10,569 research outputs found

    Collaborative Edge Caching: a Meta Reinforcement Learning Approach with Edge Sampling

    Full text link
    Current learning-based edge caching schemes usually suffer from dynamic content popularity, e.g., in the emerging short video platforms, users' request patterns shift significantly over time and across different edges. An intuitive solution for a specific local edge cache is to collect more request histories from other edge caches. However, uniformly merging these request histories may not perform satisfactorily due to heterogeneous content distributions on different edges. To solve this problem, we propose a collaborative edge caching framework. First, we design a meta-learning-based collaborative strategy to guarantee that the local model can timely meet the continually changing content popularity. Then, we design an edge sampling method to select more "valuable" neighbor edges to participate in the local training. To evaluate the proposed framework, we conduct trace-driven experiments to demonstrate the effectiveness of our design: it improves the average cache hit rate by up to 10.12%10.12\% (normalized) compared with other baselines.Comment: Published on IEEE International Conference on Multimedia and Expo 2023 (ICME2023

    A Light-weight Content Distribution Scheme for Cooperative Caching in Telco-CDNs

    Get PDF
    A key technique to reduce the rapid growing of video-on-demand’s traffic is a cooperative caching strategy aggregating multiple cache storages. Many internet service providers have considered the use of cache servers on their networks as a solution to reduce the traffic. Existing schemes often periodically calculate a sub-optimal allocation of the content caches in the network. However, such approaches require a large computational overhead that cannot be amortized in a presence of frequent changes of the contents’ popularities. This paper proposes a light-weight scheme for a cooperative caching that obtains a sub-optimal distribution of the contents by focusing on their popularities. This was made possible by adding color tags to both cache servers and contents. In addition, we propose a hybrid caching strategy based on Least Frequently Used (LFU) and Least Recently Used (LRU) schemes, which efficiently manages the contents even with a frequent change in the popularity. Evaluation results showed that our light-weight scheme could considerably reduce the traffic, reaching a sub-optimal result. In addition, the performance gain is obtained with a computation overhead of just a few seconds. The evaluation results also showed that the hybrid caching strategy could follow the rapid variation of the popularity. While a single LFU strategy drops the hit ratio by 13.9%, affected by rapid popularity changes, our proposed hybrid strategy could limit the degradation to only 2.3%

    The fourth V, as in evolution: How evolutionary linguistics can contribute to data science

    Get PDF
    The paper explores the importance of closer interaction between data science and evolutionary linguistics, pointing to the potential benefits for both disciplines. In the context of big data, the microblogging social networking service – Twitter – can be treated as a source of empirical input for analyses in the field of language evolution. In an attempt to utilize this kind of disciplinary interplay, I propose a model, which constitutes an adaptation of the Iterated Learning framework, for investigating the glossogenetic evolution of sublanguages.

    Evaluating weaknesses of "perceptual-cognitive training" and "brain training" methods in sport: An ecological dynamics critique

    Get PDF
    The recent upsurge in "brain training and perceptual-cognitive training," proposing to improve isolated processes, such as brain function, visual perception, and decision-making, has created significant interest in elite sports practitioners, seeking to create an "edge" for athletes. The claims of these related "performance-enhancing industries" can be considered together as part of a process training approach proposing enhanced cognitive and perceptual skills and brain capacity to support performance in everyday life activities, including sport. For example, the "process training industry" promotes the idea that playing games not only makes you a better player but also makes you smarter, more alert, and a faster learner. In this position paper, we critically evaluate the effectiveness of both types of process training programmes in generalizing transfer to sport performance. These issues are addressed in three stages. First, we evaluate empirical evidence in support of perceptual-cognitive process training and its application to enhancing sport performance. Second, we critically review putative modularized mechanisms underpinning this kind of training, addressing limitations and subsequent problems. Specifically, we consider merits of this highly specific form of training, which focuses on training of isolated processes such as cognitive processes (attention, memory, thinking) and visual perception processes, separately from performance behaviors and actions. We conclude that these approaches may, at best, provide some "general transfer" of underlying processes to specific sport environments, but lack "specificity of transfer" to contextualize actual performance behaviors. A major weakness of process training methods is their focus on enhancing the performance in body "modules" (e.g., eye, brain, memory, anticipatory sub-systems). What is lacking is evidence on how these isolated components are modified and subsequently interact with other process "modules," which are considered to underlie sport performance. Finally, we propose how an ecological dynamics approach, aligned with an embodied framework of cognition undermines the rationale that modularized processes can enhance performance in competitive sport. An ecological dynamics perspective proposes that the body is a complex adaptive system, interacting with performance environments in a functionally integrated manner, emphasizing that the inter-relation between motor processes, cognitive and perceptual functions, and the constraints of a sport task is best understood at the performer-environment scale of analysis
    • …
    corecore