework is a

delicate task, given that our purpose is to use the information content at the pixel level and

it is also important to use techniques that gives us consistent results and are valid from an

engineering point of view. First then it is important to note that we can not use the

techniques that use as a base a model of the HVS since tracking techniques have no

similarity with our visual system. We can also rule out quality measures over networks or

bitstream−based metrics since we are assessing the available video for the detection

algorithms without having to look at what happens at his origin. Finally, simple data metrics

such as MSE and PSNR are too general and do not look at the specific pixel locations.

In light of this, the best choice of methods to include on a framework for tracker

quality assessment comes from the engineering approach to visual quality assessment, more

specifically methods that look at the quality of the pixel on different scales, since detectors

for objects on video use this information, where the main connection between tracking on

videos and video quality could be encountered. Given all the mentioned characteristics, we

use widely available VQA engineering approaches: BRISQUE and MS-SSIM.
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5.4.1 Framework Description

The framework is simple and operates in the manner of usual image filtering

techniques. Performing sequential spatial filtering using BRISQUE to weight each pixel and

the MTT transform to weight the pixels that are in the areas where measurements are

obtained. We also make use of the MS-SSIM as a comparison of the images but not on the

usual manner of a reference image but to compare information encoding evolution in time,

inspired on the work by Wang et al. [73].

The process of incorporating the MTT transform into a quality assessment

framework is divided into three steps (Figure. 5.1), in order to incorporate the concepts from

the marginalized transform and the visual quality assessment. First, each frame is obtained

and weighted by the quality score obtained by BRISQUE, parallel to this the detector that

is going to be used for the tracking application is used on each frame, obtaining real

measurements. The BRISQUE weighting has an objective the normalization of images in

order to eliminated any biases caused for high or low quality videos. The obtained

measurements are used to numerically calculate the MTT transform for each technique, in

order to do this each measurement is assumed to represent a target with all the probabilities

provided by the technique’s assumptions. On a second step the BRISQUE weighted image is

changed in by applying the weighting obtain during the transform evaluation, but only in

the pixel regions where measurement were obtained. Finally the MS-SSIM is used to

compare the weighted images from one frame to the next (as shown in Figure 5.1). The

tracker quality assessment (TQA) is the mean of the MS-SSIM over time. In practice, for

the usual application of MS-SSIM the higher its values is the higher the quality of an image

is, since the reference is the image with the perfect quality.
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Frame Transformed k − 1

BRISQUE

MTT transformDetector (Measurement)

SSIMSSIMSSIM
X

Frame transform k

Figure 5.1: Framework for the application of the MTT marginalized transform combined with
visual quality assessment
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CHAPTER 6

Implementations and Results

This chapter is divided in two main parts. First we introduce the way in which the

marginalized transforms are calculated in order to be used as part of the TQA framework.

Finally we present the results for a variety of experiments exploring possible applications.

6.1 Tracker Quality Index Implementations

The implementation of the TQA framework needs the evaluation of each of the

transform expressions presented in Table 4.1. This might seem like a simple task, but it

needs special care in order to maintain the assumptions for the techniques and more

importantly the actual implementations. The main assumption for the transform evaluation

is that a target is present where a measurement is present (marginalization) and a transform

value is calculated for each of them, then for each frame, if we have m measurements that

give us m transform values that are added to find the total value for that set of

measurements.

6.1.1 Joint Probabilistic Data Association

Calculating the transform for the JPDA has the same form than the presented in the

transform Table, basically the only consideration to be taking in account is making sure that

scaling remains proper for each measurement.
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Algorithm 1 JPDA Marginalized transform calculation

1: while video is running do
2: Y ← set of measurements for current frame . Y is a matrix of l ×m
3: Ψ = 0
4: for i = 1 to m do
5: x = Y i

. assuming a target is present at each measurement

6: x+ = A · x
7: Y est = H · x+

8: P+ = A · P0 · AT +Q
9: S = H · P+ ·HT +R

10: BMD = ax · N (x|x+, P+) + bx · N (Yi|Y+, S)
. This accounts for detection and model effects

11: Clutter = e−
1
V

+cd

. Effects of clutter, cd is the parameter we change for evaluation

12: Ψ = Ψ + k ∗ Clutter ∗BMDn

. Where n is the previously known number of targets, and k is a normalizing constant

13: end for
14: end while

6.1.2 Multiple Hypothesis Tracking

For the MHT we need to introduce the expression for the calculation of the

coefficients γ and χ. Using the gaussian assumption and the expressions for hypothesis

evaluation from the MHT we have

χ
MHT

=
1

c
· ν!F !

Q̄!
· e−pb · pd ·

(
e−cd

)F
(6.1.1)

γ
MHT

=
1

c
· ν!F !

Q̄!
· e−cd ·

(
e−pb

)ν
(6.1.2)

where F is the number of false alarms, ν is the number of new targets, Q̄ is the number of

targets, and again pb and pd are the probabilities of birth and death, respectively [37] [79].

All the former quantities are calculated using random sampling according to the appropriate

distribution: binomial distribution for ν, and Poisson distribution for F . Q̄ is approximated

by the number of measurements for each frame. It is important to remember that in this
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case the probability of detection and the innovation probability density function are already

taken into account inside the Bayes-Markov filter portion of the marginalized transform

expression. In general is shares the core algorithm with the MCMC (see Algorithm 2).

6.1.3 Markov Chain Monte Carlo

For the MCMC the evaluation has a different nature, since it depends on the moves

mentioned in Section 3.5 and the implementation selected. In this case we have

χ
MCMC

= (1− pb) · pd · τ · C (6.1.3)

γ
MCMC

= pb · (1− pd) · C (6.1.4)

where pb is the probability of birth, pd is the probability of death, τ is the target prior, and

C is the clutter prior for a target. The value for each of these variables is calculated by

performing a small Metropolis-Hastings sampling [28] using the different assumptions

present in the implementation. To calculate those values we used the same criteria presented

by by Särkkä et al. in [43]. The value of C depends on sampling a Poisson distribution with

density cd and it is equals the inverse of the surveillance volume if the target is said to be a

false alarm, otherwise it is one. τ depends on sampling from a given target representing a

false alarm or existing target, and it is obtained by sampling a Poisson distribution with

intensity pb and assigning the value of one minus the inverse surveillance volume.
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Algorithm 2 MCMC and MHT Marginalized transform calculation.

1: while video is running do
2: Y ← set of measurements for current frame

. Y is an l ×m matrix

3: Ψ = 0
4: for i = 1 to m do
5: x = Y i . Assume a target is present at each measurement

6: x+ = A · x
7: Y+ = H · x+

8: P+ = A · P0 · AT +Q
9: S = H · P+ ·HT +R

10: BMD = ax · N (x|x+, P+) + bx · N (Yi|Y+, S)
. Account for detection and model effects

11: Sdata = H · Pbirth ·HT +R
12: BMDdata = ax · N (x+|Mbirth, Pbirth) + bx · N (Y+|Yi, Sdata)

. Effects of birth density with a Normal distribution

. with mean Mbirth and covariance Pbirth
13: Evaluate χ according to Eq. (6.1.1) or Eq. (6.1.3).
14: Evaluate γ according to Eq. (6.1.2) or Eq. (6.1.4).
15: Ψ = Ψ + (1− χ+ χ ∗BMD)m · (1− γ + γ ∗BMDdata)

m

16: end for
17: end while

6.1.4 Probability Hypothesis Density

This implementation does not require the calculation of extra coefficients as in the

former cases, and in consists on evaluating simply on evaluating the representation in the

transform Table, but expanded according to Eq. (71) in [53], but evaluated according to the

marginalization concept. Given that it is an exponential equation it can presents really small

numerical results, thus we can use the logarithmic scale and do the appropriate scaling.

6.2 Experimental Evaluation

On its simplest form the evaluation of the tracker quality assessment is

straightforward. Given a video sequence we can simply apply the tracker quality assessment

framework and obtain a quantity that predicts the expected performance of the technique.
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Algorithm 3 PHD Marginalized transform calculation

1: while video is running do
2: Y ← set of measurements for current frame

. Y is an l ×m matrix

3: Ψ = 0
4: for i = 1 to m do
5: x = Y i . Assume a target is present at each measurement

6: x+ = A · x
7: Y+ = H · x+

8: P+ = A · P0 · AT +Q
9: S = H · P+ ·HT +R

10: BMD = ax · N (x|x+, P+) + bx · N (Yi|Y+, S)
. Account for detection and model effects

11: PHD = e(−
1
V
−m+cd+m∗BMD)

. Account for detection and model effects

12: Ψ = Ψ + k ∗ log (PHD) . k for appropriate scaling

13: end for
14: end while

In order to accomplish this experiment we need to run the tracking techniques on the video

sequence to have a real performance measure and compare with the prediction, it is really

important to note that the actual performance is not important in our case, but the relative

prediction of the performance. For this work we use the optimal subpattern assignment

(OSPA) metric [8] since it has been widely used as one of the main performance metrics for

non-labeled multiple target tracking applications1. Finally, the base implementations used in

this work for the MHT comes from the work of Antunes et al. [40], the MCMC data

association and JPDA from the toolbox by Särkkä et al. [43], and the PHD comes from the

implementation by Bryan Clarke of [47], all extended or modified to carry out centroid

tracking on videos with a constant velocity model [5].

The video sequences used are the widely used and publicly available VSPETS 2003

INMOVE soccer dataset2, using a red detector to obtain the centroids of one of the teams

(Liverpool), which in general provides very accurate measurements, and the 2009

1All tracking scenarios are performed 15 times for Monte Carlo Simulations
2The dataset can be found in ftp://ftp.cs.rdg.ac.uk/pub/VS-PETS/
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BAHNHOF sequence which is a moving camera scenario3, where the targets are pedestrians

and the detections were made with an HOG and the clutter and accuracy of the detection is

not as high. The main assumption for the transform evaluation is that a target is present

where a measurement is present (at marginalization) and a transform value is calculated for

each of them, then for each frame, if there are q measurements we obtain q transform values

that are superposed since the measurement space is unique. This also indicates that the

values for m and n in the transform Table 4.1 are equal to the number of measurements

obtained at each frame.

The tracker quality assessment framework was used to evaluate each tracker using

different sets of basic assumptions, such as varying the false alarm intensities, the

probability of detection and/or probability of birth. Although every parameter could be

changed for comparison or tuning, from the model and measurement covariance, to the birth

densities or the motion model itself, for simplicity and conciseness we limit our evaluation to

a limited amount of parameters that present good performance variation. For the different

scenarios, after extensive experimentation it was found that changing the false alarm density

affects this specific MHT implementation the most, and hence that was the parameter

chosen for evaluation, the same can be said about the JPDA and PHD implementations. In

the case of the MCMC technique changing only one parameter does not affect the

performance given the way in which the MCMC explores the hypothesis space. Table 6.1

presents the parameter values used in our evaluation. In the table, cd is the clutter or false

alarm density, pd is the probability of death, and pb is the probability of birth.

We analyze three sets of values that can confirm or disproof the validity of our

hypothesis. Total OSPA values are provided to show the real performance of the techniques

3The dataset can be found in https://data.vision.ee.ethz.ch/cvl/aess/dataset/
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(a) Soccer scenario VSPETS 2003 INMOVE

(b) Moving camera scenario 2009 BAHNHOF

Figure 6.1: Snapshot of the datasets analysed

Table 6.1: Sets of assumption for the MCMC in the soccer scenario

MCMC Assumption set

1 cd = 1/1000 pd = 0.547 pb = 0.1
2 cd = 1/240 pd = 0.8 pb = 0.1
3 cd = 1/1000 pd = 0.9 pb = 0.1
4 cd = 1/100 pd = 0.9 pb = 0.1
5 cd = 1/3 pd = 0.547 pb = 0.8
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using the ground truth, and consists on adding the frame by frame OSPA value. Total MTT

transform represents the aggregated value of the transform evaluated for each frame. Finally,

the TQA represents the output of the framework presented in Chapter 5. All quantities have

been normalized by their largest value in order to facilitate visualization, including the

1− log(NormalizedTQA) in order to give a better comparison with the tracker performance.
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Figure 6.2: JPDA results for soccer scenario

It is important to consider each scenario separately and for each technique. In the

case concerning the soccer scenario it can be observed that the TQA does an excellent job

predicting the performance for the MHT technique as can be seen in Figure 6.3.b, given that

the smaller the OSPA the better the overall performance. In this case the total MTT

transform also performs a good job (Figure 6.3.a), but it is important to remember that it
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Figure 6.3: MHT results for soccer scenario

only takes in account the detection and not the video quality. For the MCMC we can

observe small variation on the performance prediction for the first three sets of assumptions

which is reflected on the actual OSPA in Figure 6.7. In the case of the JPDA we can only

analyse the soccer scenario since we know how many targets are present during the length of

the video, and we can observe a similar effect on the performance when changing the values
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of the clutter density, and the performance prediction results show great concordance with

the OSPA variations (Figure 6.2.b). Finally the PHD filter follows the observed pattern so

far, presenting a really good prediction over the clutter density spectrum studied (see Figure

6.5.b). In general for this scenario the TQA framework performs really well, this is mostly

due to the high quality of the measurements and the reduced number of false alarms and

video changes, given the stationary camera.

The moving camera scenario and the different detector present more challenges for
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Figure 6.4: MHT results for moving camera scenario
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Figure 6.5: PHD results for soccer scenario

the evaluated tracking techniques and it has the same effect on the TQA framework. The

measurements were corrected given the world coordinates of the camera that are included in

the dataset, and technically this accounts for the camera motion in order to make more

accurate predictions. For the MCMC it can be observed that the variation of the TQA value

is much smaller than the actual OSPA variation but the trends are as precise as in the

former scenario when accounting for camera motion (Figures 6.4.b 6.6.b, and 6.8.b and c)

with the transform presenting a really good measure in this case too, since it is not as

affected by the bigger frame to frame change change in information produced by the motion

(Figures 6.4.a and 6.8.a). The scale change for the framework is usually small (see 6.4.b and

6.6.b for instance), this tells us that the TQA prediction should be considered more of a

relative than an absolute value for comparison or tuning purposes.
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Figure 6.6: PHD results for moving camera scenario
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Figure 6.7: MCMC results for soccer scenario
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Figure 6.8: MCMC results for moving camera scenario
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CHAPTER 7

Conclusions and Recommendations

7.1 Conclusions

The mathematical framework given by finite point processes allows for the

introduction of novel concepts that can be used for a compact representation of MTT

techniques that can be useful to obtain more information about the nature of these

techniques and perform application beyond pure target tracking. We presented a new

framework that allow us to predict the performance of MTT techniques taking advantage of

these concepts without performing tracking. This has not been done before and presents a

completely novel application with theoretical and practical implications.

The MTT transform gives us an insight on how the different assumptions of a MTT

technique affect the way in which the likelihood uses the information content of the

measurements, which can be clearly observed in the results for the different techniques and

scenarios. The MTT transform by itself can only gives us information about the effective use

of the measurements but not a complete prediction since the scenario in which the tracking

is occurring affects the performance.

Visual quality assessment techniques can be successfully integrated with the proposed

transform to give a more realistic performance prediction that takes in account the problems

of quality present in the video sequences. The performance of the framework is not perfect

as was observed but in general it will tend to show the actual performance prediction. It is
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still important to have a good body of knowledge of target tracking in order to use this tool,

but it can be prepared as a general design tool.

7.2 Future Work and Recommendations

In order to make this results more definitive for the application on video sequences it

would be important to consider more tracking techniques and tracking scenarios, including

moving cameras, different detectors and motion models. Other important aspect to take in

account is the use or construction of different quality metrics that serve a more focus

purposes, for example changing the way in which the reference comparison are computed. In

terms of computer vision applications, there is one more possible use for this framework in

combination with optimization techniques, in order to conduct a search to find the tuning

parameters for the different techniques.

A second branch of future work includes looking at other scenarios where a similar

framework can be defined, expanding the possibilities of application outside computer vision.

This touches in a more complex subject, since obtaining good evaluations or quality

assessment of physical systems such as radar or robotics platforms has not been explored in

the past.
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